68 research outputs found

    Coverage and Economy of Cellular Networks with Many Base Stations

    Full text link
    The performance of a cellular network can be significantly improved by employing many base stations (BSs), which shortens transmission distances. However, there exist no known results on quantifying the performance gains from deploying many BSs. To address this issue, we adopt a stochastic-geometry model of the downlink cellular network and analyze the mobile outage probability. Specifically, given Poisson distributed BSs, the outage probability is shown to diminish inversely with the increasing ratio between the BS and mobile densities. Furthermore, we analyze the optimal tradeoff between the performance gain from increasing the BS density and the resultant network cost accounting for energy consumption, BS hardware and backhaul cables. The optimal BS density is proved to be proportional to the square root of the mobile density and the inverse of the square root of the cost factors considered.Comment: 3 pages, 3 figures, to appear in IEEE Communications Letter

    Maximising Average Energy Efficiency for Two-User AWGN Broadcast Channel

    Get PDF
    Energy consumption has become an increasingly important aspect of wireless communications, from both an economical and environmental point of view. New enhancements are being placed on mobile networks to reduce the power consumption of both mobile terminals and base stations. This paper studies the achievable rate region of AWGN broadcast channels under Time-division, Frequency-division and Superposition coding, and locates the optimal energyefficient rate-pair according to a comparison metric based on the average energy efficiency of the system. In addition to the transmit power, circuit power and signalling power are also incorporated in the energy efficiency function, with simulation results verifying that the Superposition coding scheme achieves the highest energy efficiency in an ideal, but non-realistic scenario, where the signalling power is zero. With moderate signalling power, the Frequency-division scheme is the most energy-efficient, with Superposition coding and Time-division becoming second and third best. Conversely, when the signalling power is high, both Timedivision and Frequency-division schemes outperform Superposition coding. On the other hand, the Superposition coding scheme also incorporates rate-fairness into the system, which allows both users to transmit whilst maximising the energy efficiency

    Energy Efficient Relay-Assisted Cellular Network Model using Base Station Switching

    Get PDF
    Cellular network planning strategies have tended to focus on peak traffic scenarios rather than energy efficiency. By exploiting the dynamic nature of traffic load profiles, the prospect for greener communications in cellular access networks is evolving. For example, powering down base stations (BS) and applying cell zooming can significantly reduce energy consumption, with the overriding design priority still being to uphold a minimum quality of service (QoS). Switching off cells completely can lead to both coverage holes and performance degradation in terms of increased outage probability, greater transmit power dissipation in the up and downlinks, and complex interference management, even at low traffic loads. In this paper, a cellular network model is presented where certain BS rather than being turned off, are switched to low-powered relay stations (RS) during zero-to-medium traffic periods. Neighbouring BS still retain all the baseband signal processing and transmit signals to corresponding RS via backhaul connections, under the assumption that the RS covers the whole cell. Experimental results demonstrate the efficacy of this new BS-RS Switching technique from both an energy saving and QoS perspective, in the up and downlinks

    Influence of Intra-cell Traffic on the Output Power of Base Station in GSM

    Get PDF
    In this paper we analyze the influence of intracell traffic in a GSM cell on the base station output power. It is proved that intracell traffic increases this power. If offered traffic is small, the increase of output power is equal to the part of intracell traffic. When the offered traffic and, as the result, call loss increase, the increase of output power becomes less. The results of calculation are verified by the computer simulation of traffic process in the GSM cell. The calculation and the simulation consider the uniform distribution of mobile users in the cell, but the conclusions are of a general nature

    Optimization of massive connections in 5G networks for IoT

    Get PDF
    The expected traffic demands for the coming years requires a major technology development. Indeed, from 2017 to 2022, the global annual traffic growth is estimated to reach 220%. This annual growth leads in turn to an increase in the number of users connected to IP networks, going from 2.4 to 3.6 devices connected per person. Currently, 4G networks are capable of handling this load, but the irruption of the 5G breakthroughs, expected to be at full operation by 2020, is visible. However, 5G technologies may come along with a considerable power consumption if they are not devised properly. As a consequence, a key issue in the developing of these networks is to make them energetically sustainable. In this work, a preliminary study of the optimization of various aspects of the 5G system is presented. It addresses the configuration of the different basic parameters of the system and optimizes the power transmitted by the base stations to obtain simultaneous improvements in system capacity and its power consumption for a massive connections scenario. To the best of our knowledge, this is the very first time this type of 5G scenario is optimized with these two performance criteria.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech

    Енергроефективна багатокористувацька Мимо система з обмеженим звортним зв’язком

    Get PDF
    Всі останні радіотехнології такі як 3G, 4G, WiMax, HSPA, LTE, LTE-advanced включають адаптивний багатопроменевийм канал для збільшення швидкості передачі даних. Багатопроменевий канал увійшов у використання з MIMO технологями, де велика кількість антен може бути використана в передавачі або приймачі. Система MIMO має недолік, що полягає в багатопроменевому завмиранню, так для вирішення проблеми ефекту завмирання, канальна інформація відстеження була використана. Після того, як канальна інформація відома, використовують метод рознесення та може бути досягнений коефіцієнт підсилення решітки
    corecore