127,133 research outputs found

    Five challenges in cloud-enabled intelligence and control

    Get PDF
    The proliferation of connected embedded devices, or the Internet of Things (IoT), together with recent advances in machine intelligence, will change the profile of future cloud services and introduce a variety of new research problems centered around empowering resource-limited edge devices to exhibit intelligent behavior, both in sensing and control. Cloud services will enable learning from data, performing inference, and executing control, all with assurances on outcomes. The paper discusses such emerging services and outlines five resulting new research directions towards enabling and optimizing intelligent, cloud-assisted sensing and control in the age of the Internet of Things

    Internet of Things Applications - From Research and Innovation to Market Deployment

    Get PDF
    The book aims to provide a broad overview of various topics of Internet of Things from the research, innovation and development priorities to enabling technologies, nanoelectronics, cyber physical systems, architecture, interoperability and industrial applications. It is intended to be a standalone book in a series that covers the Internet of Things activities of the IERC – Internet of Things European Research Cluster from technology to international cooperation and the global "state of play".The book builds on the ideas put forward by the European research Cluster on the Internet of Things Strategic Research Agenda and presents global views and state of the art results on the challenges facing the research, development and deployment of IoT at the global level. Internet of Things is creating a revolutionary new paradigm, with opportunities in every industry from Health Care, Pharmaceuticals, Food and Beverage, Agriculture, Computer, Electronics Telecommunications, Automotive, Aeronautics, Transportation Energy and Retail to apply the massive potential of the IoT to achieving real-world solutions. The beneficiaries will include as well semiconductor companies, device and product companies, infrastructure software companies, application software companies, consulting companies, telecommunication and cloud service providers. IoT will create new revenues annually for these stakeholders, and potentially create substantial market share shakeups due to increased technology competition. The IoT will fuel technology innovation by creating the means for machines to communicate many different types of information with one another while contributing in the increased value of information created by the number of interconnections among things and the transformation of the processed information into knowledge shared into the Internet of Everything. The success of IoT depends strongly on enabling technology development, market acceptance and standardization, which provides interoperability, compatibility, reliability, and effective operations on a global scale. The connected devices are part of ecosystems connecting people, processes, data, and things which are communicating in the cloud using the increased storage and computing power and pushing for standardization of communication and metadata. In this context security, privacy, safety, trust have to be address by the product manufacturers through the life cycle of their products from design to the support processes. The IoT developments address the whole IoT spectrum - from devices at the edge to cloud and datacentres on the backend and everything in between, through ecosystems are created by industry, research and application stakeholders that enable real-world use cases to accelerate the Internet of Things and establish open interoperability standards and common architectures for IoT solutions. Enabling technologies such as nanoelectronics, sensors/actuators, cyber-physical systems, intelligent device management, smart gateways, telematics, smart network infrastructure, cloud computing and software technologies will create new products, new services, new interfaces by creating smart environments and smart spaces with applications ranging from Smart Cities, smart transport, buildings, energy, grid, to smart health and life. Technical topics discussed in the book include: • Introduction• Internet of Things Strategic Research and Innovation Agenda• Internet of Things in the industrial context: Time for deployment.• Integration of heterogeneous smart objects, applications and services• Evolution from device to semantic and business interoperability• Software define and virtualization of network resources• Innovation through interoperability and standardisation when everything is connected anytime at anyplace• Dynamic context-aware scalable and trust-based IoT Security, Privacy framework• Federated Cloud service management and the Internet of Things• Internet of Things Application

    Internet of Things: Architectural Components, Protocols and Its Implementation for Ubiquitous Environment

    Get PDF
    Ubiquitous data processing of the sensing nodes has revolutionized the development of electronic industries manufacturing. The concept of the Internet of Things (IoT) is the connectivity of distributed sensing and processing nodes from anywhere rather than fixed computing. For the Implementation of Ubiquitous smart environment, anything and everything can be converted to smart IO Things, and where things have sensing and processing abilities for automation and analysis of environmental processes. Sensors, actuators, embedded processing systems, networking gateways, and IoT Cloud Services are the building blocks of IoT implementation. This paper presents a brief discussion on the connectivity of building blocks with various enabling technologies for the implementation of the Internet of Things. Moreover, many of data link standards and the internet of things data communication protocols will be in the discussion

    Multi-cloud management strategies for simulating IoT applications

    Get PDF
    The Internet of Things (IoT) paradigm is closely coupled with cloud technologies, and the support for managing sensor data is one of the primary concerns of Cloud Computing. IoT-Cloud systems are widely used to manage sensors and different smart devices connected to the cloud, hence a large amount of data is generated by these things that need to be efficiently stored and processed. Simulation platforms have the advantage of enabling the investigation of complex systems without the need of purchasing and installing physical resources. In our previous work, we chose the DISSECT-CF simulator to model IoT-Cloud systems, and we also introduced provider pricing models to enable cost-aware policies for experimentation. The aim of this paper is to further extend the simulation capabilities of this tool by enabling multi-cloud resource management. In this paper we introduce four cloud selection strategies aimed to reduce application execution time and utilization costs. We detail our proposed method towards multi-cloud extension, and evaluate the defined strategies through scenarios of a meteorological application

    Comprehensive analysis of security issues in cloud-based Internet of Things: A survey

    Get PDF
    The Internet of Things (IoT )has emerged as the largest computing platform, enabling IoT devices to sense real-world conditions such as temperature, humidity, pressure, and cloud prediction. However, the security of IoT systems is crucial due to their direct impact on human life. With the expansion of processing and communication capabilities to numerous devices, IoT has become a vast network where connectivity is ubiquitous. This paper focuses on the security issues of cloud-based IoT, specifically access control, network security, data security, and privacy, which are the four main components of cloud-based IoT. By analyzing and comparing existing research papers on security in cloud IoT and IoT in general, we identify proposed solutions. Most researchers have concentrated on a single component, while only a few have addressed two components. Consequently, our research aims to bridge the gap in Cloud IoT security by focusing on more than two components. We propose the utilization of methods such as Machine Learning and blockchain to enhance security, drawing on the strengths highlighted in previous works. Our future focus will involve exploring potential attacks in cloud IoT and developing a comprehensive method that encompasses atleast three security components of cloud IoT security
    • …
    corecore