1,059 research outputs found

    Performance Model of MapReduce Iterative Applications for Hybrid Cloud Bursting

    Get PDF
    Hybrid cloud bursting (i.e., leasing temporary off-premise cloud resources to boost the overall capacity during peak utilization) can be a cost-effective way to deal with the increasing complexity of big data analytics, especially for iterative applications. However, the low throughput, high latency network link between the on-premise and off-premise resources (“weak link”) makes maintaining scalability difficult. While several data locality techniques have been designed for big data bursting on hybrid clouds, their effectiveness is difficult to estimate in advance. Yet such estimations are critical, because they help users decide whether the extra pay-as-you-go cost incurred by using the off-premise resources justifies the runtime speed-up. To this end, the current paper presents a performance model and methodology to estimate the runtime of iterative MapReduce applications in a hybrid cloud-bursting scenario. The paper focuses on the overhead incurred by the weak link at fine granularity, for both the map and the reduce phases. This approach enables high estimation accuracy, as demonstrated by extensive experiments at scale using a mix of real-world iterative MapReduce applications from standard big data benchmarking suites that cover a broad spectrum of data patterns. Not only are the produced estimations accurate in absolute terms compared with experimental results, but they are also up to an order of magnitude more accurate than applying state-of-art estimation approaches originally designed for single-site MapReduce deployments

    Tupleware: Redefining Modern Analytics

    Full text link
    There is a fundamental discrepancy between the targeted and actual users of current analytics frameworks. Most systems are designed for the data and infrastructure of the Googles and Facebooks of the world---petabytes of data distributed across large cloud deployments consisting of thousands of cheap commodity machines. Yet, the vast majority of users operate clusters ranging from a few to a few dozen nodes, analyze relatively small datasets of up to a few terabytes, and perform primarily compute-intensive operations. Targeting these users fundamentally changes the way we should build analytics systems. This paper describes the design of Tupleware, a new system specifically aimed at the challenges faced by the typical user. Tupleware's architecture brings together ideas from the database, compiler, and programming languages communities to create a powerful end-to-end solution for data analysis. We propose novel techniques that consider the data, computations, and hardware together to achieve maximum performance on a case-by-case basis. Our experimental evaluation quantifies the impact of our novel techniques and shows orders of magnitude performance improvement over alternative systems

    Experimental Performance Evaluation of Cloud-Based Analytics-as-a-Service

    Full text link
    An increasing number of Analytics-as-a-Service solutions has recently seen the light, in the landscape of cloud-based services. These services allow flexible composition of compute and storage components, that create powerful data ingestion and processing pipelines. This work is a first attempt at an experimental evaluation of analytic application performance executed using a wide range of storage service configurations. We present an intuitive notion of data locality, that we use as a proxy to rank different service compositions in terms of expected performance. Through an empirical analysis, we dissect the performance achieved by analytic workloads and unveil problems due to the impedance mismatch that arise in some configurations. Our work paves the way to a better understanding of modern cloud-based analytic services and their performance, both for its end-users and their providers.Comment: Longer version of the paper in Submission at IEEE CLOUD'1
    • …
    corecore