7,700 research outputs found

    Inference of time-varying regression models

    Full text link
    We consider parameter estimation, hypothesis testing and variable selection for partially time-varying coefficient models. Our asymptotic theory has the useful feature that it can allow dependent, nonstationary error and covariate processes. With a two-stage method, the parametric component can be estimated with a n1/2n^{1/2}-convergence rate. A simulation-assisted hypothesis testing procedure is proposed for testing significance and parameter constancy. We further propose an information criterion that can consistently select the true set of significant predictors. Our method is applied to autoregressive models with time-varying coefficients. Simulation results and a real data application are provided.Comment: Published in at http://dx.doi.org/10.1214/12-AOS1010 the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Semiparametric Bayesian inference in smooth coefficient models

    Get PDF
    We describe procedures for Bayesian estimation and testing in cross-sectional, panel data and nonlinear smooth coefficient models. The smooth coefficient model is a generalization of the partially linear or additive model wherein coefficients on linear explanatory variables are treated as unknown functions of an observable covariate. In the approach we describe, points on the regression lines are regarded as unknown parameters and priors are placed on differences between adjacent points to introduce the potential for smoothing the curves. The algorithms we describe are quite simple to implement - for example, estimation, testing and smoothing parameter selection can be carried out analytically in the cross-sectional smooth coefficient model. We apply our methods using data from the National Longitudinal Survey of Youth (NLSY). Using the NLSY data we first explore the relationship between ability and log wages and flexibly model how returns to schooling vary with measured cognitive ability. We also examine a model of female labor supply and use this example to illustrate how the described techniques can been applied in nonlinear settings

    Penalized Likelihood and Bayesian Function Selection in Regression Models

    Full text link
    Challenging research in various fields has driven a wide range of methodological advances in variable selection for regression models with high-dimensional predictors. In comparison, selection of nonlinear functions in models with additive predictors has been considered only more recently. Several competing suggestions have been developed at about the same time and often do not refer to each other. This article provides a state-of-the-art review on function selection, focusing on penalized likelihood and Bayesian concepts, relating various approaches to each other in a unified framework. In an empirical comparison, also including boosting, we evaluate several methods through applications to simulated and real data, thereby providing some guidance on their performance in practice

    A bi-dimensional finite mixture model for longitudinal data subject to dropout

    Full text link
    In longitudinal studies, subjects may be lost to follow-up, or miss some of the planned visits, leading to incomplete response sequences. When the probability of non-response, conditional on the available covariates and the observed responses, still depends on unobserved outcomes, the dropout mechanism is said to be non ignorable. A common objective is to build a reliable association structure to account for dependence between the longitudinal and the dropout processes. Starting from the existing literature, we introduce a random coefficient based dropout model where the association between outcomes is modeled through discrete latent effects. These effects are outcome-specific and account for heterogeneity in the univariate profiles. Dependence between profiles is introduced by using a bi-dimensional representation for the corresponding distribution. In this way, we define a flexible latent class structure which allows to efficiently describe both dependence within the two margins of interest and dependence between them. By using this representation we show that, unlike standard (unidimensional) finite mixture models, the non ignorable dropout model properly nests its ignorable counterpart. We detail the proposed modeling approach by analyzing data from a longitudinal study on the dynamics of cognitive functioning in the elderly. Further, the effects of assumptions about non ignorability of the dropout process on model parameter estimates are (locally) investigated using the index of (local) sensitivity to non-ignorability

    Semiparametric GEE analysis in partially linear single-index models for longitudinal data

    Get PDF
    In this article, we study a partially linear single-index model for longitudinal data under a general framework which includes both the sparse and dense longitudinal data cases. A semiparametric estimation method based on a combination of the local linear smoothing and generalized estimation equations (GEE) is introduced to estimate the two parameter vectors as well as the unknown link function. Under some mild conditions, we derive the asymptotic properties of the proposed parametric and nonparametric estimators in different scenarios, from which we find that the convergence rates and asymptotic variances of the proposed estimators for sparse longitudinal data would be substantially different from those for dense longitudinal data. We also discuss the estimation of the covariance (or weight) matrices involved in the semiparametric GEE method. Furthermore, we provide some numerical studies including Monte Carlo simulation and an empirical application to illustrate our methodology and theory.Comment: Published at http://dx.doi.org/10.1214/15-AOS1320 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Maximum likelihood estimation for social network dynamics

    Get PDF
    A model for network panel data is discussed, based on the assumption that the observed data are discrete observations of a continuous-time Markov process on the space of all directed graphs on a given node set, in which changes in tie variables are independent conditional on the current graph. The model for tie changes is parametric and designed for applications to social network analysis, where the network dynamics can be interpreted as being generated by choices made by the social actors represented by the nodes of the graph. An algorithm for calculating the Maximum Likelihood estimator is presented, based on data augmentation and stochastic approximation. An application to an evolving friendship network is given and a small simulation study is presented which suggests that for small data sets the Maximum Likelihood estimator is more efficient than the earlier proposed Method of Moments estimator.Comment: Published in at http://dx.doi.org/10.1214/09-AOAS313 the Annals of Applied Statistics (http://www.imstat.org/aoas/) by the Institute of Mathematical Statistics (http://www.imstat.org
    • …
    corecore