318 research outputs found

    Redes definidas por software e funções de redes virtualizadas em ambientes com recursos restritos

    Get PDF
    With technologies such as SDN and NFV pushing the the development of the next generation networks, new paradigms, such as Fog Computing, appeared in the network scene. However, these technologies have been associated with the network infrastructure, such as the datacenter. In order for these technologies to be used, for instance, in a Fog Computing scenario it is necessary to, therefore, study and develop these technologies to form new control and operation mechanisms. So, a Fog Computing scenario composed by resource-constrained devices, typical in these types of situations, was developed, and, a solution proposal is presented. The solution consists in customizing an existent VIM, OpenVIM, to this kind of devices, after the implementation of the solution, where a Raspberry Pi is used to exemplify this type of devices. Tests are done to measure and compare this devices to more powerful ones. The tests are comprised by benchmarks runs, focusing on instantiation times, and power consumption. The results show some drawbacks inherent to this kind of devices when compared to more powerful ones. However, it is possible to see the potential that this kind of devices might have in the near future.Com tecnologias como SDN e NFV a impulsionar o desenvolvimento das redes da próxima geração, novos paradigmas como por exemplo, Fog Computing, apareceram na área de redes. Contudo, estas tecnologias têm estado associadas à infraestrutura das redes, como o datacenter. Para que estas tecnologias possam ser utilizadas, como por exemplo, num cenário de Fog Computing é necessário, então, estudar e desenvolver estas tecnologias para formar novos mecanismos de controlo e operação. Desta forma, um cenário de Fog Computing composto por dispositivos com recursos limitados, típicos neste tipo de situação, é desenvolvido, e, uma proposta de solução é apresentada. A solução consiste em adaptar uma VIM existente, OpenVIM, para este tipo de dispositivos, após a implementação da solução, onde um Raspberry Pi é utilizado para exemplificar este tipo de dispositvos. Testes são realizados para medir e comparar como estes dispositivos se comportam em comparação com dispositivos mais poderosos. Estes testes são compostos por testes de desempenho, focando o tempo de instanciação e consumo energético. Os resultados apresentam algumas limitações inerentes a este tipo de dispositivos resultantes dos seus recursos limitados, quando comparados com hardware com maior capacidade. Contudo, é possível verificar o potencial que este tipo de dispositivos podem apresentar no futuro próximo.Mestrado em Engenharia Eletrónica e Telecomunicaçõe

    IoT-B&B: Edge-Based NFV for IoT Devices with CPE Crowdsourcing

    Get PDF

    Fog-enabled Scalable C-V2X Architecture for Distributed 5G and Beyond Applications

    Get PDF
    The Internet of Things (IoT) ecosystem, as fostered by fifth generation (5G) applications, demands a highly available network infrastructure. In particular, the internet of vehicles use cases, as a subset of the overall IoT environment, require a combination of high availability and low latency in big volumes support. This can be enabled by a network function virtualization architecture that is able to provide resources wherever and whenever needed, from the core to the edge up to the end user proximity, in accordance with the fog computing paradigm. In this article, we propose a fog-enabled cellular vehicle-to-everything architecture that provides resources at the core, the edge and the vehicle layers. The proposed architecture enables the connection of virtual machines, containers and unikernels that form an application-as-a-service function chain that can be deployed across the three layers. Furthermore, we provide lifecycle management mechanisms that can efficiently manage and orchestrate the underlying physical resources by leveraging live migration and scaling functionalities. Additionally, we design and implement a 5G platform to evaluate the basic functionalities of our proposed mechanisms in real-life scenarios. Finally, the experimental results demonstrate that our proposed scheme maximizes the accepted requests, without violating the applications’ service level agreement.This work has been supported in part by the research projects SPOTLIGHT (722788), AGAUR (2017-SGR-891), 5G-DIVE (859881), SPOT5G (TEC2017-87456-P), MonB5G (871780) and 5G-Routes (951867)

    Integration of Clouds to Industrial Communication Networks

    Get PDF
    Cloud computing, owing to its ubiquitousness, scalability and on-demand ac- cess, has transformed into many traditional sectors, such as telecommunication and manufacturing production. As the Fifth Generation Wireless Specifica- tions (5G) emerges, the demand on ubiquitous and re-configurable computing resources for handling tremendous traffic from omnipresent mobile devices has been put forward. And therein lies the adaption of cloud-native model in service delivery of telecommunication networks. However, it takes phased approaches to successfully transform the traditional Telco infrastructure to a softwarized model, especially for Radio Access Networks (RANs), which, as of now, mostly relies on purpose-built Digital Signal Processors (DSPs) for computing and processing tasks.On the other hand, Industry 4.0 is leading the digital transformation in manufacturing sectors, wherein the industrial networks is evolving towards wireless connectivity and the automation process managements are shifting to clouds. However, such integration may introduce unwanted disturbances to critical industrial automation processes. This leads to challenges to guaran- tee the performance of critical applications under the integration of different systems.In the work presented in this thesis, we mainly explore the feasibility of inte- grating wireless communication, industrial networks and cloud computing. We have mainly investigated the delay-inhibited challenges and the performance impacts of using cloud-native models for critical applications. We design a solution, targeting at diminishing the performance degradation caused by the integration of cloud computing

    Automated service provisioning in programmable network infrastructures

    Get PDF
    Modern networks are undergoing a fast and drastic evolution, with software taking a more predominant role. Virtualization and cloud-like approaches are replacing physical network appliances, reducing the management burden of the operators. Furthermore, networks now expose programmable interfaces for fast and dynamic control over traffic forwarding. This evolution is backed by standard organizations such as ETSI, 3GPP, and IETF. This thesis will describe which are the main trends in this evolution. Then, it will present solutions developed during the three years of Ph.D. to exploit the capabilities these new technologies offer and to study their possible limitations to push further the state-of-the-art. Namely, it will deal with programmable network infrastructure, introducing the concept of Service Function Chaining (SFC) and presenting two possible solutions, one with Openstack and OpenFlow and the other using Segment Routing and IPv6. Then, it will continue with network service provisioning, presenting concepts from Network Function Virtualization (NFV) and Multi-access Edge Computing (MEC). These concepts will be applied to network slicing for mission-critical communications and Industrial IoT (IIoT). Finally, it will deal with network abstraction, with a focus on Intent Based Networking (IBN). To summarize, the thesis will include solutions for data plane programming with evaluation on well-known platforms, performance metrics on virtual resource allocations, novel practical application of network slicing on mission-critical communications, an architectural proposal and its implementation for edge technologies in Industrial IoT scenarios, and a formal definition of intent using a category theory approach
    corecore