22,161 research outputs found

    Mapping dust column density in dark clouds by using NIR scattered light : Case of the Lupus 3 dark cloud

    Full text link
    We present a method of mapping dust column density in dark clouds by using near-infrared scattered light. Our observations of the Lupus 3 dark cloud indicate that there is a well defined relation between (1) the H-Ks color of an individual star behind the cloud, i.e., dust column density, and (2) the surface brightness of scattered light toward the star in each of the J, H, and Ks bands. In the relation, the surface brightnesses increase at low H-Ks colors, then saturate and decrease with increasing H-Ks. Using a simple one-dimensional radiation transfer model, we derive empirical equations which plausibly represent the observed relationship between the surface brightness and the dust column density. By using the empirical equations, we estimate dust column density of the cloud for any directions toward which even no background stars are seen. We obtain a dust column density map with a pixel scale of 2.3 x 2.3 arcsec^2 and a large dynamic range up to Av = 50 mag. Compared to the previous studies by Juvela et al., this study is the first to use color excess of the background stars for calibration of the empirical relationship and to apply the empirical relationship beyond the point where surface brightness starts to decrease with increasing column density

    Evaluation of the present theoretical basis for determination of planetary surface properties by earth-based radar

    Get PDF
    Spaceflight programs such as the planned Viking landing on Mars require the determination of planetary surface slopes and surface dielectric constants by earth-based methods. Heavy reliance is often placed on radar backscattering data for estimation of these surface properties. An assessment is presented of the basic theory by which the raw radar data are interpreted, and it is shown that serious difficulties and internal inconsistencies are present in the available theoretical formulas. The discussion brings into question the reliability of the presently available results for these surface properties as obtained by earth-based radar methods

    Microwave backscattering theory and active remote sensing of the ocean surface

    Get PDF
    The status is reviewed of electromagnetic scattering theory relative to the interpretation of microwave remote sensing data acquired from spaceborne platforms over the ocean surface. Particular emphasis is given to the assumptions which are either implicit or explicit in the theory. The multiple scale scattering theory developed during this investigation is extended to non-Gaussian surface statistics. It is shown that the important statistic for the case is the probability density function of the small scale heights conditioned on the large scale slopes; this dependence may explain the anisotropic scattering measurements recently obtained with the AAFE Radscat. It is noted that present surface measurements are inadequate to verify or reject the existing scattering theories. Surface measurements are recommended for qualifying sensor data from radar altimeters and scatterometers. Additional scattering investigations are suggested for imaging type radars employing synthetically generated apertures

    Shrunken Locally Linear Embedding for Passive Microwave Retrieval of Precipitation

    Full text link
    This paper introduces a new Bayesian approach to the inverse problem of passive microwave rainfall retrieval. The proposed methodology relies on a regularization technique and makes use of two joint dictionaries of coincidental rainfall profiles and their corresponding upwelling spectral radiative fluxes. A sequential detection-estimation strategy is adopted, which basically assumes that similar rainfall intensity values and their spectral radiances live close to some sufficiently smooth manifolds with analogous local geometry. The detection step employs a nearest neighborhood classification rule, while the estimation scheme is equipped with a constrained shrinkage estimator to ensure stability of retrieval and some physical consistency. The algorithm is examined using coincidental observations of the active precipitation radar (PR) and passive microwave imager (TMI) on board the Tropical Rainfall Measuring Mission (TRMM) satellite. We present promising results of instantaneous rainfall retrieval for some tropical storms and mesoscale convective systems over ocean, land, and coastal zones. We provide evidence that the algorithm is capable of properly capturing different storm morphologies including high intensity rain-cells and trailing light rainfall, especially over land and coastal areas. The algorithm is also validated at an annual scale for calendar year 2013 versus the standard (version 7) radar (2A25) and radiometer (2A12) rainfall products of the TRMM satellite

    NASA Wallops Flight Facility Air-Sea Interaction Research Facility

    Get PDF
    This publication serves as an introduction to the Air-Sea Interaction Research Facility at NASA/GSFC/Wallops Flight Facility. The purpose of this publication is to provide background information on the research facility itself, including capabilities, available instrumentation, the types of experiments already done, ongoing experiments, and future plans

    The Stationery Distribution of Wealth with Random Shocks

    Get PDF
    A convergence model with wealth accumulation subject to i.i.d. random shocks is examined. The transfer function shows what k_{t+1} - wealth at t+1 - would be, given k_t, with no shock: It has a positive slope, but its concavity/convexity is indeterminate. The stationary distribution of wealth satisfies a Fredholm integral equation. This distribution can be examined by direct analysis of the wealth-accumulation stochastic process and via the Fredholm equation. The analysis resembles some econometric theory of time series. Economic theory forces consideration of a broad range of cases, including some which violate B-convergence. "Twin peaks" in the stationary distribution cannot be excluded.Convergence, stochastic process, wealth distribution

    LANDSAT-D investigations in snow hydrology

    Get PDF
    Work undertaken during the contract and its results are described. Many of the results from this investigation are available in journal or conference proceedings literature - published, accepted for publication, or submitted for publication. For these the reference and the abstract are given. Those results that have not yet been submitted separately for publication are described in detail. Accomplishments during the contract period are summarized as follows: (1) analysis of the snow reflectance characteristics of the LANDSAT Thematic Mapper, including spectral suitability, dynamic range, and spectral resolution; (2) development of a variety of atmospheric models for use with LANDSAT Thematic Mapper data. These include a simple but fast two-stream approximation for inhomogeneous atmospheres over irregular surfaces, and a doubling model for calculation of the angular distribution of spectral radiance at any level in an plane-parallel atmosphere; (3) incorporation of digital elevation data into the atmospheric models and into the analysis of the satellite data; and (4) textural analysis of the spatial distribution of snow cover

    Exploration of a Polarized Surface Bidirectional Reflectance Model Using the Ground-Based Multiangle Spectropolarimetric Imager

    Get PDF
    Accurate characterization of surface reflection is essential for retrieval of aerosols using downward-looking remote sensors. In this paper, observations from the Ground-based Multiangle SpectroPolarimetric Imager (GroundMSPI) are used to evaluate a surface polarized bidirectional reflectance distribution function (PBRDF) model. GroundMSPI is an eight-band spectropolarimetric camera mounted on a rotating gimbal to acquire pushbroom imagery of outdoor landscapes. The camera uses a very accurate photoelastic-modulator-based polarimetric imaging technique to acquire Stokes vector measurements in three of the instrument's bands (470, 660, and 865 nm). A description of the instrument is presented, and observations of selected targets within a scene acquired on 6 January 2010 are analyzed. Data collected during the course of the day as the Sun moved across the sky provided a range of illumination geometries that facilitated evaluation of the surface model, which is comprised of a volumetric reflection term represented by the modified Rahman-Pinty-Verstraete function plus a specular reflection term generated by a randomly oriented array of Fresnel-reflecting microfacets. While the model is fairly successful in predicting the polarized reflection from two grass targets in the scene, it does a poorer job for two manmade targets (a parking lot and a truck roof), possibly due to their greater degree of geometric organization. Several empirical adjustments to the model are explored and lead to improved fits to the data. For all targets, the data support the notion of spectral invariance in the angular shape of the unpolarized and polarized surface reflection. As noted by others, this behavior provides valuable constraints on the aerosol retrieval problem, and highlights the importance of multiangle observations.NASAJPLCenter for Space Researc

    Information extraction techniques for multispectral scanner data

    Get PDF
    The applicability of recognition-processing procedures for multispectral scanner data from areas and conditions used for programming the recognition computers to other data from different areas viewed under different measurement conditions was studied. The reflective spectral region approximately 0.3 to 3.0 micrometers is considered. A potential application of such techniques is in conducting area surveys. Work in three general areas is reported: (1) Nature of sources of systematic variation in multispectral scanner radiation signals, (2) An investigation of various techniques for overcoming systematic variations in scanner data; (3) The use of decision rules based upon empirical distributions of scanner signals rather than upon the usually assumed multivariate normal (Gaussian) signal distributions
    • …
    corecore