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Abstract—Crowdsensing is an essential element of the IoT; it
allows gathering massive data across time and space to feed our
environmental knowledge, and to link such knowledge to user
behavior. However, there are major obstacles to crowdsensing,
including the preservation of privacy. The consideration of
privacy in crowdsensing systems has led to two main approaches,
sometimes combined, which are, respectively, to trade privacy for
rewards, and to take advantage of privacy-enhancing technologies
"anonymizing" the collected data. Although relevant, we claim
that these approaches do not sufficiently take into account the
users’ own tolerance to the use of the data provided, so that
the crowdsensing system guarantees users the expected level of
confidentiality as well as fosters the use of crowdsensing data
for different tasks. To this end, we introduce the `-completeness
property, which ensures that the data provided can be used for
all the tasks to which their owners consent as long as they are
analyzed with `−1 other sources, and that no privacy violations
can occur due to the related contribution of users with less
stringent privacy requirements. The challenge, therefore, is to
ensure `-completeness when analyzing the data while allowing the
data to be used for as many tasks as possible and promoting the
accuracy of the resulting knowledge. We address this challenge
with a clustering algorithm sensitive to the data distribution,
which is shown to optimize data reuse and utility using a dataset
from a deployed crowdsensing application.

Index Terms—Crowdsensing, Privacy, Consent.

I. INTRODUCTION

Mobile crowdsensing is an essential element of the Internet
Of Things (IoT) as it allows gathering tremendous data across
time and space at low cost [1]. Indeed, thanks to the democra-
tization of smartphones that embed increasingly rich sensing
capabilities, we are able to sense a large portion of the physical
environment and further relate the observed phenomena with
human behavior. Various applications illustrate the benefit of
mobile crowdsensing toward better informing and enhancing,
e.g., environmental monitoring and awareness [2], public
health monitoring and policy [3] or traffic management [4].
Still, mobile crowdsensing comes with tremendous challenges
for it to be widely adopted and to effectively feed today’s
AI-powered systems. Challenges span: the ability to embark a
sufficiently large crowd to gather the required spatio-temporal
knowledge [5]; ensuring the quality of data through supporting
trust management [6], context-awareness and filtering [7];
the resource-efficiency of the overall process from the data

collection up to its overall aggregation [8]; and, last but not
least, enforcing privacy [9].

This paper specifically focuses on the challenge of privacy-
preserving mobile crowdsensing since it is the most critical
one for crowdsensing to be a powerful technology that both
brings valuable knowledge and serves the public good. The
various dimensions of the challenge together with supporting
solutions have been the focus of several surveys among
which: [9], [10], [11], [12]. Relevant studies include leveraging
state of the art Privacy-Enhancing Technologies (PET) to
enforce related privacy metrics [13], [14]. For instance, the
early work in [15] leverages decentralization together with
spatial k−anonymity for privacy-aware task assignment. More
recently, the work in [16] introduces a mechanism based on
differential-privacy and distortion-privacy to guarantee that
the gathering of location-based measurements is not at the
expense of location privacy for the contributing users, while
reducing the resulting loss of data quality. Still, leveraging
PET results in the obfuscation of the crowdsensed data and
thus impacts the significance of the knowledge that may be
analyzed. To overcome the loss of knowledge accuracy, a
significant body of research concentrates on dealing with the
tension between accuracy and privacy [17]. Proposed solutions
include privacy-aware auction-based approaches so that the
contributors get rewarded for the loss of privacy [18], [19],
[20]. In a nutshell, the more users accept to provide close-
to-actual observations, the more the crowdsensing system
gathers accurate knowledge and contributors get rewarded.
Other approaches leverage decentralization for managing the
information about the contributing users [21]. However, they
focus on privacy-preservation at the time of task assignment,
and do not address the complementary issue of privacy-
preserving data collection.

Overall, the state of the art of privacy-preserving mobile
crowdsensing provides a number of advanced protocols that
may be combined toward enforcing some level of privacy. And,
whatever is the crowdsensing protocol implemented, it comes
with a necessary trade-offs between knowledge accuracy and
privacy guarantees. The challenge is then for the crowdsensing
system to get the best out of the contributed data. Part of
the solution lies in the elicitation of application-specific data
analyses to reduce the loss of accuracy [22]. However, we



argue that it is as important to foster the re-use of data
across tasks, as also advocated by the IoT data marketplace
trend [23]. Indeed, this results in the enhanced resource-
efficiency of mobile crowdsensing. This is known as multi-
tasking in participatory sensing, for which recent studies focus
on optimizing the allocation of tasks from the perspective of
the task organizer [24], resp. task participant [25]. Our work
distinguishes itself from, and complements, related research
by concentrating on fostering privacy-preserving data reuse in
multi-tasking, mobile crowdsensing systems. We specifically
focus on participatory sensing where users explicitly register
for possible participation to tasks although our approach could
easily be adapted to opportunistic sensing.

In a nutshell, the research question we address is: "How to
foster the reuse of crowdsensed data across various eligible
tasks while still guaranteeing the right level of privacy to the
contributing users?". A first design choice that we make is to
address privacy preservation according to the user’s consent
to the use of their data. Indeed, digital consent is an integral
part of privacy management in computing platforms [26]. We
thus introduce the `-completeness property for mobile crowd-
sensing platforms, which defines the extent to which mobile
users consent to the reuse of the contributed observations.
Precisely, the `-completeness property enforces that: (1) the
user’s data are analyzed with at least `− 1 other data sources
in all the tasks the data contribute to, and (2) no individual
knowledge may be inferred due to the participation to many
tasks that may not involve the same contributors. The proposed
consent-driven property directly derives from the properties
associated with sample size determination [27] in relation with
privacy [28]. The challenge is then to aggregate the users’
contributed data in as many allowed and relevant tasks as
possible while guaranteeing `-completeness. This leads us to
introduce a supporting clustering algorithm that is sensitive to
the data distribution so as that it optimizes both data reuse
and utility (aka knowledge accuracy). The contribution of this
paper is as follows:

• We define the `-completeness property, starting with the
analysis of the problem it addresses (§ II) followed by its
formalization (§ III).

• We introduce a base clustering approach implementing
the `-completeness property, which we evaluate in terms
of data reuse and utility, using a dataset from a deployed
crowdsensing application (§ IV).

• The result of the above evaluation shows that a base
implementation of `-completeness is at the expense of
data utility. We overcome the shortcoming by enhancing
the clustering algorithm with the knowledge of the data
distribution. The evaluation using our supporting dataset
shows that the algorithm increases both the reuse and
utility of the contributed data (§ V).

Finally, we position our contribution with respect to related
work (§ VI) and offer conclusion (§ VII).

II. PROBLEM ANALYSIS

Consent is one of the legal frameworks set in many places
(e.g., GDPR [29], CCPA [30]) as a precondition for any
processing of personal data. In this context, informed and
specific consent requires that users be informed of the type
of data collected, the identity of the recipient of the results,
and the precise nature and purpose of the task. In particular,
these legal terms are intended to act as a safeguard against
function creep and data reuse1. Thus, personal data collected
for one function on the basis of consent cannot be extended
or reused for another function without obtaining new consent.
Defects in consent are considered a cause of nullity in many
countries (e.g., see [32] for European countries such as France,
Germany or UK).

Focusing on multi-tasking participatory sensing systems,
consent-driven participation allows users to specify the tasks
to which they consent to contribute with mobile observations
according to their privacy requirements. Without loss of gen-
erality, we consider that a task is defined by: the function f
(code) applied to the collected data of the specified type S ,
the time period ∆ during which each participant contributes
observations, a minimal number ` of participants required
to provide contributions to execute f 2. The value of ` is
deemed critical to both: (i) obtain a useful result (e.g., the
evaluation of the noise level in a street requires the analysis
of several contributions [33]), and (ii) protect the privacy of
the participants as their individual contributions get aggregated
with the ones of the `− 1 others (e.g., national agencies and
data research centers impose a minimum number of individuals
to be taken into account [28] when producing any aggregate
–table, graph or map based on aggregate values– for research
purposes: for instance, the INSEE confidentiality guide [34]
and CASD rules [35] impose a minimum of 11 individuals
for any computation based on tax data or 5 individuals for
social data). The value of ` (resp. ∆) is task-dependent; hence
for the sake of simplicity but without loss of generality, `
(resp. ∆) is aggregated as the maximum of the `s (resp. ∆s)
of all the tasks involving common contributors. Following,
each task is associated with a Manifest that summarizes
how the contributed data is consumed and thereby allows
users to provide an informed and specific consent for the
task. The Manifest is specified using a dedicated language
such as, e.g., the AnonyTL language [36] introduced by the
AnonySense privacy-aware system for opportunistic sensing
[37]. We specifically assume the following specification for a
task and its manifest:

Definition 1 (Task and associated Manifest). A task T is
defined as a quadruple < f,S,∆, ` > such that f is a function
(code) executed on an input set with non empty contributions

1According to European Commission [31]: "If your company/organisation
has collected the data on the basis of consent (...) no further processing
beyond what is covered by the original consent or the provisions of the law
is possible. Further processing would require obtaining new consent"

2Additional elements may characterize the data consumption by the task –
e.g., the frequency of execution or the retention period of the data. Considering
such parameters is area for future work.



of type S produced by at least ` consenting participants over a
time period ∆. We denote by OT the result of T . The manifest
M(T ) is a declarative and intelligible representation of T
regarding the consumption of the gathered data so that users
may provide an informed and specific consent for it.

We consider a fully trusted multi-tasking crowdsensing sys-
tem3. Given a set of m tasks T = {Ti}0<i≤m and associated
manifests, managed and advertised by such trusted system,
any user can consent to a desired subset of T . We denote
the consents of a user u with the tuple Cu =< b1, . . . , bm >
where bi = 1 if the user consents to Ti and bi = 0 otherwise.
By giving consents, a user accepts contributing to (only) the
set of results {OTi

= Ti.f(sUi
)}Ti∈T |Cu.bi=1, with sUi

being
the related contributions of type Ti.S from a set Ui of users
consenting to Ti that includes u.

Combining the contributions of users who tolerate different
disclosure policies –as defined from their consents to multiple
tasks– creates the risk of unintended secondary uses and may
result in defects in consent. Consider the knowledge K that
the participatory sensing system may disclose from the set of
tasks T , provided the table C = {< u,Cu >}u∈U of consents
of the set of registered users U to the tasks (e.g., see Table I),
i.e., K = {OTi}Ti∈T |C.bi . The system must guarantee that it
conforms to C while computing and delivering K. However,
we claim that meeting this constraint only is not sufficient
to guarantee that there is no defect in consent. For example,
consider the consents of 10 users to 3 tasks represented in
Table I. All 10 users consent to T1 (e.g., a task computing the
average noise at a given location to request the city government
to take appropriate measures to reduce the nuisance). As for
T2, all the users but User u1 consent to a more privacy-
invasive task (e.g., displaying the noise measurements across
the users’ journeys). Assigning tasks to users based only on
their respective task consents (i.e., the system assigns T1,
resp. T2, to all 10, resp. 9, users) results in a defect in
consent. Indeed, although User u1 does not consent to reveal
the detailed noise observations they contribute to, the specific
observations may be inferred from composing OT1

and OT2
.

User b1 b2 b3 Hilbert
u1 1 0 0 1
u3 1 1 1 5
u4 1 1 1 5
u6 1 1 1 5
u7 1 1 1 5
u9 1 1 1 5
u10 1 1 1 5
u2 1 1 0 6
u5 1 1 0 6
u8 1 1 0 6

TABLE I: Consent table C (see § IV for Hilbert column).

The consent-driven task assignment must account for the
disclosure policies of the users across all the tasks they each
contribute to, to avoid a defect in consent. In other words, the

3Solutions under lower security assumptions, e.g., semi-honest system or
covert adversary, are considered future work.

multi-task assignment must be achieved in such a way that
the data gathered by a task T1 cannot be analyzed together
with data also gathered by a task T2 with a weaker disclosure
policy. A simple solution to the above issue would consist in
assigning tasks according to either the least or the greatest,
common disclosure policy of the eligible users. Going back to
our example, this means assigning task T1 to the participants
consenting to either T1 only, or both T1 and T2. However, this
would lead to sub-optimal data reuse, with a contribution loss
for certain tasks and a resulting reduced utility. The research
question that the paper addresses is then: How to avoid by
design the defects in consent in a multi-tasking participatory
sensing system, while ensuring efficient data reuse in as many
eligible tasks as possible?

III. CONSENT-DRIVEN `-COMPLETENESS FOR
PRIVACY-AWARE DATA REUSE

Consider the set T = {Ti}0<i≤m with any
Ti =< fi,Si,∆, ` > (values of ` and ∆ are identical in
all tasks for simplicity, but without loss of generality –see
§ II). It is direct to infer that a multi-task assignment does
not create any defect in consent if for any pair of distinct
tasks Ti and Tj , their respective outputs OTi

= fi(sUi
)

and OTj = fj(sUj ) are processed over the respective
input sets SUi (|sUi | ≥ `) and SUj (|SUj | ≥ `) such
that either SUi

= SUj
(i.e., they analyze the very same

set of contributions from the same consenting users) or
SUi
∩ SUj

= ∅ (i.e., they analyze contributions from distinct
sets of users). This leads us to introduce the following strict
definition of the `−Completeness property:

Definition 2 (Strict `−Completeness over ∆). Given a set
of m tasks, T = {T1, T2, . . . , Tm}, and a set of registered
users, U , who consent to (contribute to specified subsets of)
these tasks and thereby produce input data for these tasks
over a time period ∆, a family of computation input sets
(SUi

)i≤m, where Ui is the set of users contributing (and
obviously consenting) to Ti ∈ T , is `−complete over ∆ iff:

• ∀i ≤ m: |Ui| ≥ `
• ∀i, j ≤ m: either Ui ∩ Uj = ∅ or Ui = Uj

As shown in Fig. 1, the above definition suits well tasks
that focus on mutually disjoint (see no reuse scheme in Fig. 1)
or fully identical (see strict reuse) sets of potentially usable
contributions. However, given a set of users U1 consenting
(only) to a task T1 and a (disjoint) set of users U12 consenting
to tasks T1 and T2, if T1 uses all usable contributions (i.e., the
result OT1 = f1(SU1 ∪ SU12) is produced) then Definition 2
precludes T2 from using any contribution in SU12

produced
by any user in U12 (i.e., only result OT2

= f2(SU2
) can be

produced, but not OT2
= f2(SU12

) neither OT2
= f2(SU2

∪
SU12)).

To enable a better data reuse in practice, we propose a
relaxation of Definition 2, while still prohibiting any defect
in consent. This leads to Definition 3:
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Fig. 1: Strict vs. practical `−complete data reuse schemes.

Definition 3 (Practical `−Completeness over ∆). Let a
set of m tasks T = {T1, T2, . . . , Tm} and a set of users
U who consent to (a desired subset of) these tasks and
contribute input data for these tasks over a period of time
∆. Let a family of computation input sets (SUi

)i≤m, where
Ui is the set of users consenting to Ti ∈ T whose contri-
bution is used in (SUi)i≤m to evaluate tasks Ti ∈ T . Let
F (X ) = {X ∩X ′|X,X ′ ∈ X}

⋃
{X \X ′|X,X ′ ∈ X}

⋃
X .

Let F =
⋃

k∈N F
k({Ui}i≤m) be the least fixed point of F

containing {Ui}i≤m.
The family of computation input sets (SUi

)i≤m is
`−complete over ∆ iff for all X ∈ F either X = ∅ or |X| ≥ `.

In addition to the no reuse and strict reuse schemes, Def-
inition 3 allows for further data reuse (see practical reuse in
Fig. 1). Reuse is enabled as long as applying any combination
of the intersection and difference over the respective users’
contributed data consumed by different tasks does not produce
information on a set of less than ` users’ contributions.
In particular, Definition 3 allows evaluating both OT1 =
f1(SU1

∪SU12
) and OT2

= f2(SU2
∪SU12

) when the conditions
of practical `−completeness are met. The following sections
introduce concrete techniques for data reuse, which conform
by design to Definition 3.

IV. TASK ASSIGNMENT DESIGN AND EVALUATION

We aim at eliciting groups of ` users that foster consent-
driven data reuse across tasks according to Definition 3. To
achieve so, we leverage the consent table C (e.g., see Table I).

A. `-completeness as a partitioning problem

The simplest approach to group users using the consent
table is to create partitions that group together users specifying
identical policies. Then, if the size of the partition is more
than `, the users of the partition are assigned all the tasks
associated with the corresponding consent policy. Otherwise,
the partition is ignored. This approach is well suited to involve
users sharing a consent policy with a large number of peers.
However, it tends to set aside users consenting to a policy
that differs (whether in a weaker or stronger form) from
that of most users, which may result in a high contribution
loss. Specifically, given m tasks and n users, if every task
requires ` users, then there are (C`

n)m different combinations,

each defining a potential distinct consent policy. A possible
countermeasure would be to incentivize users to change their
consent (e.g., according to the "privacy for reward" of auction-
based approaches [19], [20]). However, we consider that
this significantly alters privacy and that the users’ specified
consents are an immutable parameter.

The `−completeness problem can then be efficiently solved
by sorting and partitioning the consent table such that each
partition contains exactly ` users. An approach is to transform
the multidimensional space into a one-dimension space, while
preserving data locality, over which a partitioning algorithm
allows creating groups of ` participants. The Space filling
curve techniques are good candidates for such transformation,
among which the Hilbert space filling-curve offers the best
results [38]. That is, we use the Hilbert curve to map the
consents to multiple tasks of each user to a single index
characterized by its Hilbert value. We may then sort the users
according to their associated consent-related Hilbert values.
Following, we assign the first ` users (as ordered according
to the Hilbert value) to the first partition, the next ` users to
the second partition, and so on. Consequently, each partition
contains exactly ` users (except for the last one that may
contain up to 2`− 1 users). As a result, each partition groups
users who are close with respect to their consent policies,
as abstracted using the Hilbert curve. Finally, an adjustment
phase allows discarding the tasks associated with the partition
(as defined by the consents of the embedded users), to which
at least one user does not consent so that the users of a given
partition are all assigned the same set of tasks to which they
all consented.

However, the above approach does not systematically lead
to group the users that are the closest with respect to their
respective consent policies. Consider the consent Table I and
` = 5 with the rightmost column providing the associated
Hilbert values (precision=3). Applying the proposed algo-
rithm results in two partitions: P1 = {u1, u3, u4, u6, u7}
and P2 = {u9, u10, u2, u5, u8}. The corresponding greatest
common consent policy is < 1, 0, 0 > in P1 and < 1, 1, 0 > in
P2, leading to a loss of 10 (2∗`) contributions. A more optimal
partitioning would be: P1 = {u3, u4, u6, u7, u9} with a major
consent policy < 1, 1, 1 > and P2 = {u1, u2, u5, u8, u10}
with a major consent policy < 1, 0, 0 >, resulting in a loss
of ` contributions. That is, the partitioning algorithm needs to
prioritize the grouping of users who are similar consent-wise,
so that the greatest common consent policy within a group
maximizes the number of eligible users.

B. `-completeness as a clustering problem

The key idea underlying our approach is to consider the
`−completeness problem as a clustering problem. Clustering
is defined as partitioning a set of objects into groups such that
objects in the same group are more similar to each other than
objects in other groups with respect to predefined distance
criteria. The `−completeness problem can then be formulated
as identifying a set of clusters such that each cluster contains
at least ` users while minimizing the overall contribution loss.



We thus propose to group users based on the similarity of their
consent policies, and assigning them the tasks that match the
consent policies of all, while discarding the others. Hence, this
allows users with singular policies to contribute.

The objective is to create a set of k clusters P =
{P1, P2, ...Pk} of the consent table C in such a way that the
tuples (i.e., the consent policies of the embedded users) in
the same cluster are as similar to each other as possible, thus
resulting in a minimum contribution loss. That is, we want to
minimize the sum of all the intra-cluster distances (maximum
distance between any two data points), which is defined as:

d =
∑

h=1...k

max
i,j=1,...,|Ph|

distance(xh,i, xh,j) (1)

where: xh,i denotes the ith data point (in our case, a consent
policy of the form < b1, . . . , bm >) in the cluster Ph of the
consent table C, and distance(x,y) is the Euclidean distance
between two data points x and y and serves characterizing the
dissimilarity (in terms of common consents) between users. It
follows that we aim at eliciting k subsets of users, Pi (1 ≤
i ≤ k), such that:
• ∀i 6= j ∈ {1...k} : Pi ∩ Pj = ∅
• ∀i ∈ {1...k} : |Pi| ≥ `
• The distance d (defined in Equation 1) is minimized.

The supporting algorithm subdivides into 3 stages: (1) Clus-
tering that assigns users to their respective clusters while
maximizing the number of tasks to be executed by each user;
(2) Adjustment to deal with clusters that contain less than `
users and further enforce the single greatest common consent
policy, and (3) Selection so that the task assignment to clusters
maximizes data reuse.

1) Clustering stage: The `−completeness problem does
not have a constraint on the number of clusters; however,
it requires that each cluster contains at least ` users. Thus,
we pose the `−completeness problem as a clustering problem
that derives from the traditional k−means algorithm. We
specifically choose k−means because it is one of the most
widely used algorithms for clustering due to its simplicity and
efficiency with a low computational overhead [39]. Still, to
overcome the limits of the standard k−means algorithm for
choosing the k initial random centers, we use the combined
k−means++ that allows achieving better accuracy by choosing
the starting centers based on the weights of the data points
according to their squared distance from the closest center
already chosen [40]. That is, we use k−means++ to seed the
initial centers for k−means in such a way that they are as far
apart from each other as possible.

This results in Algorithm 1 that proceeds as follows: Let C
be the consent table and k =

⌊n
`

⌋
such that n is the number of

users in table C and ` is the value set for the `−completeness.
The clustering stage starts by selecting k tuples to build k
clusters using k−means++. The idea of k−means++ is to
choose a random consent c1 from C, calculate the distance
from each data point to the closest center we have already
chosen, sample a point with a probability proportional to

Algorithm 1 Similarity clustering

Input: A consent table C, the value ` for `−completeness
Output: A set of clusters {P1, ...Pk}

Let k ←
⌊n
`

⌋
Let {P1, ..., Pk} a set of k empty clusters
Select k distinct tuples c1...ck ∈ C with k−means++

X ← {c1, ..., ck} . X contains the initial k centroids
repeat

for each tuple c ∈ C do
Find ci ∈ X closest to c using Equation 1
Pi ← Pi ∪ {c}

end for
X ← {centroid(Pi)}i≤k

until convergence
return {P1, ..., Pk}

the square of the distance already calculated and repeat the
previous two steps until k centroids are selected. Once the
initial k centers are chosen, the k−means algorithm is applied:
for each tuple c in the consent table C, the algorithm finds the
cluster Pi with the closest centroid to c. Then, we add c to
its closest cluster and subsequently update the centroid of the
clusters.

2) Adjustment stage: The above clustering algorithm re-
turns a set of clusters out of which some may contain less than
` users. Furthermore, it is unlikely that the consent policies of
all the users in a given cluster are identical, which requires
defining the Greatest Common Policy (GCP) for the cluster:

Definition 4. (Greatest Common Policy – GCP) Given a
cluster Pi ⊂ C, we define the Greatest Common Policy within
Pi as the tuple GCP (Pi) =< b1, b2, .., bm > such that bi = 1
if for any tuple p in Pi we have p.bi = 1, and bi = 0 otherwise.

That is the GCP of the cluster characterizes the allowable set of
tasks so as to avoid any defect in consent (see § II). Algorithm
2 introduces the computation of the clustering adjustment. This
includes checking the number of users in each cluster. Multiple
approaches can be used in case |Pi| < `: (1) Distribute all the
tuples of the cluster to the closest clusters; (2) Merge closest
small clusters with Pi until |Pi| ≥ `; (3) Discard Cluster Pi.
For efficiency and simplicity, we implement Option 1.

3) Selection stage: The objective of this third stage is to
assign the tasks to clusters, while optimizing data reuse. The
clustering stage defines the consent policy for the cluster of
users in terms of the set of allowable tasks. For each task Ti,
we merge all clusters Pj such that bi = 1 in GCP (Pj) in
order to maximize data reuse. Note that some of the clusters
may be reused in many tasks.

Compliance with practical `−completeness. The Clustering
Algorithm 1 and associated Adjustment Algorithm 2 build a
partition of the users’ contributions such that each partition is
a cluster of size ≥ ` and the intersection of any two partitions
is the empty set. Since each task (re-)uses the union of a given
set of clusters, any composition of union, intersection and dif-
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Fig. 2: Partitioning vs clustering for task assignment: Lcomp-C refers to our clustering algorithm based on Algorithms 1 and
2, Lcomp-H refers to partitioning based on Hilbert values, and Lcomp-Id refers to partitioning based on identical consents.

Algorithm 2 Clusters adjustment

Input: P = {Pi}i≤k a set of k clusters
Output: {Pi

′}i≤k′ a set of k′ ≤ k clusters with |Pi
′| ≥ `

for each cluster Pi ∈ P with |Pi| < ` do
for each tuple x ∈ Pi do

Find Pj with centroid(Pj) closest to x and |Pj | ≥ `
Pj ← Pj ∪ {x}
Pi ← Pi \ {x}

end for
P ← P \ {Pi}

end for
return P

ference over the sets of users whose contribution is effectively
used in the different tasks is obviously either the empty set
or a set containing one or more partitions (corresponding to
more than ` users by construction). Hence, the result complies
with practical `−completeness (see Definition 3) by design.

C. Contribution loss

The effectiveness of the proposed clustering algorithm
relates to the extent to which it fosters the reuse of data
across tasks, as allowed by the consents of the contributing
users. Using a consent table filled according to a Bernoulli
distribution (with a probability α = 0.6), we show below that
the clustering approach (§ IV-B) outperforms base partitioning
(§ IV-A). Others distributions types could be used, for example
a Zipf distribution.

Closs({Ti}i≤m) =
|{c.bi ∈ C, i ≤ m, c.bi = 1, GCP (c).bi = 0}|

|{c.bi ∈ C, c.bi = 1}|
(2)

Equation 2 defines the ratio of contributions loss within
a purely consent- driven system.4 Fig. 2 reports the total
contributions loss that represents the number of contributions
that are discarded by the adjustment stage divided by the
total number of contributions (see Equation 2) for the three
algorithms according to: (Left) Number of participants with 12
tasks and ` = 10; (Center) Value of ` with 12 tasks and 120

4Non consent-driven approaches are out of the scope of this paper.

participants; and (Right) Number of tasks with 120 participants
and ` = 10. As depicted, our clustering algorithm results in
the least loss in terms of contributions for all the evaluations.
It also shows a significant loss of contributions for the first
partitioning algorithm that is based on identical consents,
which is due to the fact that the majority of the groups are
smaller than `. We observe (Left) that the information loss
diminishes with the increase in the number of participants
using our clustering algorithm; the reason is that increasing
the number of participants creates more users with similar
consents. Thus, the clustering algorithm becomes more effi-
cient as more users have similar consents. This property also
holds for the partitioning approach based on Hilbert values.
Still, the clustering algorithm offers the best performance. We
notice that for the partitioning based on identical consents, the
loss is total by increasing the value of ` or the number of tasks
(Center). This means that the algorithm fails to identify groups
of users with more than ` identical consents. The superiority
of our clustering approach results from the fact that it creates
groups of at least ` while using a distance function that
measures the similarities between consents. We also leverage
an optimized algorithm for the selection of starting centroids,
leading to reduce the information loss in the adjustment phase.
We performed additional experiments to investigate the effect
of varying α on our results and we found that the curves
maintain a similar shape with a variation in the slope. The loss
of contributions is higher when decreasing α and it is lower
when increasing α. The reason is that decreasing α generates
more users who have not consented to tasks, thus choosing a
GCP for each cluster discards more consents.

D. Utility loss

In addition to minimizing the contributions loss, the clus-
tering strategy must also optimize the data utility. That is, we
need to assess the effectiveness of our clustering algorithm in
leveraging the utility of the contributed data to the assigned
tasks. We analyze the effectiveness of our algorithm against
data utility using a dataset made available to us by the authors
of [41], which provides the users’ activities, positions and
environmental noise measurements collected by their crowd-
sensing app. We specifically use a dataset containing 47, 954
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Fig. 3: Distribution of the collected values per activity after clustering

data points, collected by 120 participants over a period of
one week. We further carry out the analysis considering an
illustrative task that computes the average daily exposure to
noise according to the user’s activity (i.e., Stationary, Walking,
In-vehicle, Tilting, On-bicycle).

Fig. 4: Utility loss per activity wrt number of clusters.

For any result OTi obtained for a task Ti, we evaluate the
utility loss as follows:

Uloss(Ti) =
fi({SU |CU ∈ Pi, GCP (Pi).bi = 1})

fi({SU |CU .bi = 1}) (3)

with SU data contributed by a set of users U . In the case of
a multi-dimensional result (e.g., noise values aggregated by
activity), we evaluate the value of ULoss for each dimension.

Fig. 4 analyzes the impact of our algorithm on the utility
loss (see Equation 3) by comparing the execution of the task
on the clusters (with clustering) with the execution on the
original data (without clustering), according to the number
of clusters |P| ≤ k with k =

⌊n
`

⌋
(see Algorithm 1). We

varied the ` value for this evaluation. However, investigating
the optimal ` value is area for future work, and depends on
the set of tasks and the related consents. As depicted, the
information loss tends to be larger when we increase the
number of clusters for certain types of activities (On-bicycle,
In-vehicle), while clustering does not have any significant
impact on the data utility for others (Stationary, Tilting). In
general, if the cluster is a representative sample of the target
observations, the information loss is limited. That is, the utility
loss is directly proportional to the difference between the data
distribution within the clusters and the overall set of contrib-
utory data. Then, if the distance between the distribution of

the target attribute (e.g., Noise exposure) in the clusters and
the distribution in the whole table is limited, the information
loss is limited. To motivate this intuition, Fig. 3 compares the
distribution of data in the clusters with the one of the overall
dataset. Thus, the difference in the probability distributions
assesses the utility loss: The more the distributions of data
are different, the more the information loss is important. Our
clustering algorithm does not account for such a criterion
and thus impacts the data utility resulting from the proposed
consent-driven multi-task assignment, which we overcome
next.

V. ENHANCING THE `-COMPLETENESS ALGORITHM FOR
HIGHER ACCURACY

We enhance the utility of our consent-driven clustering
process by evaluating a data distribution profile for each task
beforehand, which allows us to optimize the assignment of
data to clusters. This results in the following three phases for
the multi-task assignment (see Fig. 5).
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Fig. 5: Three-phase consent-driven multi-task assignment.

A. Learning phase

The learning phase runs over a time period ∆′ < ∆ –which
is considered representative– to generate, for each task T , the
reference profile ϕT

0 of the data distribution associated with the
task. For example, for tasks related to urban monitoring, the
typical value for ∆’ would be a week as we observe weekly
repetitive patterns. We do not detail the computation of the ref-
erence profiles, which are task dependent. We simply highlight



that the learning phase does comply with the users’ consent
policies because: (i) The system computes every profile ϕT

0

using a set of clusters P such that ∀P ∈ P : GCP (P ).bi = 1
(which guarantees `−completeness over ∆′); and (ii) The
system does not (directly) expose the profiles, which are
only used to construct `−complete input sets for subsequent
periods.

B. Optimization phase

The second phase leverages the set of reference profiles
{ϕT

0 }T∈T to optimize the users contributions to be considered
for each task for time period ∆. For each task T , we compute
the profile ϕT

∆ as the union of the contributions of all the
users consenting to T over ∆. We then compare ϕT

∆ with T ’s
reference profile ϕT

0 ; if the two profiles diverge, we mark the
contributions of some users as ’ignored’ for this task (i.e., the
corresponding value bi in the consent table is updated from
1 to 0) until ϕT

∆ gets close enough to ϕT
0 . The way users’

contributions are selected is task/profile dependent (e.g., if the
profile is a distribution or an histogram, the contributions of
users with over represented values may be ’ignored’) and is
not further discussed. Note that the contributions of users that
get ’ignored’ for one task can still be considered for any other
–consented– task. The optimization phase allows "ignoring"
subsets of users contributions that would otherwise negatively
impact the data utility, while confirming to the users’ pri-
vacy and consent requirements through the computation of
`−complete clusters.

C. Enhanced selection phase

While the optimization phase filters out users contributions
so as to respect the task profile ϕT

∆ of any task T , the clustering
algorithm (Algorithms 1 & 2, § IV) may still introduce some
bias since it leads to use only a subset of the eligible data for
the task. Algorithm 3 overcomes such an impact by enhancing
the selection defined in § IV-B3. Given a set of clusters P
created after proportional clustering/adjustment and a set of
task profiles {ϕT

∆}T∈T , for each task T , Algorithm 3 starts
by merging the set of clusters P ∈ P with T ∈ GCP (P ) in
a cluster ET . Then, it computes the profile ϕT

∆(ET ) on ET

for that task. If the resulting profile is close enough to the
profile ϕT

∆, ET is considered as the input set for T that may
be used to compute task result OT . Otherwise, we compute
the profile of each cluster in ET , sort them according their
distance to ϕT

∆ and we remove those with the highest EMD
distance until finding a qualified cluster.

More precisely, to quantify the difference between data
distributions profile in the clusters and data distribution profile
ϕT

∆, we use the Earth Mover’s Distance (EMD) [42]. The
EMD between two distributions R and S is defined as:

distance(R,S) =
1

m− 1

m−1∑
i=1

|
i∑

i=j

(sj − ri)|

As a result, Algorithm 3 selects, for each task, an input set
that maximizes data reuse and respects the task profile.

Algorithm 3 Enhanced selection

Input: P: the set of clusters created after cluster-
ing/adjustment, {ϕT

∆}: the set of task profiles
Output: The set of input sets {ET } qualified for each task

for each T ∈ T do
ET ← ∪{P ∈ P, T ∈ GCP (P )}
qualified ← false
while ! qualified do

ϕET
← compute_profileT (ET )

if ϕET
' ϕT

∆ then
qualified ← true

else . else remove the worst cluster from ET

Worst← P ∈ ET s.t. P with the highest
EMD(compute_profileT (P ), ϕT

∆)
ET = ET \Worst

end if
end while

end for
return {ET }

D. Utility Loss

Fig. 6 illustrates the effectiveness of our enhanced selec-
tion stage to achieve higher utility and less information loss
compared to our original clustering algorithm (see Fig. 4).
Specifically, it shows the information loss when measuring the
noise pollution level. We compare the execution on the overall
data vs a qualified cluster (i.e., the input set produced with
Algorithm 3 for that task). We see that the information loss
remains negligible with the increase in the number of clusters.
The reason is that the cluster follows the global distribution
of data; therefore, the difference between the distribution of
data in the cluster and the original data is low, which results
in a low information loss.

Fig. 6: Utility Loss per activity wrt # of clusters.

VI. RELATED WORK

Multi-task allocation is a key research issue in participa-
tory sensing systems and has attracted much attention from
researchers in recent years.



A. Multi-task allocation in participatory sensing systems

The goal of the multi-task allocation is to minimize a total
cost function while guaranteeing data quality for multiple
tasks. In [43], the objective is to select the minimum subset
of participants that satisfies quality-of-information metrics
(i.e., granularity and quantity) under a total budget constraint.
Zhang et al. [44] introduce a strategy to predict the mobility
of participants so as to select the minimum number of par-
ticipants while ensuring the best spatio-temporal coverage. Li
et al. [45] also aim at minimizing the number of participants
while meeting a predefined level of coverage. TaskMe [46], a
framework for multi-task allocation, deals with (1) maximizing
the number of accomplished tasks when few participants are
available; and (2) the opposite problem with many participants
and few tasks. PSAllocator [24] addresses the multi-task allo-
cation problem from another perspective, that is, maximizing
the overall system utility under sensing capability constraints.
This includes the work in [25] that aims at maximizing data
utility according to participant-side factors (e.g., participant
bandwidth, participant availability) when assigning tasks. Zhu
et al. [47] introduce a greedy-based approach to maximize the
number of accomplished tasks under the sensing capacity and
time constraints.

In general, existing solutions to the multi-task assignment
mainly focus on optimizing the allocation of tasks without
taking into account the consents of users. Our work thus
distinguishes itself by aiming at maximizing data reuse while
taking into account users’ consents, which is essential when
dealing with the collection of users’ data as with crowdsensing
systems. In addition, by considering the distribution of data,
the overall system utility is optimized.

B. Consent in computing platforms

To the best of our knowledge and despite the growing
awareness about privacy and consent in multiple fields, the
concept of consent has never been considered in the existing
literature about mobile crowdsensing systems. Yet, Luger et
al. [48] alert multidisciplinary experts about "a crisis of
consent for ubiquitous computing". They call the designers
to balance their design objectives against a series of consent
considerations. Jones [26] discusses the importance of consent
in computing, explaining the moral magic of consent that
renders permissible an otherwise impermissible action. In [49],
[50], the authors study the role of consent in privacy policies
for social media users. In the case of Facebook, they consider
that consent is flawed and claim the need for improvement to
create more transparency about users’ personal data. Recently,
Okoyomon et al. [51] compare the privacy policies of Google
Play Store apps with their behaviors and highlight the level of
the defect in consent and lack of prioritizing user privacy. In
light of this, our work introduces a consent-driven approach
to multi-task allocation in participatory sensing systems. Our
solution specifically maximizes the number of tasks assigned
to participants according to their consents while minimizing
the utility loss.

VII. CONCLUSION

We have introduced the `−completeness consent-driven
property for multi-task allocation in mobile crowdsensing
systems so as to foster the reuse of crowdsensed contributions
across eligible tasks while strictly adhering to the consents
of users. Indeed, respecting consent is an essential property
of crowdsensing systems to guarantee privacy to their users.
This leads us to claim that consent-based properties, such
as `−completeness, should be an essential part of standards
oriented towards privacy in crowdsensing systems.

We have also presented a solution to multi-task allocation
that conforms to `−completeness, while optimizing data reuse
and utility. Initial evaluation using a dataset from a deployed
crowdsensing app shows the relevance of the supporting
algorithms.

Our current and future work concentrate on addressing
a more complex attacker model by assuming a malicious
adversary that may gain root access to the crowd-sensing
system, modify data or eavesdrop communications. Our future
objective is to ensure the integrity and confidentiality of
the proposed solution through the use of trusted execution
environments (e.g., Intel SGX enclaves). That is, this will
guarantee that no user’s contribution can ever be exposed in
clear text outside secure enclaves and apart from the tasks
results produced, which we will implement within a system
for validation.
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