11,940 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Granular technologies to accelerate decarbonization

    Get PDF
    Of the 45 energy technologies deemed critical by the International Energy Agency for meeting global climate targets, 38 need to improve substan- tially in cost and performance while accelerating deployment over the next decades.Low-carbon technological solutions vary in scale from solar panels, e-bikes, and smart thermostats to carbon capture and storage, light rail transit, and whole-building retrofits. We make three contributions to long-standing debates on the appropriate scale of technological responses in the energy system. First, we focus on the specific needs of accelerated low-carbon transformation: rapid technology deployment, escaping lock-in, and social legitimacy. Second, we synthesize evidence on energy end-use technologies in homes, transport, and industry, as well as electricity generation and energy supply. Third, we go beyond technical and economic considerations to include innovation, investment, deployment, social, and equity criteria for assessing the relative advantage of alternative technologies as a function of their scale. We suggest numerous potential advantages of more-granular energy technologies for accelerating progress toward climate targets, as well as the conditions on which such progress depends

    Linking Energy System Models:Exploring analyses, methodologies, and theoretical dilemmas

    Get PDF
    • …
    corecore