4,282 research outputs found

    End-user programming of a social robot by dialog

    Get PDF
    One of the main challenges faced by social robots is how to provide intuitive, natural and enjoyable usability for the end-user. In our ordinary environment, social robots could be important tools for education and entertainment (edutainment) in a variety of ways. This paper presents a Natural Programming System (NPS) that is geared to non-expert users. The main goal of such a system is to provide an enjoyable interactive platform for the users to build different programs within their social robot platform. The end-user can build a complex net of actions and conditions (a sequence) in a social robot via mixed-initiative dialogs and multimodal interaction. The system has been implemented and tested in Maggie, a real social robot with multiple skills, conceived as a general HRI researching platform. The robot's internal features (skills) have been implemented to be verbally accessible to the end-user, who can combine them into others that are more complex following a bottom-up model. The built sequence is internally implemented as a Sequence Function Chart (SFC), which allows parallel execution, modularity and re-use. A multimodal Dialog Manager System (DMS) takes charge of keeping the coherence of the interaction. This work is thought for bringing social robots closer to non-expert users, who can play the game of "teaching how to do things" with the robot.The research leading to these results has received funding from the RoboCity2030-II-CM project (S2009/DPI-1559), funded by Programas de Actividades I+D en la Comunidad de Madrid and cofunded by Structural Funds of the EU. The authors also gratefully acknowledge the funds provided by the Spanish Ministry of Science and Innovation (MICINN) through the project named “A New Approach to Social Robots” (AROS) DPI2008-01109

    Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction

    Full text link
    We develop a natural language interface for human robot interaction that implements reasoning about deep semantics in natural language. To realize the required deep analysis, we employ methods from cognitive linguistics, namely the modular and compositional framework of Embodied Construction Grammar (ECG) [Feldman, 2009]. Using ECG, robots are able to solve fine-grained reference resolution problems and other issues related to deep semantics and compositionality of natural language. This also includes verbal interaction with humans to clarify commands and queries that are too ambiguous to be executed safely. We implement our NLU framework as a ROS package and present proof-of-concept scenarios with different robots, as well as a survey on the state of the art

    Multimodal Fusion as Communicative Acts during Human-Robot Interaction

    Get PDF
    Research on dialog systems is a very active area in social robotics. During the last two decades, these systems have evolved from those based only on speech recognition and synthesis to the current and modern systems, which include new components and multimodality. By multimodal dialogue we mean the interchange of information among several interlocutors, not just using their voice as the mean of transmission but also all the available channels such as gestures, facial expressions, touch, sounds, etc. These channels add information to the message to be transmitted in every dialogue turn. The dialogue manager (IDiM) is one of the components of the robotic dialog system (RDS) and is in charge of managing the dialogue flow during the conversational turns. In order to do that, it is necessary to coherently treat the inputs and outputs of information that flow by different communication channels: audio, vision, radio frequency, touch, etc. In our approach, this multichannel input of information is temporarily fused into communicative acts (CAs). Each CA groups the information that flows through the different input channels into the same pack, transmitting a unique message or global idea. Therefore, this temporary fusion of information allows the IDiM to abstract from the channels used during the interaction, focusing only on the message, not on the way it is transmitted. This article presents the whole RDS and the description of how the multimodal fusion of information is made as CAs. Finally, several scenarios where the multimodal dialogue is used are presented.Comunidad de Madri

    Genetic algorithms

    Get PDF
    Genetic algorithms are mathematical, highly parallel, adaptive search procedures (i.e., problem solving methods) based loosely on the processes of natural genetics and Darwinian survival of the fittest. Basic genetic algorithms concepts are introduced, genetic algorithm applications are introduced, and results are presented from a project to develop a software tool that will enable the widespread use of genetic algorithm technology

    Spoken Language and Vision for Adaptive Human-Robot Cooperation

    Get PDF

    User Interface Design of Humanoid Robot at Library: Case of Chemnitz University of Technology

    Get PDF
    The university library is one of the key places for students at higher education institutions. Some universities support their students with their literature search and research with humanoid robots. The Chemnitz University of Technology (CUT) is one of pioneer universities where a humanoid robot will assist at the university library. This paper describes user interface requirement and its programming, testing and implementation of humanoid robot at the university library. The programmed humanoid robot should support students and visitors with useful guidance and hints in finding materials they need for their research and study. For programming of the robot, the programming language Python was used and the implementation was tested with limited number of users due to the pandemic situation
    corecore