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Abstract Strategies to acquire white space information is the single most significant

functionality in cognitive radio networks (CRNs) and as such, it has gone some evolution

to enhance information accuracy. The evolution trends are spectrum sensing, prediction

algorithm and recently, geo-location database technique. Previously, spectrum sensing was

the main technique for detecting the presence/absence of a primary user (PU) signal in a

given radio frequency (RF) spectrum. However, this expectation could not materialized as

a result of numerous technical challenges ranging from hardware imperfections to RF

signal impairments. To convey the evolutionary trends in the development of white space

information, we present a survey of the contemporary advancements in PU detection with

emphasis on the practical deployment of CRNs i.e. Television white space (TVWS) net-

works. It is found that geo-location database is the most reliable technique to acquire

TVWS information although, it is financially driven. Finally, using financially driven

database model, this study compared the data-rate and spectral efficiency of FCC and

Ofcom TV channelization. It was discovered that Ofcom TV channelization outperforms

FCC TV channelization as a result of having higher spectrum bandwidth. We proposed the

adoption of an all-inclusive TVWS information acquisition model as the future research

direction for TVWS information acquisition techniques.

Keywords Cognitive radio � Prediction algorithm � Spectrum sensing � TVWS � White

space � Geo-location database
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1 Introduction

Spectrum measurement campaigns conducted globally conform to the notion that allocated

spectrums are heavily under-utilized, leading to the notion of white space [1, 2]. The term

TV white space (TVWS) implies white spaces observed in the UHF TV channels and

TVWS networks, the wireless networks specifically designed to use TVWS frequency

bands [3, 4]. The demand and consumption of spectrum-hungry applications are the key

drivers of the current spectrum crunch. Hence, there is a need for a paradigm shift from the

current fixed spectrum assignment regime to flexible spectrum regime capable of

accommodating more users per unit Hertz. To this end, several candidate solutions have

been proposed. Among the many candidate solutions, cognitive radio (CR) remains an

attractive choice because it can intelligently utilized spectrum channels in the absence of

assigned licensed users and thereby increasing spectral efficiency in wireless networks [5].

For CR technology to be deployed, it must be equipped with capabilities to guarantee

provisioning of reliable information about the presence/absence of licensed users often

referred as primary users (PU). The core of CR technology lies in the detection of the

presence/absence of licensed users. The three PU detection techniques are: (1) spectrum

sensing [6], (2) geo-location database [7], and (3) spectrum prediction techniques [8].

Spectrum sensing is by far the most extensive researched topic in CR technology [9, 10].

The selection of the appropriate white space information acquisition technique is based on

the utility function logU s; p; dð Þ subject to s—spectrum sensing, being reliable, d—data-

base technique being affordable, and p—prediction techniques being accurate to a certain

threshold. In this case, argmaxU
s;d;p

represents a maximization of the utility function. The use

of a logarithmic function is common among researchers in the literature [11]. The main

reason behind this logarithmic use is to ensure a certain level of fairness among different

the optimization parameters. Separately, maximizing the utility function (without log) may

lead to a solution that is purely dependent on a small subset of optimization parameters.

For example, maximizing the utility function (without log) may return a result that is solely

dependent on one of these parameters (i.e., s, d or p). However, the returned solution

should be ideally dependent on these parameters in a balanced manner, which explains why

logU(s, d, p) is maximized instead of U(s, d, p). Spectrum sensing is a familiar topic in the

cognitive radio environment and it is expected that, the reader have an in-depth knowledge

of the topic. Therefore, our discussion on spectrum sensing is restricted to the core

spectrum sensing techniques, comparison studies and limitations. For detailed information

on spectrum sensing, the reader can consult several established review papers on spectrum

sensing [12, 13].

As presented in Fig. 1, several review papers have analyzed white space information

acquisition in a parallel and independent manner. As a result, creating a myopic and

distorted viewpoint of all potential approaches that are currently in use. Hence, there is a

need to present all the available techniques in a single paper. Based on this distinct research

gap, this study reviews the white space information acquisition techniques in TVWS.

Table 1 compares the three available white space information acquisition techniques based

on some parameters.

In summary, this review paper makes the following main contributions:

• Provisioning of a classification model (taxonomy) for white space information

acquisition techniques focusing mainly on TVWS technology.

H. K. Anabi et al.
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• Presenting a comprehensive literature review of three approaches for white space

information acquisition—namely, sensing, prediction, and geo-location databases—and

comparing the advantages and disadvantages of each approach.

• Outlining challenges, open issues, and future research directions for TVWS informa-

tion acquisition in CRNs.

The paper takes the following structure based on the precedence of TVWS acquisition

technique development: sensing, prediction, and geo-location databases. Section 2 presents

related study to find the gap between existing studies and the current research. Section 3

discusses strategies to overcome some of the research limitations of spectrum sensing.

Section 4 discusses prediction techniques by analyzing the two main approaches, namely,

statistical and state space models. Spectrum mining, a new approach to spectrum predic-

tion, is also discussed. Practical deployment of TVWS assisted by geo-location databases is

discussed in Sect. 5. Section 6 suggests several potential research opportunities and

application challenges of TVWS networks.

1.1 Related Studies

Several published review papers on spectrum sensing discuss white space information

acquisition techniques focusing on either generic CR networks i.e. wireless networks

whose operating radio frequency are other than the UHF TV bands (e.g., [25–28]) or CR

networks operating over TVWS (e.g., [17, 19, 29–31]). From the perspective of generic CR

networks, [13] highlights several aspects of spectrum sensing technology including: the

challenges, enabling algorithms, multi-dimensional spectrum sensing, reactive/proactive

sensing, approaches and cooperative sensing. [32] studied conventional spectrum estima-

tion techniques based on short-time Fourier transformation. Furthermore, studies on

wideband spectrum sensing algorithms for CR-based next generation cellular networks

have been surveyed in [33], clustering techniques for cooperative sensing have been
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Fig. 1 Taxonomy view on TVWS information acquisition techniques
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covered in [34]. Cooperative spectrum sensing has exhibited capabilities to mitigate some

of the noticeable spectrum sensing limitations such as: shadowing and hidden node

problem. Several review papers specifically designed for spectrum sensing over TVWS

have also been analyzed. Whereas [17, 30] were conducted based on the Ofcom spectrum

sensing standard, [14, 19, 20, 31, 35] were based on FCC standards. The main difference

between Ofcom based spectrum sensing techniques and FCC-driven standard is simply

based on channelization. FCC adopts 6 MHz channelization scheme and Ofcom adopts

8 MHz scheme.

Similarly, there are several review papers on spectrum prediction techniques which are

often referred as state space models [15, 21, 23, 36]. State space models are driven by the

fact the future state of a model depends mainly on the present state and are rich in

probabilistic models. As this is the main principle behind the Markovian models. HMM-

based prediction techniques have been analyzed [23, 36]. A survey of artificial intelligence

aided prediction technique was the focus of [15] and the application of neural network in

spectrum prediction [21]. Studies focusing on database techniques include [24, 37–39]

have been investigated. With the exception of [24], which focuses on a broker-based

Table 1 Comparison of the three white space information acquisition techniques

Features/capability Spectrum sensing Prediction Geo-locational
database

Technical complexity Varies [14] Complex [15] Fairly low [16]

Accuracy and degree of reliability Relatively low Average High

Modeling Heavily relied on [17]
probabilistic model

Reliance on probability
density function [18]

Driven by
protection
contour

Process transparency Low Average Extremely

Ease of deployment High Average Low

Standalone capability 4 X X

Propagation technique AWGN [19] Not important ITU-R-F(X, Y)
[19]

Detection unit dBm [20] dBm [21] dBu [19]

Detection of instantaneous
spectrum usage

4 [22] X [23] 4 [19]

Location awareness capability X X 4

Currently deployed N/A N/A 4 [24]

QoS and mobility supports X 4 4

PU–PU/PU-SU interference
avoidance possibility

X 4 4

Overhead channel planning X 4 4

Handover functionality X Varies 4

Physical infrastructure demands X X 4

Market driven X X 4

Transmit power reconfiguration
based on location awareness

X X 4

Knowledge of consolidated
database system (CDBS)

X X 4
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architectural framework, every other database technique mentioned here analyzed TVWS

information acquisition aligned towards coexistence issues between PUs and SUs. Several

published reviews have focused on both geo-location database and spectrum sensing

techniques [14, 19, 35]. In [40–42], spectrum prediction and spectrum sensing were dis-

cussed. This review is different from previous surveys because it covers all three TVWS

information acquisition techniques in a single paper.

2 Limitation on Spectrum Sensing

2.1 Spectrum Sensing: General Overview

A TVWS device must sense the TV bands and successfully detect white spaces in the TV

spectrum. Notable licensed incumbent users include analog television systems—National

Television System Committee (NTSC) and digital television systems—Advanced Tele-

vision Systems Committee ATSC and DVB-T and wireless microphones [17, 30]. Unlike

the other white spaces in the RF, TV signals are known to exhibit a high autocorrelation

function (ACF), low zero crossing points, periodicity, and a high degree of signal differ-

encing function in the presence and absence of TV signals. These characteristics make TV

signals relatively easy to characterize and analyze. This partly explains why many vendors

have concentrated their research efforts on TV frequency bands instead of other assigned

radio spectrums. An ideal sensing device should maximize the probability of detecting PUs

and reduce the probability of losing spectrum opportunities due to false alarms. Some

selected spectrum sensing techniques, features and drawbacks are presented in Table 2. In

addition, the SUs must adhere to the strict conditions as shown in Table 3. Several tech-

niques to overcome some of the research challenges of Table 2 and actualize Table 3 are

presented next.

2.2 Cooperative Spectrum Sensing

The spectrum sensing techniques implemented by the FCC tested prototypes in 2007 and

those techniques shown in Table 2 are categorized as non-cooperative spectrum sensing

(NCSS) techniques. In NCSS, the spectrum decision is made based on the sample of an

individual SU [9]. The NCSS are considered unreliable as results are affected by channel

impairments of fading, shadowing and receiver imperfections. To some extent, the

shortcomings of NCSS can be overcome by cooperative spectrum sensing (CSS) [27, 45].

In CSS models, spectrum decision is made in alliance with other sensing nodes to improve

sensing accuracy and the stringent conditions set by FCC in Table 3 by adopting the CSS.

The CSS exploits the spatial diversity of the received PU signals to make informed

decisions at the fusion center (FC). At the FC, PU signals are combined either by maxi-

mum ratio combiner (MRC), select combiner (SC) and equal gain combiner (EGC) [46].

At the FC, two decisions approaches are deployed which are hard or soft decision rule.

Furthermore, the decision rule could be logical OR rule [47], logical AND rule [48] and

majority rule [49]. It is advisable to use the OR rule in the case that the number of

participating SUs are many.

On the other hand, when participating SUs are fewer, the AND rule shows superior

performance [50]. While the logic OR and AND are suitable for the hard decision rule

making, the MRC is an example of soft-decision. Several soft-decision making algorithms

From Sensing to Predictions and Database Technique: A…

123

Author's personal copy



have been proposed [26, 45, 51]. While [26] focused on distributed energy based detectors

for spectrum sensing in Nakagami-m small scale fading, soft decision sensing efficiency

considering inhomogeneous background from quantization theory was studied in [51]. The

hard decision based rules are relatively easy to implement compared to the soft decision

because it is based on a given threshold. The threshold is adjudged by the output of a

binary logic.

Once the conditions meet the given threshold, a decision is taken. Therefore, hard

decision rule consumes less communication overhead. The drawback of this scheme lies on

Table 2 TVWS detection techniques

Technique Features Drawbacks

Energy Detector
[43, 44]

Compares signal samples received over an
observation interval with a threshold to
detect white space

Optimum non-coherent technique and the
most commonly used in spectrum sensing

Requires less computational resources and
has minimum implementation complexity

Suitable for detecting analog TV and
wireless microphone signals

Exhibits low performance compared to
other sophisticated techniques

Inability to distinguish a licensed user’s
signals from other interference
signals such as noise

Cyclic prefix and
autocorrelation
[17, 20]

Compares energy of cyclic prefix sequence
of each OFDM signal segment with a
threshold to detect white space

Uses autocorrelation function of DVB-T
signals to detect white space

Coherent technique is able to distinguish
target signals from other interference
signals such as noise

Suitable for detecting DVB-T signals

Exhibits relatively good performance
under high correlated signals

Exhibits moderate computational and
implementation complexities

Cyclostationary
feature [17, 20]

Exploits cyclic autocorrelation function of
the received signals by correlating the
received signals with a known TV signal to
detect white space

Coherent technique that can distinguish
different transmission signals, e.g., weak
signal at a very low SNR, noise with PUs’
signals

Requires short sensing time and can achieve
high detection performance

Suitable for detecting both ATSC and DVB-
T signals

Implementation complexity is high
Susceptible to synchronization error
and requires high sampling rate

Requires prior knowledge of PU signal
features to demodulate the signal

Pilot based [17] Uses pilot subcarriers of the received signals
to set a threshold for detecting white space,
channel estimation, and synchronization at
the receiver

Immune to noise uncertainty because the
pilot’s position can be accurately
determined

Achieves better sensing performance with
short sensing time

Suitable for detecting both ATSC and DVB-
T signals

Requires prior knowledge of the target
signals

Sensing unit may be practically large
Implementation complexity is
relatively high

H. K. Anabi et al.
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the fact sensing result reliability is quite low as there is no opportunity to correct any miss

detection. Moreover, there is no room for repeat computation in the case of wrong or false

sensing report from the SU. A study has been conducted to compare soft decision and hard

decision based on imperfect channel [52]. The simulated result showed that soft decision

based CSS is bandwidth hungry as quantization bits increases. On the other hand, hard

based CSS consumes more signal overhead when channel state information, channel

occupancy and signal frame header are considered.

2.3 Energy Efficient Spectrum Sensing Approaches

Spectrum sensing was introduced to promote spectral efficiency in wireless communica-

tion. It is obvious that spectrum sensing consumes energy. Therefore, energy efficient

approaches must be implemented. Several works considering energy constraint spectrum

sensing have received attention lately [53–57]. The focus of energy constraint spectrum

sensing is the best approach to implement a high spectrum sensing detection algorithm

under low spectrum sensing energy consumption.

A novel energy based sensor selection technique for CSS in cognitive radio network

considering energy consumption balance between the SUs has studied in [54]. The goal of

the work was to ensure equal energy utilization among the participating CSS sensor nodes.

Sleeping and censoring techniques which are strategies to conserve among the SUs in

distributed topology have been proposed [55]. The primary purpose of the work is to

reduce the maximum energy consumption of individual SU nodes during spectrum sensing.

Considering the importance of relaying in prolonging wireless transmission range at a

reduced power, the use of rateless coded relaying and an efficient user selection techniques

has been proposed [56]. Clustering technique is another efficient technique to implement

CSS and as such, several authors have adopted this technique [27, 45]. [27] proposed three

strategies of reducing energy consumption in CSS sensing nodes which are pruning,

selecting and clustering. Evidence based on simulated results indicate that there is 28%

increase in energy saving as the number of clustered CR nodes increases from 20 to 60.

Similarly in [45], there was 10% reduction in the power consumption for a 90% probability

of detection criteria. The above works indicate that superior CSS can be obtained via CSS

clustering techniques.

The major limitation of MUSIC is that it performs poorly in a low signal-to-noise ratio

(SNR) regime. In order to overcome this performance limitation, special diversity across

multiple SUs can be exploited. Alternatively, the proposal of [58] focusing on the use of

distributed orthogonal matching pursuit (DOMP) technique which encourages independent

Table 3 TVWS spectrum sensing requirements

Parameter DTV (digital television)/ATV
(analog television)

Part 74 (wireless
microphone)

Channel detection time B2 s B2 s

Channel move time 2 s 2 s

Channel closing transmission time 100 ms 100 ms

Detection threshold (sensitivity) at 90% of detection
probability and 10% of false alarm

114 dBm (DTV)
-94 dBm (ATV)

-107 dBm
[200 kHz

SNR -21 dB (DTV)
1 dB (ATV)

-12 dB
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estimation of the SU signal support using local compressed samples. Then, using majority

voting rule, the final decision is made. Invariably, this approach lead to reduction in signal

overhead and sensing time. The noticeable limitation of this approach is the loss of certain

information as a result of non-optimal decision fusion.

2.4 Spectrum Sensing Time Reduction Techniques

There is no doubt that CSS will increase spectrum sensing time moreover as the number of

participating nodes increases. It is plausible that spectrum sensing decision might fail to

adhere to B2 s channel detection as indicated in Table 3. One of the limitations of

cooperative spectrum sensing is that it requires a large sample size. In addition, there is an

increase in the battery energy consumption, decision-making time, and computational

processing power [29, 45]. There is a correlation between long sensing time and energy

consumption. As sensing time increases, energy consumption linearly increases [9].

Though, it can as well be argued that longer spectrum sensing time can enhance spectrum

sensing results. Therefore, there is a trade-off to be made between spectrum sensing time

and spectrum accuracy. Driven by this goal, a spectrum sensing time reduction technique

for cluster base CSS has been proposed [59]. An efficient way to reduce spectrum sensing

time in CSS is to sample the spectrum sensing samples at sub-Nyquist rate. Sampling at

sub-Nyquist rate involves the implementation of blind signal estimation techniques.

Studies have shown that sampling a wideband spectrum at the Nyquist rate is quite

expensive, power-consuming and highly computational intensive [33].

Earlier works have demonstrated that any it is possible to perfectly reconstruct any

arbitrary wideband signal on the condition that the rate is no less than the total bandwidth

of the occupied spectrum. This is motivated by the wireless signal sparsity in the frequency

domain. To further reduce spectrum sensing time, comprehensive sensing has been

introduced [60]. The major limitation of [60] is that it requires sampling at random sub-

Nyquist rate [61]. As a result, the complex analog-to-digital converter (ADC) circuit is not

capable of provisioning low-power utilization, therefore, limiting practicability [62]. In a

recent work [29], the authors showed a departure from the conventional sub-Nyquist

approach by locating the PU occupied channels blindly via utilization of signal support

system. The SUs exploit the joint sparse nature of the multiband signals properties. The

signal support scheme enables the efficient wideband signal acquisition, detection, pro-

cessing and transmission to be implemented in reduced time. While guaranteeing signal

detection within a time window. This signal support approach is based on subspace signal

decomposition techniques. Simulated results showed that proposal performs relatively well

over existing algorithms. Direction-of-Arrival (DOA) estimation of the PU signals is a

robust technique which can be implemented using less complex hardware. In DOA tech-

nique, the SU can detect the PU’s signal direction by Multiple Signal Classification

(MUSIC) algorithm [63].

3 Prediction Techniques

• Radio intelligence can be exploited by the CR to perform white space information

prediction. White space information prediction is the act of using already existing

information on spectral holes to forecast/predict the availability of spectrum holes in a

given RF channel. Prediction capability is designed for CRN operational improvement
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as indicated in Fig. 2. Prediction algorithms are performance enablers to infer the

future state of spectral holes given the present conditions. Considering that the oper-

ational framework of CRNs is principally divided into spectrum hole detection and

spectrum management, prediction techniques have found applicability in both domains.

Enhance and improve radio resource utilization via the offline exploitation of unused

frequency bins considering OFDM PU networks [64];

• Promote seamlessness in CRN by the systematic avoidance of channels with high PU

activities and holding time leading to a reduction in CRN transmission loss [8, 65];

• Extend the CRN device battery life for sensing individual CRN devices because

spectrum sensing is tightly correlated with sensing energy [66];

• Enable traffic planning in a dynamic spectrum environment utilizing predictability gain

and consequently reducing spectrum reconfigurability [67].

Given the importance of spectrum hole detection, most CRN prediction-assisted func-

tionality focuses on spectrum detection [36]. However, CRN prediction-assisted spectrum

management has also received research attention [68]. In this section, we discuss predic-

tion techniques and particularly interested in spectrum hole detection techniques.

3.1 Prediction Techniques Overview

For spectrum prediction algorithms to be implemented, mathematical models are neces-

sary. Mathematical models are thus derived with the knowledge of the PU activity model.

The starting point of spectrum prediction model could be the result of spectrum mea-

surement campaigns being conducted globally [40, 41]. The common denominator of

prediction algorithms is to provide solution Eq. (1):

Xt ¼ AXt�1 þ BOt þ wt ð1Þ

where Ot is the input observation vector, B is the input matrix, A is the state transition

matrix, Xt�1 is the previous state, and wt is the prediction error. The goal of the optimal

predictor is to minimize the prediction error, which enhances prediction accuracy. To drive

this equation, two diverse but related approaches have been adopted: (i) statistical models

CRN 
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Module 

Spectrum 
Sensing/Database 

Results

Spectrum 
Sharing

Spectrum 
Mobility

Spectrum 
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Fig. 2 Operational architecture of CRN
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and (ii) state-space models. PU activity can be modeled as either deterministic or

stochastic. Deterministic PU traffic revolves around PUs with a fixed known ON–OFF slot

time pattern and high coherency constituting the basis for the deployment of a geo-location

database scheme. Such deterministic traffic patterns are easily observed in TV transmitters.

Conversely, stochastic traffic is characterized as highly randomized and difficult to predict.

Some variables that can serve as PU traffic input prediction parameters include PU channel

holding time, arrival rate, and departure time [69]. Others include channel capacity,

cyclostationary, cyclic frequencies, and bandwidth efficiency.

3.2 Overview of Statistical Models

The design objective of stochastic processes is to infer the unknown distribution, Xtf g,
using the available observed data samples O1;O2;O3; . . .Ot. Predicting a highly dynamic

system over time is nearly impossible. Thus, stability is desirable. Stationarity has proven

to be a useful attribute in studying statistical models and deserves investigation. Previous

studies have suggested several definitions, but the most useful explanation of stationarity in

the context of prediction is the notion of covariance stationarity in which the first two

moments are time independent [70]. A stochastic process, Otf g, is considered stationary if

for all integers, t; k,

E Otð Þ ¼ l

Cov Otþk;Otð Þ ¼ ck
ð2Þ

The first term in Eq. (2) indicates that Otf g fluctuates around a fixed mean,l, and the

second connotes that the variation around the mean is time independent. Hence, setting

k ¼ 0 yields

Var Xtð Þ ¼ c0 8t ð3Þ

The function ckf g is defined on all the set of integers and by the second term in Eq. 2.

This definition is called the covariance function of the stationary process Otf g. Its auto-
correlation function (ACF), denoted by qkf g, is given as [70].

qk ¼ Cov Otþk;Otð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var Otþkð ÞVar Otð Þ
p ¼ ck

c0
; k ¼ 0; �1; . . .8t ð4Þ

As a result of stationarity, covariance and correlation between Otþk and Ot depends only

on k, which is their time separation or lag. This implies samples of closely related data in

time domain exhibit the closely matched mean. Moreover, standard deviation increases as

lag increases. Mean, covariance, and correlation functions are easily estimated for a sta-

tionary process. A common inference drawn from the stochastic parameters is their slow

variance, which necessitates the use of historical data for parameter estimation and radio

environment learning [71]. Stationary time series have been widely used to model PU

activity. The widely adopted statistical modeling techniques are the autoregressive (AR),

moving average (MA), and autoregressive and moving average (ARMA) [70]. The AR

model of the order p is given by

Ot ¼ u1Ot�1 þ u2Ot�2 þ � � � þ upOt�p þ wt ð5Þ

where u1 þ u2 þ up up 6¼ 0
� �

denotes the model coefficients and is constant. When the

mean of Ot is not zero Ot yields.
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Ot ¼ aþ u1Ot�1 þ u2Ot�2 þ � � � þ upOt�p þ wt ð6Þ

Conversely, a non-zero mean MA model of order q is denoted by

Ot ¼ bþ wt þ h1Ot�1 þ h2Ot�2 þ � � � þ uqOt�q ð7Þ

where h1 þ h2 þ hq hq 6¼ 0
� �

denotes the model coefficients and is constant. Similarly, a

non-zero mean ARMA model includes AR and MA with model orders of p and q denoted

by

Ot ¼ aþ u1Ot�1 þ u2Ot�2 þ � � � þ upOt�p þ bþ wt þ h1Ot�1;

þ h2Ot�2 þ � � � þ uqOt�q

ð8Þ

The AR, MA, and ARMA models are filter circuits that are based on polynomials. The

characteristic equation of a filter polynomial involves the selection of the appropriate filter

model order of a0s and b’s. Note that some assumptions regarding the noise (wt) should be

adopted. For example, Gaussian noise can be assumed to ease additional analyses. In

statistical models, the choice of model order is crucial for model accuracy. Akaike

Information Criterion (AIC) remains the most attractive technique [69, 72].

3.3 Practical Implementation of Statistical Models in TVWS Technology

Performance comparison between the AR model and the continuous Markov chain (CMC)

model has been performed with vital results established [69]. The study highlighted that the

AR modeling approach outperforms the CMC approach given that CMC needs to update its

modeling parameters in a sequential manner until the end of the observation period. A

slightly different approach for combining the AR process using the Kalman filter and a

Bayes risk criterion was exploited for predicting the spectrum hole for CR systems [73].

From a theoretical point of view, AR and Kalman filtering enhances the robustness and

subsequently improves PU prediction. The radio channel occupation time, which is cal-

culated from the packet length and the transmission rate for IEEE 802.11, has been pre-

dicted using the AR model. The authors successfully proved the accuracy of their model by

comparing the n-step-ahead prediction for a time series, which is calculated for a one-

second interval, and the one-step-ahead prediction for a time series, which is calculated for

an n-second interval using real world measurement data [74].

Similarly, MAC layer-based PU channel occupancy behavior in imperfect spectrum

sensing has been successfully predicted using basic statistical approaches by estimating the

minimum PU period and the first and second moment statistical parameters [75]. This

experiment suggested that sensing accuracy significantly improves with high SNR values.

A statistical framework consisting of model measurement, modeling, and emulation

(MME) has been proposed [76]. The study was primarily concerned with the basic

approach to conduct spectrum prediction. The time series approach using a sigmoid

function to transform predicted results into distinct regions was exploited in [72], similar to

[77]. However, the former study explicitly defines the prediction statistical ARIMA

parameters. Motivated by the numerous studies in the statistical prediction model, a

spectrum estimation and spectrum hole opportunities prediction for cognitive radios using

higher-order statistics have been performed [78].
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3.4 State-Space Prediction Models

State space models (SSMs) are machine-learning algorithms that improve their perfor-

mance via experience gained over periods of time with or without complete information on

the operational environment. The underlying principle of SSMs is that the transition matrix

is used to decode the hidden state between the present state Xt and the future state Xtþ1.

SSM presents a generalized framework for analyzing deterministic and stochastic

dynamical systems and is deeply rooted in probabilistic theory [79]. The two main types of

SSM models currently in use in CR technology are (1) the hidden Markov model (HMM)

and (2) the artificial neural network (ANN). SSMs can be generalized as prediction

techniques processed from the wireless communication optimization toolbox.

3.4.1 Hidden Markov Model and Its Practical Implementation in CRN

The Hidden Markov model (HMM) is a tool richly assimilated in the Bayes probabilistic

models. Two properties shape HMM. First, observations at time instant t are a result of

some process whose state, Xt, is hidden from the observer. Second, it assumes that the

hidden states preserve the Markov property. That is, given the value of Xt�1, the current

state Xt is independent of all the previous states. All we need to know about the history of

data to predict the future has been capsulated in the present. Mathematically speaking,

Markov properties mean that the joint distribution of a sequence of states and observations

can be factored as:

P X1:T ;O1:Tð Þ ¼ P X1ð ÞP O1jX1ð Þ
Y

T

t¼2

P XtjXt�1ð ÞP OtjXtð Þ ð9Þ

where the notation X1�T , means X1;���;XT . The equation above is often included in studies

using the graphical model that exploits the D-separation properties algorithm to solve the

complex relationship. Previous studies often include Eq. 9 in compact form as H = (p, A,
B). The HMM captures the future state of a variable using a combination of (1) the initial

state probability density p, (2) the state transition A, and (3) the emission probability B. In

the Markov process, the decision maker may be confronted with partial information as

information may not be totally transparent. The two distinguished cases are when the state

the process occupies is not completely observed and the transition law is not completely

known.

The former drives the partially observed Markov decision problems (POMDP) whereas

the latter drives Bayesian Inference (BIF) decision problems. The former problem can be

transformed to the Bayesian problem by relying on Bayes’ rule. PU occupancy modeling

using Markov models are either based on the discrete time Markov chain (MC) or con-

tinuous time Markov chain (CTMC) methods. The predicted observation is obtained by

training the HMM with the Baum–Welch algorithm. The input to the algorithm is prior

knowledge of any PU characteristics already mentioned. The output is the future state of

the observation from which decisions are made. The design flow of HMM utilization is

categorized as (1) HMM training, (2) channel decoding, and (3) prediction decisions. In

HMM training, the observation sequence O is employed as the training sequence to train

the HMM model and to make parameter estimations. The Baum-Welch algorithm is the

most extensively used training algorithm. In channel state decoding, the Viterbi algorithm

is used to decode the state of the observation data and make a state decision based on the

posterior likelihood.
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The HMM has been explored extensively for PU channel status prediction because it

possesses strong theoretical foundations and tractability. As a result of the closed form of

the algorithm, few variants of the model have been employed for PU prediction. The

pioneering work with the HMM for the PU channel status prediction algorithm was dis-

cussed in [80, 81]. Whereas the former study investigated the mechanism of switching to a

channel with high SNR likelihood, the latter focused on high BER throughput. From the

mathematical perspective, the Markov process has been studied in the context of CRNs

[82, 83]. Using advanced techniques, the probability distribution of PUs has been estimated

from training data and observation sequence [36, 84]. HMMs are derived from Bayes’

findings, and substantial infusion between HMM and Bayes’ model results in several

Bayesian-aided HMM prediction models [85–88]. Bivariate-HMM has been explored to

predict k-steps ahead observation using Gaussian distribution [89]. The dwell time of PU

under non-stationary HMM for interference reduction was studied in [90]. The implication

of the preceding study is that, given the knowledge of the PU dwell time, the SU can plan

its transmission schedules a priori. Posteriori estimation of the finite state Markov process

has been analyzed [91]. Concentrating on posteriori estimation, a special case of the

Gilbert-Elliot channel was researched in [92]. A recent study also analyzed an HMM-

assisted spectrum prediction PU activity model with the attendant prediction and mean

error [23].

3.4.2 Artificial Neural Network (ANN) and Its Practical Implementation in CRN

Artificial Neural Networks (ANNs) are computational tools modeled after neuroscience in

which cells are connected in parallel. They are trained using input–output data to generate

the desired mapping between the input stimuli and the targeted output. The artificial neuron

is the unit of the neural networks model, which receives inputs from neighboring neurons.

The output is derived from the synaptic bias and activation functions [93]. The most

extensively used activation functions are the Tansig and Sigmoid functions. ANNs consist

of the input layer, the hidden layer, and the output layer. The design analysis of the ANN is

subdivided into (1) data training, (2) neuron testing, and (3) validation. ANN has been a

model of choice for prediction purposes despite its highly prescriptive nature because it

preserves offline training in which the algorithm is trained once and recursively reuses the

same algorithm. Based on attractive properties inherent to ANN, there exist ANN variants

such as Elman Recurrent ANN (ERANN) and Feed-Forward ANN (FFANN). In FFANN,

the output of one layer constitutes the input to another layer connected via synaptic weight.

This outcome is in contrast to ERANN in which a compulsory feedback loop links

neurons within the same layer or other layers depending architecture. A multilayer per-

ceptron ANN was used to predict PU traffic; the result indicated similarity between the

predicted data and the empirical data [66]. The ERANN model successfully implemented

to predict the PU channel occupancy in the UMTS multivariate time series [94]. The

preceding study was oriented towards the incorporation of another layer known as the

recurrent unit (RU) between the input neuron and the hidden neuron unit in the ANN. The

RU serves as a tracking module that iteratively updates the difference between the last

input data and the current input data feed to the neuron. The performance analysis reveals

similar prediction results. The comparison with other ANN models indicate some time

delays as a result of the RU. The ANN was employed to predict the availability of the

TVWS using some characteristics of the TV signals [95]. A survey of the prediction

accuracy of various ANN training algorithms focusing on SU throughput has been
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conducted [15]. Multilayer FFANN based on empirical data collected from the frequency

bands ranging from 410 MHz to 2700 MHz has been studied [96]. In a recent study, three

models of ANN trained using compact differential evolutionary algorithms variants were

used for PU channel prediction [21]. Migrating from ‘‘hard decision’’ approach, a ‘‘soft

decision’’ approach has been proposed, leveraging on the ANN back propagation algorithm

[97].

3.5 Spectrum Mining

A new dimension known as spectrum mining has been included in the conventional

spectrum prediction techniques. Spectrum mining models exploit the attractive features of

statistical models and Markov properties to develop a tractable prediction model [98].

Unlike other prediction models, spectrum mining tends to explicitly demonstrate the

correlations between 3-D spectrum models consisting of spatial, temporal, and frequency

factors. Spectrum prediction is executed based on the correlation analysis. Spectrum

mining prediction consists of signal strength and occupancy prediction [99]. Predicted

variables are mainly channel state information, channel vacancy duration distribution, and

the service congestion rate. The two main algorithms in use are frequency pattern mining

(FPM) and partial periodic pattern mining (PPPM). In FPM, predictions of future channel

state information are generated based on previously collected data [98]. Meanwhile, PPPM

is an enhanced version of FPM based on the addition of pruning techniques [99]. Several

real-world based spectrum-mining exercises have been conducted. FPM algorithms were

used in [98, 100, 101]. Based on the analysis of the various prediction techniques, we

present a comparison of the techniques in Table 4.

Table 4 Quantitative comparison of prediction techniques in TVWS

Statistical ANN HMM Spectrum mining

Prediction
accuracy

Higher than
HMM
[69, 88]

Highly accurate
[21]

Not highly accurate [69] Highly accurate using
real-world data [98, 99]

Memory
efficiency

No memory
capacity
[73]

Highly efficient
[66]

One step backward [36] No memory capacity
[100]

Computational
complexity

Trivial [72] Highly complex
[96]

Slightly [15] Trivial

Multivariate
analysis
support

None Yes [21, 96] Bivariate [89] None

Hybrid support Yes [21] Yes [23] Yes [98, 99]

Unique
parameters

Mean,
Covariance,
PACF

Hidden layers,
bias, Tansig
and Sigmoid
functions

Probability density
function (pdf), state
transition, the
emission probability.

Channel state
information, service
congestion rate,
channel vacancy
duration

Recent trends On the decline Has momentum Gaining momentum Not fully exploited
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4 Tvws Geo-Locational Database

The geo-locational database is the most practical approach for white space information

acquisition. It is dependent on predetermined frequency information and has attracted

significant research and industrial attention [38]. Recall that the limitations of spectrum

sensing to protect PUs from the interference of SUs are highly questionable. However,

prediction techniques are not start-up processes but an enhancement and optimization

technique [102]. Thus, the geo-locational database has been accredited as the most reliable

and feasible techniques towards white space information acquisition [39, 103, 104].

Conversely, cloud-based spectrum management has been proposed as an approach that can

handle the process of dynamic spectrum allocation more efficiently [105].

4.1 Overview of TVWS Implementation

The TVWS database is a detailed information set that contains all licensed PUs, which

include TV transmitter operating frequencies and their locations, areas of operation, and

operating schedules [31]. Roughly speaking, providing PU database requires complete

information of the TVWSDs themselves. As such, the FCC rules specify a precision of

±50 meters for TVWSDs’ locations, and the IEEE 802.22 standard has agreed to imple-

ment this specification. The locations are trivial to obtain for fixed TVBDs and do not

present any technical challenge because TVBD installation is thoroughly planned and

performed by a professional. As for personal/portable TVWSDs, if they are equipped with

global positioning service (GPS) and located outdoors, obtaining their geo-locations pre-

sent a less technical challenge. However, if they are not equipped with GPS, such as Mode-

I devices described below, obtaining geo-locations becomes challenging. The TVWS

database technique can be considered the industrial arm of a CRN because more industries

are currently providing TVWS geo-location data services. These companies include

Google, Microsoft, Fair Spectrum, Key Bridge, Spectrum Bridge Incorporated (SBI), and

Iconectiv. See their respective websites for additional information, e.g., [106]. The geo-

locational databases have effectively replaced spectrum sensing in frequency channels that

exhibit a high degree of stationarity, predictability, and auto-correlation, such as TV

transmitters.

4.2 TVWS Device (TVWD) Description

Recommendations for FCC-US [107] and Ofcom—UK [31, 104, 108] have emerged as the

de facto standards in defining TVWS band devices (TVBDs); operational modes; white

space information acquisition techniques; reservation channels 3, 4, and 37; transmit power

controls; and the antenna gain and specifications. Channels 3 and 4, which are located in

the VHF band, are excluded from TVWS because they are utilized when connecting to a

video home system (VHS) player, digital video disc (DVD) player or a set top box. The

UHF channel 37 is reserved for radio astronomy [31]. The FCC has divided the TVWSDs

into Fixed, Mode-I, and Mode-II classes. Ofcom, by contrast, produced a demarcation

between the master and slave devices. The slave device is dependent on the master devices

for operational parameters, such as power level and usable channels. No significant dif-

ference between the FCC and Ofcom specifications is detected. Additional details are

provided in Table 5.
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4.3 The TVWS Database: How Does It Work?

To facilitate the concept of the TVWS database, we provide the following summary of its

main components and their functions.

Figure 3 illustrates a typical example of a geo-location WSD approach that consists of

the following main elements:

• TVWS database management is responsible for the spectrum allocation of the TVWS,

the user’s registrations, and the authorization.
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Fig. 3 Example of the TVWS database approach

Table 5 Summary of the TVWS Modes

Type of white space device Protection requirement

Fixed Devices in this category must have geo-location database capabilities to
ensure an interference-free environment among the TVWSDs and
incumbent users. Devices use an outdoor antenna(s) and can transmit a
maximum of 1 W into one or more 6 MHz TVWS channels. Maximum
antenna gains of 6 dBi and a maximum of 4 W of effective isotropic
radiated power (EIRP) are permitted [31]

Personal/portable

Mode-I This device operates at a lower power, may be mobile, and can operate
only in the frequency band range of 512–608 MHz (TV channels 21–-36)
and 614–-698 MHz (TV channels 38–51). Its maximum EIRP must not
exceed 100 mW (20 dBm) per 6 MHz of bandwidth, and its power
spectral density must not exceed 2.2 dB when measured in any 100 kHz
band. It must be dependent on Mode-II for a list of usable operating
channels [31]

Mode-II This mode has the same parameters as the Mode-I devices. However, it
must have geo-location capability with an accuracy of ±50 m and the
ability to directly access TVWS database
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• The primary spectrum database includes the data and activities related to the licensed

users and information about the occupied spectrum.

Moreover, the secondary users in the TVWS approach should follow a certain etiquette

to ensure smooth transmission service with the PUs. The following steps describe how

TVWSDs function in a dynamic spectrum database.

• Registration In this step, the TVWSDs must register with the TVWS database of the

certified database provider.

• Updating In the database approach, the locations of the TVWSDs should be updated to

the database system with certain accuracy.

• Request The TVWSDs request available white space channels at their locations.

• Authentication and Channel Allocation The database provider authenticates the

TVWSDs and assigns them to vacant channels based on their locations.

• New Query The TVWSDs make a new query occasionally or when they change

locations.

• Signaling In this step, periodic updates and control messages occur between the TVWS

database and the incumbent database to ensure free-interferences in all frequencies.

Furthermore, TVWSDs must adhere to draft specifications protocols discussed in IETF

PAWS to be able to access the database [109, 110]. The TVWS manager accommodates

several algorithms to estimate the estimated available TVWS based on the FCC’s F-curve

[111]. The F-curve models are specifically designed for TV-bands and find applicability in

both analog and digital broadcast signals. The F-curves are statistical propagation models

derived from actual measurements and are fully specified by operating band, effective

isotropic radiated power measured in dB, and height above average terrain (HAAT). This

implies that FCC’s F-curve relies on location (l) and time (t) percentage reliability, and it is

denoted in compact format by F(l, t). Predictably, higher location and time reliability levels

will result in lower predicted E-field levels using these models. Based on the F-Curve, the

desired-to-undesired signal levels are estimated.

4.4 Cloud-Based Spectrum Management (CBSM)

The geo-locational database suffers from uncertainty in allocating spectrum to real-time

applications. To address this level of uncertainty, a cloud-based dynamic spectrum allo-

cation has been developed to manage the spectrum allocation process, increase spectrum

efficiency, ensure QoS, and provide comprehensive real-time spectrum allocations with

interference-free operations, mainly driven by a spectrum-trading module. According to

the US patent [112], cloud-based spectrum management can be defined as a process that

not only manages and guides secondary users to use spectrums beyond their reach but also

allows the users accomplish, for example, their download during congested times. Thus,

CBSM is a service that employs cloud-based geo-location databases and broker engines to

allocate available spectrum to secondary devices. Moreover, implementing CBSM comes

with the following advantages [113, 114]:

1. Instantaneous Spectrum Sharing CBSM plays an important role in dynamic spectrum

allocations by managing and optimizing the procedures associated with sharing the

available spectrum instantaneously, which resulted in better spectrum sharing and

utilization.
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2. New Resource Management Strategies Transferring the information of spectrum

occupancy to a cloud opens the possibility to implement more proper and accurate

resource allocation strategies because all secondary devices are cloud-connected.

3. Efficient Spectrum Sharing The CBSM provides better spectrum utilization effective-

ness because all secondary devices are connected to the cloud, which facilitates the

instantaneous movement of the secondary devices from the spectrum hole to another

hole in the case of sudden presence of the primary users.

Furthermore, the main components of CBSM can be highlighted as follows

[105, 113, 114]:

• Cloud-Based Spectrum Management System (CBSMS) It offers all the required

components to manage the dynamic spectrum allocation based on locations. Moreover,

CBSMS facilitates communication among all the devices within the CSMS.

• Cloud Spectrum Broker (CSB) It is an entity that communicates with a CBSD to update

information about the spectrum occupancy and communicates with primary spectrum

owners to collect information about their vacant spectrum and make this spectrum

available to any demand by secondary users.

• Cloud Spectrum Database (CBSD) It is used to store information, which is used by

CSB, related to spectrum occupancy offered by the primary network to provide better

radio spectrum resources management. Furthermore, it offers the available spectrum

for rent in response to any call from a secondary user.

• Coexistence Manager It is used for spectrum occupancy analysis, interference detection

and mitigation, and best available spectrum allocation for the secondary devices.

However, extensive studies have not been conducted in this area. Thus, adopting cloud-

based spectrum management in TVWS remains an attractive issue that must be addressed

in the nearest future.

4.5 White Space Information Trading Engine

One of the possible ways to actualize the deployment of TVWS technology is by the

involvement of spectrum market models. Market models provide financial incentives for

spectrum players consisting of PUs, database operators and TVWS networks to engage in

short term spectrum trading motivated by financial gain. Spectrum auction has been

adjudged as the best approach to implement short term spectrum trading as it provides to

the participants platform to evaluate the spectrum independently. A comprehensive review

of TVWS database assisted spectrum trading has been done in [7]. Using the trading

module, achievable generic rate r of TVWS network k 2 K is denoted as

rk ¼
bs

N
log2 1þ Pk hkj j2

N0

 !

ð10Þ

where N is the sub-channel,Pk is user K’s transmission power; bs is the bandwidth which

can be 6 MHz for FCC TV channelization scheme or 8 MHz for Ofcom TV channelization

scheme, N0 is the noise-power density; hkj j2 is the channel gain, modelled as Rayleigh The

revenue-based utility model for secondary users is stated in Eq. (11):
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U kð Þ
s ¼ bs

N
log2 1þ PT hsj j2

N0

� bsp

 !

ð11Þ

p is the spectrum price per TV channel. From Fig. 4, it could be seen that the data rate of

Ofcom TV spectrum channelization is higher than that of FCC. The reason being that

Ofcom TV spectrum channelization is higher that of FCC. Similarly in Fig. 5, it is

observed that the spectral efficiency of Ofcom TV channelization in spectrum trading

module is higher that of

FCC scheme. Furthermore, it could be seen as the spectrum price goes, data rate and

spectral efficiency declined. In Fig. 6, the SNR of FCC and Ofcom channelization were

compared using cumulative distribution function (CDF) plot. Ofcom TV channelization

scheme.
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5 Potential Challenges and Research Direction

Although CR has existed for some time, numerous significant problems and issues remain

unexplored. Most countries have completed or are on the verge of identifying white spaces

in their frequency domains. Consequently, CR has evolved from a mere theoretical concept

to a practical reality. CR is a unique wireless communication standard that thrives on

intelligent decision-making and spatial–temporal functionality with an open and non-pri-

oritized spectrum-sharing scheme. CR is envisioned to have sufficient ability to recognize

common user activities, which enables it to learn to assist the user and the network with

common tasks. Based on this brief description, other aspects of CRN research remain

unexplored. Some of these issues are discussed in the subsequent subsection.

5.1 The Autonomous White Space Information Acquisition Regime
and Proposed Solution

The three approaches to white space information acquisition techniques have been inde-

pendently implemented, resulting in defective units that reduce the efficiency and seam-

lessness of TVWS information acquisition. Consequently, we propose a novel model called

the ‘‘All Inclusive TVWS Information Acquisition Model’’. A flowchart of the proposed

model is depicted in Fig. 7. The proposed All Inclusive TVWS Information Acquisition

Model tends to exploit the desirable attributes of spectrum sensing, geo-location database,

and spectrum prediction. Although the geo-location database has been determined to be the

most reliable white space acquisition technique [38, 115], it does not support mobility

across regions because it is location specific. This effect also implies that roaming services

are not guaranteed. Furthermore, the technique requires an Internet backbone to acquire

information about which channels are available for use. Conversely, spectrum-sensing

techniques are not location specific and can be deployed for a TVWS network initial

startup and while crossing over into a new territory in which the previous database operator

has no footprint. This approach enhances TVWS network seamlessness while the TVWSD

tries to establish communication with the approved TVWS network operator. Another
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scenario can be in a situation that TVWSD is able to predict their next destination, it can

download the TVWS channels and operate in offline mode. However, care must be taken

while operating in the offline mode to ensure that the downloaded TVWS information is

used during their valid period to avoid causing harmful interference to the PU.

By design, TVWS devices are mandated to either sense the presence/absence of PU

signals or contact the geo-location database for PU-free channels prior to transmitting any

signal in the TV band. Spectrum prediction drives the TVWS information acquisition

schemes into the domain of intelligent networks by extracting useful pattern recognition

attributes in the already acquired TVWS information data stored in the device memory.

Using the prediction algorithm, spectrum channels can be proactively selected to reduce

the possibility of interference with the PU and increase the efficiency of the spectrum

utilization. In addition, Mode II devices are dependent on Mode I or fixed TVWS devices

for a list of available channels. Mode II devices must cease transmission within 5 s of not

receiving a response from the master device to a transmission [31]. The prediction algo-

rithm serves as a buffer to proffer solutions to the PU future spectrum profile in the case of

a device communication failure between the TWSD and the database entity. This process

ensures the continual usage and protection of the PU against interference from TWSD.

5.2 The Geo-Locational Database-Related Issues

In this subsection, some of the related issues concerning geo-locational database tech-

niques are presented.
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Fig. 7 All-Inclusive TVWS information acquisition model

From Sensing to Predictions and Database Technique: A…

123

Author's personal copy



5.2.1 Geo-Location Interference

Interferences in geo-locational databases can be classified into two main classes: inter-

ference among secondary devices and interference due to incumbent users. The interfer-

ence scenario becomes a challenging issue when the secondary devices move from one

location to another that belongs to a different database provider. This move may result in a

collision among the database providers.

5.2.2 Geo-Location Security

The database provider stores sensitive information about the incumbent users, including

their location and transmission power and their allocated and vacant spectrum. Moreover,

information about the actions of the secondary users is also available with the database

provider. This situation allows for an open information exchange among incumbent users/

secondary users and the database provider, and this information must be protected. This

line of thought has been proposed in the context of open-source spectrum sensing

[116, 117]. Thus, the database provider must provide proper security tools, including

authentication, integrity, privacy, and confidentiality. Common security attacks of spoofing

and PU emulation attacks must be considered [117]. Providing the appropriate level of

security is one of the most challenging aspects of the geo-location database approach.

5.2.3 Multi-Database Provider and Quality of the Spectrum

Another issue that should be considered by researchers is the multi-provider scenario in the

geo-location database approach. Secondary devices may change their locations and need to

address the new database’s provider. This particular scenario produces another delay

because the secondary devices must establish new cooperation/registration with the new

provider. The quality of the available white space from the new provider may differ, which

may result in poor service quality in certain cases.

5.2.4 Mobility/Handover/Handoff Supports in a Multi-user Environment

Handoff is the process that that permits this transition from a channel to another with mini-

mum performance degradation [116]. Spectrum mobility issues for a Cognitive Radio Ad

Hoc Network (CRAHN) will be an important research topic. IEEE 802.22 addresses the

spectrumhandoffwith the IncumbentDetectionRecovery Protocol (IDRP). The IDRP allows

the network to restore its normal activity maintaining an acceptable level of QoS [117]. Two

different strategies are presented: proactive spectrum handoff and reactive spectrum handoff.

Secondary devices in the geo-location database mainly depend on the database’s provider to

collect information about the available white spaces. However, this activity also produces

delays in the secondary devices to cope with changes in white space availability when

secondary devices are in mobile status. Furthermore, in a situation where a mobile node is

moving out of the coverage area of one provider, it is unclear how to arrange the best handover

mechanism and information exchange to be used by TVWS different operators.
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5.3 Indoor Location Awareness Updates

Additional challenges in the geo-location database approach include (1) the location

awareness of the secondary devices and (2) the ability of the secondary devices to con-

tinually update their locations to the database provider. GPS provides reasonable accuracy

in outdoor settings, but achieving the same level of accuracy in indoor scenarios remains

an open question [118].

5.4 Autonomous Heterogeneous Coexistence Etiquette for TVWS Networks

TVWS is envisioned to be inhabited by heterogeneous networks, each acting selfishly. The

current belief is that TVWS networks will form a collaborative network [16]. However, the

reality is that the system will instead exhibit non-collaborative (autonomous) networks

[119]. Thus, a need exists to develop autonomous coexistence etiquette capable of guar-

anteeing optimal QoS to end-users. Evidently, this process will involve the introduction of

elements of artificial intelligent to implement learning automata in the TVWS nodes.

5.5 Interference Estimation

Interference is expected to mar the QoS of TVWS networks. The selection of the appro-

priate interference estimation model is therefore critical as highlighted in [8]. The 802.22

wireless regional area networks will be deployed with fixed high-power base stations

serving fixed CPE and portable devices. Conversely, 802.11 WLAN networks are com-

monly deployed by consumers at home or small office settings. Moreover, the different

TVWS wireless standards have varying cell radii, resulting in numerous overlapping cell

edges among the TVWS networks. As such, there is a great need to develop a common

platform for improved interference estimation among all the TVWS networks.

5.6 QoS Aware and Rate Adaptive Prediction-based Tools

It is equally possible to predict white space information on the availability of perfect

channel state information. In this scenario, the TVWS networks must acquire all the

relevant information pertaining a particular TV channel. If the rate drops below a prede-

fined threshold, the likelihood of the presence of PU is confirmed. This analogue is based

on the fact the PU signals are constitute of interference, which adds up to the spectrum

noise to reduce signal strength. Effectively, instead of modelling signal-to-noise ratio, the

appropriate metrics will be signal-to-noise plus interference ratio.

6 Conclusions

Cognitive radio through TVWS has been demonstrated to be a reliable and readily available

wireless resource capable of mitigating the current spectrum crunch in the wireless system

technology. This study has presented a review of the contemporary approaches to TVWS

information availability techniques, the advantages and disadvantages of each technique,

and possible solutions to the predominant white space information acquisition technique of

spectrum sensing. We have also provided a classification model for white space information

acquisition techniques. An overview of the current industrial trends in TVWS demonstrates
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that CRN is not merely a theoretical approach but is instead a practical technology. We

believe that by sharing this information with the larger engineering and academic com-

munities, this article will trigger analytical thought and discussion that may accelerate the

development and improve the quality of modern TVWS technology.
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