148 research outputs found

    Security and Privacy Preservation in Mobile Crowdsensing

    Get PDF
    Mobile crowdsensing (MCS) is a compelling paradigm that enables a crowd of individuals to cooperatively collect and share data to measure phenomena or record events of common interest using their mobile devices. Pairing with inherent mobility and intelligence, mobile users can collect, produce and upload large amounts of data to service providers based on crowdsensing tasks released by customers, ranging from general information, such as temperature, air quality and traffic condition, to more specialized data, such as recommended places, health condition and voting intentions. Compared with traditional sensor networks, MCS can support large-scale sensing applications, improve sensing data trustworthiness and reduce the cost on deploying expensive hardware or software to acquire high-quality data. Despite the appealing benefits, however, MCS is also confronted with a variety of security and privacy threats, which would impede its rapid development. Due to their own incentives and vulnerabilities of service providers, data security and user privacy are being put at risk. The corruption of sensing reports may directly affect crowdsensing results, and thereby mislead customers to make irrational decisions. Moreover, the content of crowdsensing tasks may expose the intention of customers, and the sensing reports might inadvertently reveal sensitive information about mobile users. Data encryption and anonymization techniques can provide straightforward solutions for data security and user privacy, but there are several issues, which are of significantly importance to make MCS practical. First of all, to enhance data trustworthiness, service providers need to recruit mobile users based on their personal information, such as preferences, mobility pattern and reputation, resulting in the privacy exposure to service providers. Secondly, it is inevitable to have replicate data in crowdsensing reports, which may possess large communication bandwidth, but traditional data encryption makes replicate data detection and deletion challenging. Thirdly, crowdsensed data analysis is essential to generate crowdsensing reports in MCS, but the correctness of crowdsensing results in the absence of malicious mobile users and service providers become a huge concern for customers. Finally yet importantly, even if user privacy is preserved during task allocation and data collection, it may still be exposed during reward distribution. It further discourage mobile users from task participation. In this thesis, we explore the approaches to resolve these challenges in MCS. Based on the architecture of MCS, we conduct our research with the focus on security and privacy protection without sacrificing data quality and users' enthusiasm. Specifically, the main contributions are, i) to enable privacy preservation and task allocation, we propose SPOON, a strong privacy-preserving mobile crowdsensing scheme supporting accurate task allocation. In SPOON, the service provider recruits mobile users based on their locations, and selects proper sensing reports according to their trust levels without invading user privacy. By utilizing the blind signature, sensing tasks are protected and reports are anonymized. In addition, a privacy-preserving credit management mechanism is introduced to achieve decentralized trust management and secure credit proof for mobile users; ii) to improve communication efficiency while guaranteeing data confidentiality, we propose a fog-assisted secure data deduplication scheme, in which a BLS-oblivious pseudo-random function is developed to enable fog nodes to detect and delete replicate data in sensing reports without exposing the content of reports. Considering the privacy leakages of mobile users who report the same data, the blind signature is utilized to hide users' identities, and chameleon hash function is leveraged to achieve contribution claim and reward retrieval for anonymous greedy mobile users; iii) to achieve data statistics with privacy preservation, we propose a privacy-preserving data statistics scheme to achieve end-to-end security and integrity protection, while enabling the aggregation of the collected data from multiple sources. The correctness verification is supported to prevent the corruption of the aggregate results during data transmission based on the homomorphic authenticator and the proxy re-signature. A privacy-preserving verifiable linear statistics mechanism is developed to realize the linear aggregation of multiple crowdsensed data from a same device and the verification on the correctness of aggregate results; and iv) to encourage mobile users to participating in sensing tasks, we propose a dual-anonymous reward distribution scheme to offer the incentive for mobile users and privacy protection for both customers and mobile users in MCS. Based on the dividable cash, a new reward sharing incentive mechanism is developed to encourage mobile users to participating in sensing tasks, and the randomization technique is leveraged to protect the identities of customers and mobile users during reward claim, distribution and deposit

    Empirical Analysis of Privacy Preservation Models for Cyber Physical Deployments from a Pragmatic Perspective

    Get PDF
    The difficulty of privacy protection in cyber-physical installations encompasses several sectors and calls for methods like encryption, hashing, secure routing, obfuscation, and data exchange, among others. To create a privacy preservation model for cyber physical deployments, it is advised that data privacy, location privacy, temporal privacy, node privacy, route privacy, and other types of privacy be taken into account. Consideration must also be given to other types of privacy, such as temporal privacy. The computationally challenging process of incorporating these models into any wireless network also affects quality of service (QoS) variables including end-to-end latency, throughput, energy use, and packet delivery ratio. The best privacy models must be used by network designers and should have the least negative influence on these quality-of-service characteristics. The designers used common privacy models for the goal of protecting cyber-physical infrastructure in order to achieve this. The limitations of these installations' interconnection and interface-ability are not taken into account in this. As a result, even while network security has increased, the network's overall quality of service has dropped. The many state-of-the-art methods for preserving privacy in cyber-physical deployments without compromising their performance in terms of quality of service are examined and analyzed in this research. Lowering the likelihood that such circumstances might arise is the aim of this investigation and review. These models are rated according to how much privacy they provide, how long it takes from start to finish to transfer data, how much energy they use, and how fast their networks are. In order to maximize privacy while maintaining a high degree of service performance, the comparison will assist network designers and researchers in selecting the optimal models for their particular deployments. Additionally, the author of this book offers a variety of tactics that, when used together, might improve each reader's performance. This study also provides a range of tried-and-true machine learning approaches that networks may take into account and examine in order to enhance their privacy performance

    Consent-driven data use in crowdsensing platforms: When data reuse meets privacy-preservation

    Get PDF
    International audienceCrowdsensing is an essential element of the IoT; it allows gathering massive data across time and space to feed our environmental knowledge, and to link such knowledge to user behavior. However, there are major obstacles to crowdsensing, including the preservation of privacy. The consideration of privacy in crowdsensing systems has led to two main approaches, sometimes combined, which are, respectively, to trade privacy for rewards, and to take advantage of privacy-enhancing technologies "anonymizing" the collected data. Although relevant, we claim that these approaches do not sufficiently take into account the users' own tolerance to the use of the data provided, so that the crowdsensing system guarantees users the expected level of confidentiality as well as fosters the use of crowdsensing data for different tasks. To this end, we introduce the-completeness property, which ensures that the data provided can be used for all the tasks to which their owners consent as long as they are analyzed with − 1 other sources, and that no privacy violations can occur due to the related contribution of users with less stringent privacy requirements. The challenge, therefore, is to ensure-completeness when analyzing the data while allowing the data to be used for as many tasks as possible and promoting the accuracy of the resulting knowledge. We address this challenge with a clustering algorithm sensitive to the data distribution, which is shown to optimize data reuse and utility using a dataset from a deployed crowdsensing application

    P2TA: Privacy-preserving task allocation for edge computing enhanced mobile crowdsensing

    Get PDF
    The final publication is available at Elsevier via https://doi.org/10.1016/j.sysarc.2019.01.005. © 2019. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/In conventional mobile crowdsensing (MCS) applications, the crowdsensing server (CS-server) needs mobile users’ precise locations for optimal task allocation, which raises privacy concerns. This paper proposes a privacy-preserving task allocation framework (called P2TA) for edge computing enhanced MCS, focusing on optimize task acceptance rate while protecting participants’ privacy by introducing edge nodes. The basic idea is that edge nodes act as task assignment agents with privacy protection that prevents an untrusted CS-server from accessing a user’s private data. We begin with a thorough analysis of the limitations of typical task allocation and obfuscation schemes. On this basis, the optimization problem about location obfuscation and task allocation is formulated in consideration of privacy constraints, travel distance and impact of location perturbation. Through problem decomposition, the location obfuscation subproblem is modeled as a leader-follower game between the designer of location obfuscation mechanism and the potential attacker. Against inference attack with background knowledge, a genetic algorithm is introduced to initialize an obfuscation matrix. With the matrix, an edge node makes task allocation decisions that maximize task acceptance rate subject to differential and distortion privacy constraints. The effectiveness and superiority of P2TA compared to exiting task allocation schemes are validated via extensive simulations.The authors gratefully acknowledge the support and financial assistance provided by the National Natural Science Foundation of China under Grant No. 61502230, 61501224 and 61073197, the Natural Science Foundation of Jiangsu Province under Grant No. BK20150960, the National Key R&D Program of China under Grant No. 2018YFC0808500, the Natural Science Foundation of the Jiangsu Higher Education Institutions of China under Grant No. 15KJB520015, and Nanjing Municipal Science and Technology Plan Project under Grant No. 201608009

    Improving privacy preserving in modern applications

    Full text link
    The thesis studies the privacy problems in various modern applications, such as recommendation system, Internet of Things, location-based service and crowdsourcing system. The corresponding solutions are proposed, and the proposed solutions not only protect the data privacy with guaranteed privacy level, but also enhancing the data utility

    A survey of spatial crowdsourcing

    Get PDF

    A survey of multi-access edge computing in 5G and beyond : fundamentals, technology integration, and state-of-the-art

    Get PDF
    Driven by the emergence of new compute-intensive applications and the vision of the Internet of Things (IoT), it is foreseen that the emerging 5G network will face an unprecedented increase in traffic volume and computation demands. However, end users mostly have limited storage capacities and finite processing capabilities, thus how to run compute-intensive applications on resource-constrained users has recently become a natural concern. Mobile edge computing (MEC), a key technology in the emerging fifth generation (5G) network, can optimize mobile resources by hosting compute-intensive applications, process large data before sending to the cloud, provide the cloud-computing capabilities within the radio access network (RAN) in close proximity to mobile users, and offer context-aware services with the help of RAN information. Therefore, MEC enables a wide variety of applications, where the real-time response is strictly required, e.g., driverless vehicles, augmented reality, robotics, and immerse media. Indeed, the paradigm shift from 4G to 5G could become a reality with the advent of new technological concepts. The successful realization of MEC in the 5G network is still in its infancy and demands for constant efforts from both academic and industry communities. In this survey, we first provide a holistic overview of MEC technology and its potential use cases and applications. Then, we outline up-to-date researches on the integration of MEC with the new technologies that will be deployed in 5G and beyond. We also summarize testbeds and experimental evaluations, and open source activities, for edge computing. We further summarize lessons learned from state-of-the-art research works as well as discuss challenges and potential future directions for MEC research
    • …
    corecore