364,307 research outputs found

    Energy Consumption of Group Search on a Line

    Get PDF
    Consider two robots that start at the origin of the infinite line in search of an exit at an unknown location on the line. The robots can collaborate in the search, but can only communicate if they arrive at the same location at exactly the same time, i.e. they use the so-called face-to-face communication model. The group search time is defined as the worst-case time as a function of d, the distance of the exit from the origin, when both robots can reach the exit. It has long been known that for a single robot traveling at unit speed, the search time is at least 9d - o(d); a simple doubling strategy achieves this time bound. It was shown recently in [Chrobak et al., 2015] that k >= 2 robots traveling at unit speed also require at least 9d group search time. We investigate energy-time trade-offs in group search by two robots, where the energy loss experienced by a robot traveling a distance x at constant speed s is given by s^2 x, as motivated by energy consumption models in physics and engineering. Specifically, we consider the problem of minimizing the total energy used by the robots, under the constraints that the search time is at most a multiple c of the distance d and the speed of the robots is bounded by b. Motivation for this study is that for the case when robots must complete the search in 9d time with maximum speed one (b=1; c=9), a single robot requires at least 9d energy, while for two robots, all previously proposed algorithms consume at least 28d/3 energy. When the robots have bounded memory and can use only a constant number of fixed speeds, we generalize an algorithm described in [Baeza-Yates and Schott, 1995; Chrobak et al., 2015] to obtain a family of algorithms parametrized by pairs of b,c values that can solve the problem for the entire spectrum of these pairs for which the problem is solvable. In particular, for each such pair, we determine optimal (and in some cases nearly optimal) algorithms inducing the lowest possible energy consumption. We also propose a novel search algorithm that simultaneously achieves search time 9d and consumes energy 8.42588d. Our result shows that two robots can search on the line in optimal time 9d while consuming less total energy than a single robot within the same search time. Our algorithm uses robots that have unbounded memory, and a finite number of dynamically computed speeds. It can be generalized for any c, b with cb=9, and consumes energy 8.42588b^2d

    Time-Energy Tradeoffs for Evacuation by Two Robots in the Wireless Model

    Full text link
    Two robots stand at the origin of the infinite line and are tasked with searching collaboratively for an exit at an unknown location on the line. They can travel at maximum speed bb and can change speed or direction at any time. The two robots can communicate with each other at any distance and at any time. The task is completed when the last robot arrives at the exit and evacuates. We study time-energy tradeoffs for the above evacuation problem. The evacuation time is the time it takes the last robot to reach the exit. The energy it takes for a robot to travel a distance xx at speed ss is measured as xs2xs^2. The total and makespan evacuation energies are respectively the sum and maximum of the energy consumption of the two robots while executing the evacuation algorithm. Assuming that the maximum speed is bb, and the evacuation time is at most cdcd, where dd is the distance of the exit from the origin, we study the problem of minimizing the total energy consumption of the robots. We prove that the problem is solvable only for bc3bc \geq 3. For the case bc=3bc=3, we give an optimal algorithm, and give upper bounds on the energy for the case bc>3bc>3. We also consider the problem of minimizing the evacuation time when the available energy is bounded by Δ\Delta. Surprisingly, when Δ\Delta is a constant, independent of the distance dd of the exit from the origin, we prove that evacuation is possible in time O(d3/2logd)O(d^{3/2}\log d), and this is optimal up to a logarithmic factor. When Δ\Delta is linear in dd, we give upper bounds on the evacuation time.Comment: This is the full version of the paper with the same title which will appear in the proceedings of the 26th International Colloquium on Structural Information and Communication Complexity (SIROCCO'19) L'Aquila, Italy during July 1-4, 201

    Performance analysis and optimization of automatic speech recognition

    Get PDF
    © 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Fast and accurate Automatic Speech Recognition (ASR) is emerging as a key application for mobile devices. Delivering ASR on such devices is challenging due to the compute-intensive nature of the problem and the power constraints of embedded systems. In this paper, we provide a performance and energy characterization of Pocketsphinx, a popular toolset for ASR that targets mobile devices. We identify the computation of the Gaussian Mixture Model (GMM) as the main bottleneck, consuming more than 80 percent of the execution time. The CPI stack analysis shows that branches and main memory accesses are the main performance limiting factors for GMM computation. We propose several software-level optimizations driven by the power/performance analysis. Unlike previous proposals that trade accuracy for performance by reducing the number of Gaussians evaluated, we maintain accuracy and improve performance by effectively using the underlying CPU microarchitecture. First, we use a refactored implementation of the innermost loop of the GMM evaluation code to ameliorate the impact of branches. Second, we exploit the vector unit available on most modern CPUs to boost GMM computation, introducing a novel memory layout for storing the means and variances of the Gaussians in order to maximize the effectiveness of vectorization. Third, we compute the Gaussians for multiple frames in parallel, so means and variances can be fetched once in the on-chip caches and reused across multiple frames, significantly reducing memory bandwidth usage. We evaluate our optimizations using both hardware counters on real CPUs and simulations. Our experimental results show that the proposed optimizations provide 2.68x speedup over the baseline Pocketsphinx decoder on a high-end Intel Skylake CPU, while achieving 61 percent energy savings. On a modern ARM Cortex-A57 mobile processor our techniques improve performance by 1.85x, while providing 59 percent energy savings without any loss in the accuracy of the ASR system.Peer ReviewedPostprint (author's final draft

    Pricing behaviour under competition in the UK electricity supply industry

    Get PDF
    This paper investigates the evolution of electricity prices for domestic customers in the UK following the introduction of competition. The empirical analysis is based on a panel data set containing detailed information about electricity supply prices over the period 1999 to 2006. The analysis aims to test theoretical hypotheses about the nature of consumers’ switching and search costs. The econometric analysis of persistence and price dispersion provides only limited support for the view that the market is becoming more competitive and also indicates that there remain significant potential benefits to consumers from searching alternative suppliers

    Redundant regulation? : competition and consumer choice in the residential energy markets

    Get PDF
    The UK energy regulator has recently removed price controls from about 40% of residential energy users, and plans total deregulation of the gas and electricity markets by 2002, relying instead on general competition policy to protect consumers. We examine responses to a specially commissioned survey of over one thousand consumers, to identify determinants of consumer choice between suppliers. We conclude that there are substantial switching costs which seem higher for more vulnerable groups. By assessing the savings which consumers require to switch supplier, we deduce that the incumbent retains considerable market power, suggesting that some continued regulation may be necessary

    System Energy Assessment (SEA), Defining a Standard Measure of EROI for Energy Businesses as Whole Systems

    Full text link
    A more objective method for measuring the energy needs of businesses, System Energy Assessment (SEA), identifies the natural boundaries of businesses as self-managing net-energy systems, of controlled and self-managing parts. The method is demonstrated using a model Wind Farm case study, and applied to defining a true physical measure of its energy productivity for society (EROI-S), the global ratio of energy produced to energy cost. The traceable needs of business technology are combined with assignable energy needs for all other operating services. That serves to correct a large natural gap in energy use information. Current methods count traceable energy receipts for technology use. Self-managing services employed by businesses outsource their own energy needs to operate, and leave no records to trace. Those uncounted energy demands are often 80% of the total embodied energy of business end products. The scale of this "dark energy" was discovered from differing global accounts, and corrected so the average energy cost per dollar for businesses would equal the world average energy use per dollar of GDP. Presently the energy needs of paid services that outsource their own energy needs are counted for lack of information to be "0". Our default assumption is to treat them as "average". The result is to assign total energy use and impacts to the demand for energy services, for a "Scope 4" GHG assessment level. Counting only the energy uses of technology understates the energy needs of business services, as if services were more energy efficient than technology. The result confirms a similar finding by Hall et. al. in 1981 [9]. We use exhaustive search for what a business needs to operate as a whole, locating a natural physical boundary for its working parts, to define businesses as physical rather than statistical subjects of science. :measurement, natural systemsComment: 33 pages, 15 figures, accepted as part of pending special issue on EROI organized by Charlie Hall for Sustainability (MDPI
    corecore