185 research outputs found

    Using hypergraph theory to model coexistence management and coordinated spectrum allocation for heterogeneous wireless networks operating in shared spectrum

    Get PDF
    Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity.Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity

    Comprehensive survey on quality of service provisioning approaches in cognitive radio networks : part one

    Get PDF
    Much interest in Cognitive Radio Networks (CRNs) has been raised recently by enabling unlicensed (secondary) users to utilize the unused portions of the licensed spectrum. CRN utilization of residual spectrum bands of Primary (licensed) Networks (PNs) must avoid harmful interference to the users of PNs and other overlapping CRNs. The coexisting of CRNs depends on four components: Spectrum Sensing, Spectrum Decision, Spectrum Sharing, and Spectrum Mobility. Various approaches have been proposed to improve Quality of Service (QoS) provisioning in CRNs within fluctuating spectrum availability. However, CRN implementation poses many technical challenges due to a sporadic usage of licensed spectrum bands, which will be increased after deploying CRNs. Unlike traditional surveys of CRNs, this paper addresses QoS provisioning approaches of CRN components and provides an up-to-date comprehensive survey of the recent improvement in these approaches. Major features of the open research challenges of each approach are investigated. Due to the extensive nature of the topic, this paper is the first part of the survey which investigates QoS approaches on spectrum sensing and decision components respectively. The remaining approaches of spectrum sharing and mobility components will be investigated in the next part

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization

    Get PDF
    The proliferation of smart vehicular terminals (VTs) and their resource hungry applications imposes serious challenges to the processing capabilities of VTs and the delivery of vehicular services. Mobile Edge Computing (MEC) offers a promising paradigm to solve this problem by offloading VT applications to proximal MEC servers, while TV white space (TVWS) bands can be used to supplement the bandwidth for computation offloading. In this paper, we consider a cognitive vehicular network (CVN) that uses the TVWS band, and formulate a dual-side optimization problem, to minimize the cost of VTs and that of the MEC server at the same time. Specifically, the dual-side cost minimization is achieved by jointly optimizing the offloading decision and local CPU frequency on the VT side, and the radio resource allocation and server provisioning on the server side, while guaranteeing network stability. Based on Lyapunov optimization, we design an algorithm called DDORV to tackle the joint optimization problem, where only current system states, such as channel states and traffic arrivals, are needed. The closed-form solution to the VT-side problem is obtained easily by derivation and comparing two values. For MEC server side optimization, we first obtain server provisioning independently, and then devise a continuous relaxation and Lagrangian dual decomposition based iterative algorithm for joint radio resource and power allocation. Simulation results demonstrate that DDORV converges fast, can balance the cost-delay tradeoff flexibly, and can obtain more performance gains in cost reduction and as compared with existing schemes

    Vehicular Dynamic Spectrum Access: Using Cognitive Radio for Automobile Networks

    Get PDF
    Vehicular Dynamic Spectrum Access (VDSA) combines the advantages of dynamic spectrum access to achieve higher spectrum efficiency and the special mobility pattern of vehicle fleets. This dissertation presents several noval contributions with respect to vehicular communications, especially vehicle-to-vehicle communications. Starting from a system engineering aspect, this dissertation will present several promising future directions for vehicle communications, taking into consideration both the theoretical and practical aspects of wireless communication deployment. This dissertation starts with presenting a feasibility analysis using queueing theory to model and estimate the performance of VDSA within a TV whitespace environment. The analytical tool uses spectrum measurement data and vehicle density to find upper bounds of several performance metrics for a VDSA scenario in TVWS. Then, a framework for optimizing VDSA via artificial intelligence and learning, as well as simulation testbeds that reflect realistic spectrum sharing scenarios between vehicle networks and heterogeneous wireless networks including wireless local area networks and wireless regional area networks. Detailed experimental results justify the testbed for emulating a mobile dynamic spectrum access environment composed of heterogeneous networks with four dimensional mutual interference. Vehicular cooperative communication is the other proposed technique that combines the cooperative communication technology and vehicle platooning, an emerging concept that is expected to both increase highway utilization and enhance both driver experience and safety. This dissertation will focus on the coexistence of multiple vehicle groups in shared spectrum, where intra-group cooperation and inter-group competition are investigated in the aspect of channel access. Finally, a testbed implementation VDSA is presented and a few applications are developed within a VDSA environment, demonstrating the feasibility and benefits of some features in a future transportation system

    From Sensing to Predictions and Database Technique: A Review of TV White Space Information Acquisition in Cognitive Radio Networks

    Get PDF
    Strategies to acquire white space information is the single most significant functionality in cognitive radio networks (CRNs) and as such, it has gone some evolution to enhance information accuracy. The evolution trends are spectrum sensing, prediction algorithm and recently, geo-location database technique. Previously, spectrum sensing was the main technique for detecting the presence/absence of a primary user (PU) signal in a given radio frequency (RF) spectrum. However, this expectation could not materialized as a result of numerous technical challenges ranging from hardware imperfections to RF signal impairments. To convey the evolutionary trends in the development of white space information, we present a survey of the contemporary advancements in PU detection with emphasis on the practical deployment of CRNs i.e. Television white space (TVWS) networks. It is found that geo-location database is the most reliable technique to acquire TVWS information although, it is financially driven. Finally, using financially driven database model, this study compared the data-rate and spectral efficiency of FCC and Ofcom TV channelization. It was discovered that Ofcom TV channelization outperforms FCC TV channelization as a result of having higher spectrum bandwidth. We proposed the adoption of an all-inclusive TVWS information acquisition model as the future research direction for TVWS information acquisition techniques

    A Comprehensive Survey on Networking over TV White Spaces

    Full text link
    The 2008 Federal Communication Commission (FCC) ruling in the United States opened up new opportunities for unlicensed operation in the TV white space spectrum. Networking protocols over the TV white spaces promise to subdue the shortcomings of existing short-range multi-hop wireless architectures and protocols by offering more availability, wider bandwidth, and longer-range communication. The TV white space protocols are the enabling technologies for sensing and monitoring, Internet-of-Things (IoT), wireless broadband access, real-time, smart and connected community, and smart utility applications. In this paper, we perform a retrospective review of the protocols that have been built over the last decade and also the new challenges and the directions for future work. To the best of our knowledge, this is the first comprehensive survey to present and compare existing networking protocols over the TV white spaces.Comment: 19 page
    • …
    corecore