4,267 research outputs found

    Trusted Computing and Secure Virtualization in Cloud Computing

    Get PDF
    Large-scale deployment and use of cloud computing in industry is accompanied and in the same time hampered by concerns regarding protection of data handled by cloud computing providers. One of the consequences of moving data processing and storage off company premises is that organizations have less control over their infrastructure. As a result, cloud service (CS) clients must trust that the CS provider is able to protect their data and infrastructure from both external and internal attacks. Currently however, such trust can only rely on organizational processes declared by the CS provider and can not be remotely verified and validated by an external party. Enabling the CS client to verify the integrity of the host where the virtual machine instance will run, as well as to ensure that the virtual machine image has not been tampered with, are some steps towards building trust in the CS provider. Having the tools to perform such verifications prior to the launch of the VM instance allows the CS clients to decide in runtime whether certain data should be stored- or calculations should be made on the VM instance offered by the CS provider. This thesis combines three components -- trusted computing, virtualization technology and cloud computing platforms -- to address issues of trust and security in public cloud computing environments. Of the three components, virtualization technology has had the longest evolution and is a cornerstone for the realization of cloud computing. Trusted computing is a recent industry initiative that aims to implement the root of trust in a hardware component, the trusted platform module. The initiative has been formalized in a set of specifications and is currently at version 1.2. Cloud computing platforms pool virtualized computing, storage and network resources in order to serve a large number of customers customers that use a multi-tenant multiplexing model to offer on-demand self-service over broad network. Open source cloud computing platforms are, similar to trusted computing, a fairly recent technology in active development. The issue of trust in public cloud environments is addressed by examining the state of the art within cloud computing security and subsequently addressing the issues of establishing trust in the launch of a generic virtual machine in a public cloud environment. As a result, the thesis proposes a trusted launch protocol that allows CS clients to verify and ensure the integrity of the VM instance at launch time, as well as the integrity of the host where the VM instance is launched. The protocol relies on the use of Trusted Platform Module (TPM) for key generation and data protection. The TPM also plays an essential part in the integrity attestation of the VM instance host. Along with a theoretical, platform-agnostic protocol, the thesis also describes a detailed implementation design of the protocol using the OpenStack cloud computing platform. In order the verify the implementability of the proposed protocol, a prototype implementation has built using a distributed deployment of OpenStack. While the protocol covers only the trusted launch procedure using generic virtual machine images, it presents a step aimed to contribute towards the creation of a secure and trusted public cloud computing environment

    Novel Proposed Work for Empirical Word Searching in Cloud Environment

    Get PDF
    People's lives have become much more convenient as a result of the development of cloud storage. The third-party server has received a lot of data from many people and businesses for storage. Therefore, it is necessary to ensure that the user's data is protected from prying eyes. In the cloud environment, searchable encryption technology is used to protect user information when retrieving data. The versatility of the scheme is, however, constrained by the fact that the majority of them only offer single-keyword searches and do not permit file changes.A novel empirical multi-keyword search in the cloud environment technique is offered as a solution to these issues. Additionally, it prevents the involvement of a third party in the transaction between data holder and user and guarantees integrity. Our system achieves authenticity at the data storage stage by numbering the files, verifying that the user receives a complete ciphertext. Our technique outperforms previous analogous schemes in terms of security and performance and is resistant to inside keyword guessing attacks.The server cannot detect if the same set of keywords is being looked for by several queries because our system generates randomized search queries. Both the number of keywords in a search query and the number of keywords in an encrypted document can be hidden. Our searchable encryption method is effective and protected from the adaptive chosen keywords threat at the same time

    FSPVDsse: A Forward Secure Publicly Verifiable Dynamic SSE scheme

    Get PDF
    A symmetric searchable encryption (SSE) scheme allows a client (data owner) to search on encrypted data outsourced to an untrusted cloud server. The search may either be a single keyword search or a complex query search like conjunctive or Boolean keyword search. Information leakage is quite high for dynamic SSE, where data might be updated. It has been proven that to avoid this information leakage an SSE scheme with dynamic data must be forward private. A dynamic SSE scheme is said to be forward private, if adding a keyword-document pair does not reveal any information about the previous search result with that keyword. In SSE setting, the data owner has very low computation and storage power. In this setting, though some schemes achieve forward privacy with honest-but-curious cloud, it becomes difficult to achieve forward privacy when the server is malicious, meaning that it can alter the data. Verifiable dynamic SSE requires the server to give a proof of the result of the search query. The data owner can verify this proof efficiently. In this paper, we have proposed a generic publicly verifiable dynamic SSE (DSSE) scheme that makes any forward private DSSE scheme verifiable without losing forward privacy. The proposed scheme does not require any extra storage at owner-side and requires minimal computational cost as well for the owner. Moreover, we have compared our scheme with the existing results and show that our scheme is practical.Comment: 17 pages, Published in ProvSec 201

    Cloud technology options towards Free Flow of Data

    Get PDF
    This whitepaper collects the technology solutions that the projects in the Data Protection, Security and Privacy Cluster propose to address the challenges raised by the working areas of the Free Flow of Data initiative. The document describes the technologies, methodologies, models, and tools researched and developed by the clustered projects mapped to the ten areas of work of the Free Flow of Data initiative. The aim is to facilitate the identification of the state-of-the-art of technology options towards solving the data security and privacy challenges posed by the Free Flow of Data initiative in Europe. The document gives reference to the Cluster, the individual projects and the technologies produced by them

    Extended Functionality in Verifiable Searchable Encryption

    Get PDF
    Abstract. When outsourcing the storage of sensitive data to an (un-trusted) remote server, a data owner may choose to encrypt the data beforehand to preserve confidentiality. However, it is then difficult to efficiently retrieve specific portions of the data as the server is unable to identify the relevant information. Searchable encryption has been well studied as a solution to this problem, allowing data owners and other au-thorised users to generate search queries which the server may execute over the encrypted data to identify relevant data portions. However, many current schemes lack two important properties: verifia-bility of search results, and expressive queries. We introduce Extended Verifiable Searchable Encryption (eVSE) that permits a user to verify that search results are correct and complete. We also permit verifiabl

    An In-Depth Analysis on Efficiency and Vulnerabilities on a Cloud-Based Searchable Symmetric Encryption Solution

    Get PDF
    Searchable Symmetric Encryption (SSE) has come to be as an integral cryptographic approach in a world where digital privacy is essential. The capacity to search through encrypted data whilst maintaining its integrity meets the most important demand for security and confidentiality in a society that is increasingly dependent on cloud-based services and data storage. SSE offers efficient processing of queries over encrypted datasets, allowing entities to comply with data privacy rules while preserving database usability. Our research goes into this need, concentrating on the development and thorough testing of an SSE system based on Curtmola’s architecture and employing Advanced Encryption Standard (AES) in Cypher Block Chaining (CBC) mode. A primary goal of the research is to conduct a thorough evaluation of the security and performance of the system. In order to assess search performance, a variety of database settings were extensively tested, and the system's security was tested by simulating intricate threat scenarios such as count attacks and leakage abuse. The efficiency of operation and cryptographic robustness of the SSE system are critically examined by these reviews
    • …
    corecore