7 research outputs found

    Performance of cluster-based cognitive multihop networks under joint impact of hardware noises and non-identical primary co-channel interference

    Get PDF
    In this paper, we evaluate outage probability (OP) of a cluster-based multi-hop protocol operating on an underlay cognitive radio (CR) mode. The primary network consists of multiple independent transmit/receive pairs, and the primary transmitters seriously cause co-channel interference (CCI) to the secondary receivers. To improve the outage performance for the secondary network under the joint impact of the CCI and hardware imperfection, we employ the best relay selection at each hop. Moreover, the destination is equipped with multiple antennas and uses the selection combining (SC) technique to enhance the reliability of the data transmission at the last hop. For performance evaluation, we first derive an exact formula of OP for the primary network which is used to calculate the transmit power of the secondary transmitters. Next, an exact closed-form expression of the end-to-end OP for the secondary network is derived over Rayleigh fading channels. We then perform Monte-Carlo simulations to validate the derivations. The results present that the CCI caused by the primary operations significantly impacts on the outage performance of the secondary network

    Throughput analysis of non-orthogonal multiple access and orthogonal multiple access assisted wireless energy harvesting K-hop relaying networks

    Get PDF
    This study introduces the non-orthogonal multiple access (NOMA) technique into the wireless energy harvesting K-hop relay network to increase throughput. The relays have no dedicated energy source and thus depend on energy harvested by wireless from a power beacon (PB). Recently, NOMA has been promoted as a technology with the potential to enhance connectivity, reduce latency, increase fairness amongst users, and raise spectral effectiveness compared to orthogonal multiple access (OMA) technology. For performance considerations, we derive exact throughput expressions for NOMA and OMA-assisted multi-hop relaying and compare the performance between the two. The obtained results are validated via Monte Carlo simulations

    Design and analysis of routing protocol for cognitive radio ad hoc networks in Heterogeneous Environment

    Get PDF
    Multi-hop routing protocol in cognitive radio mobile ad hoc networks (CRMANETs) is a critical issue. Furthermore, the routing metric used in multi-hop CRMANETs should reflect the bands availability, the links quality, the PU activities and quality of service (QoS) requirements of SUs. For the best of our knowledge, many of researchers investigated the performance of the different routing protocols in a homogeneous environment only. In this paper, we propose a heterogeneous cognitive radio routing protocol (HCR) operates in heterogeneous environment (i.e. the route from source to destination utilize the licensed and unlicensed spectrum bands). The proposed routing protocol is carefully developed to make a tradeoff between the channel diversity of the routing path along with the CRMANETs throughput. Using simulations, we discuss the performance of the proposed HCR routing protocol and compare it with the AODV routing protocol using a discrete-event simulation which we developed using JAVA platform

    End-to-End Throughput Maximization for Underlay Multi-Hop Cognitive Radio Networks with RF Energy Harvesting

    No full text
    This paper studies a green paradigm for the underlay coexistence of primary users (PUs) and secondary users (SUs) in energy harvesting cognitive radio networks (EH-CRNs), wherein battery-free SUs capture both the spectrum and the energy of PUs to enhance spectrum efficiency and green energy utilization. To lower the transmit powers of SUs, we employ multi-hop transmission with time division multiple access, by which SUs first harvest energy from the RF signals of PUs, and then, transmit data in the allocated time concurrently with PUs, all in the licensed spectrum. In this way, the available transmit energy of each SU mainly depends on the harvested energy before the turn to transmit, namely energy causality. Meanwhile, the transmit powers of SUs must be strictly controlled to protect PUs from harmful interference. Thus, subject to the energy causality constraint and the interference power constraint, we study the end-to-end throughput maximization problem for optimal time and power allocation. To solve this nonconvex problem, we first equivalently transform it into a convex optimization problem and then propose the joint optimal time and power allocation (JOTPA) algorithm that iteratively solves a series of feasibility problems until convergence. Extensive simulations evaluate the performance of EH-CRNs with JOTPA in three typical deployment scenarios and validate the superiority of JOTPA by making comparisons with two other resource allocation algorithms
    corecore