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In this article, we study a partially linear single-index model for
longitudinal data under a general framework which includes both the
sparse and dense longitudinal data cases. A semiparametric estima-
tion method based on a combination of the local linear smoothing
and generalized estimation equations (GEE) is introduced to esti-
mate the two parameter vectors as well as the unknown link func-
tion. Under some mild conditions, we derive the asymptotic prop-
erties of the proposed parametric and nonparametric estimators in
different scenarios, from which we find that the convergence rates
and asymptotic variances of the proposed estimators for sparse lon-
gitudinal data would be substantially different from those for dense
longitudinal data. We also discuss the estimation of the covariance (or
weight) matrices involved in the semiparametric GEE method. Fur-
thermore, we provide some numerical studies including Monte Carlo
simulation and an empirical application to illustrate our methodology
and theory.

1. Introduction. Consider a semiparametric partially linear single-index
model defined by

Y (t) =Z
⊤(t)β + η(X⊤(t)θ) + e(t), t ∈ T ,(1.1)

where T is a bounded time interval, β and θ are two unknown vectors of
parameters with dimensions d and p, respectively, η(·) is an unknown link
function, Y (t) is a scalar stochastic process, Z(t) and X(t) are covariates
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with dimensions d and p, respectively, and e(t) is the random error process.
For the case of independent and identically distributed (i.i.d.) or weakly de-
pendent time series data, there has been extensive literature on statistical
inference of model (1.1) since its introduction by Carroll et al. (1997). Several
different approaches have been proposed to estimate the unknown parame-
ters and link function involved; see, for example, Xia, Tong and Li (1999),
Yu and Ruppert (2002), Xia and Härdle (2006), Wang et al. (2010) and Ma
and Zhu (2013). A recent paper by Liang et al. (2010) further developed
semiparametric techniques for the variable selection and model specification
testing issues in the context of model (1.1).

In this paper, we are interested in studying partially linear single-index
model (1.1) in the context of longitudinal data which arise frequently in
many fields of research, such as biology, climatology, economics and epi-
demiology, and thus have attracted considerable attention in the literature
in recent years. Various parametric models and methods have been studied
in depth for longitudinal data; see Diggle et al. (2002) and the references
therein. However, the parametric models may be misspecified in practice,
and the misspecification may lead to inconsistent estimates and incorrect
conclusions being drawn. Hence, to circumvent this issue, in recent years,
there has been a large literature on how to relax the parametric assumptions
on longitudinal data models and many nonparametric, and semiparametric
models have thus been investigated; see, for example, Lin and Ying (2001),
He, Zhu and Fung (2002), Fan and Li (2004), Wang, Carroll and Lin (2005),
Lin and Carroll (2006), Wu and Zhang (2006), Li and Hsing (2010), Jiang
and Wang (2011) and Yao and Li (2013).

Suppose that we have a random sample with n subjects from model (1.1).
For the ith subject, i= 1, . . . , n, the response variable Yi(t) and the covari-
ates {Zi(t),Xi(t)} are collected at random time points tij , j = 1, . . . ,mi,
which are distributed in a bounded time interval T according to the prob-
ability density function fT (t). Here mi is the total number of observations
for the ith subject. To accommodate such longitudinal data, model (1.1) is
written in the following framework:

Yi(tij) = Z
⊤
i (tij)β+ η(X⊤

i (tij)θ) + ei(tij)(1.2)

for i = 1, . . . , n and j = 1, . . . ,mi. When mi varies across the subjects, the
longitudinal data set under investigation is unbalanced. Several nonpara-
metric and semiparametric models can be viewed as special cases of model
(1.2). For instance, when β = 0, model (1.2) reduces to the single-index lon-
gitudinal data model [Jiang and Wang (2011), Chen, Gao and Li (2013a)];
when p= 1 and θ = 1, model (1.2) reduces to the partially linear longitudi-
nal data model [Fan and Li (2004)]. To avoid confusion, we let β0 and θ0 be
the true values of the two parameter vectors. For identifiability reasons, θ0
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is assumed to be a unit vector with the first nonzero element being positive.
Furthermore, we allow that there exists certain within-subject correlation
structure for ei(tij), which makes the model assumption more realistic but
the development of estimation methodology more challenging.

To estimate the parameters β0, θ0 as well as the link function η(·) in
model (1.2), we first apply the local linear approximation to the unknown
link function, and then introduce a profile weighted least squares approach
to estimate the two parameter vectors based on the technique of general-
ized estimation equations (GEE). Under some mild conditions, we derive
the asymptotic properties of the developed parametric and nonparametric
estimators in different scenarios. Our framework is flexible in that mi can
either be bounded or tend to infinity. Thus both the dense and sparse lon-
gitudinal data cases can be included. Dense longitudinal data means that
there exists a sequence of positive numbers Mn such that minimi ≥Mn, and
Mn →∞ as n→∞ [see, e.g., Hall, Müller and Wang (2006) and Zhang and
Chen (2007)], whereas sparse longitudinal data means that there exists a
positive constant M∗ such that maximi ≤M∗; see, for example, Yao, Müller
and Wang (2005), Wang, Qian and Carroll (2010). We show that the conver-
gence rates and asymptotic variances of our semiparametric estimators in
the sparse case are substantially different from those in the dense case. Fur-
thermore, we show that the proposed semiparametric GEE (SGEE)-based
estimators are asymptotically more efficient than the profile unweighted least
squares (PULS) estimators, when the weights in the SGEE method are cho-
sen as the inverse of the covariance matrix of the errors. We also introduce
a semiparametric approach to estimate the covariance matrices (or weights)
involved in the SGEE method, which is based on a variance–correlation de-
composition and consists of two steps: first, estimate the conditional variance
function using a robust nonparametric method that accommodates heavy-
tailed errors, and second, estimate the parameters in the correlation matrix.
A simulation study and a real data analysis are provided to illustrate our
methodology and theory.

The rest of the paper is organized as follows. In Section 2, we introduce
the SGEE methodology for estimating β0, θ0 and η(·). Section 3 establishes
the large sample theory for the proposed parametric and nonparametric
estimators and gives some related discussions. Section 4 discusses how to
determine the weight matrices in the estimation equations. Section 5 gives
some numerical examples to investigate the finite sample performance of
the proposed approach. Section 6 concludes the paper. Technical assump-
tions are given in Appendix A. The proofs of the main results are given in
Appendix B. Some auxiliary lemmas and their proofs are provided in the
supplementary material [Chen et al. (2015)].
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2. Estimation methodology. Various semiparametric estimation
approaches have been proposed to estimate model (1.1) in the case of i.i.d. ob-
servations (or weakly dependent time series data). See, for example, Carroll
et al. (1997) and Liang et al. (2010) for the profile likelihood method, Yu
and Ruppert (2002) and Wang et al. (2010) for the “remove-one-component”
technique using penalized spline and local linear smoothing, respectively,
and Xia and Härdle (2006) for the minimum average variance estimation
approach. However, there is limited literature on partially linear single-index
models for longitudinal data because of the more complicated structures in-
volved. Recently, Chen, Gao and Li (2013b) studied a partially linear single-
index longitudinal data model with individual effects. To remove the indi-
vidual effects and derive consistent semiparametric estimators, they had to
limit their discussions to the dense and balanced longitudinal data case. Ma,
Liang and Tsai (2014) considered a partially linear single-index longitudinal
data model by using polynomial splines to approximate the unknown link
function, but their discussion was limited to the sparse and balanced lon-
gitudinal data case. In contrast, as mentioned in Section 1, our framework
includes both the sparse and dense longitudinal data cases. Meanwhile, ob-
servations are allowed to be collected at irregular and subject specific time
points. All this provides much wider applicability of our framework. Further-
more, to improve the efficiency of the semiparametric estimation, we develop
a new profile weighted least squares approach to estimate the parameters
β0, θ0 as well as the link function η0(·).

To simplify the presentation, let

Yi = (Yi(ti1), . . . , Yi(timi
))⊤, Xi = (Xi(ti1), . . . ,Xi(timi

))⊤,

Zi = (Zi(ti1), . . . ,Zi(timi
))⊤, ei = (ei(ti1), . . . , ei(timi

))⊤,

η(Xi,θ) = (η(X⊤
i (ti1)θ), . . . , η(X

⊤
i (timi

)θ))⊤.

With the above notation, model (1.2) can then be re-written as

Yi = Ziβ0 + η(Xi,θ0) + ei.(2.1)

We further let Y = (Y⊤
1 , . . . ,Y

⊤
n )

⊤, Z = (Z⊤
1 , . . . ,Z

⊤
n )

⊤, E = (e⊤1 , . . . ,e
⊤
n )

⊤,
η(X,θ) = (η⊤(X1,θ), . . . ,η

⊤(Xn,θ))
⊤. Then model (2.1) is equivalent to

Y= Zβ0 + η(X,θ0) +E.(2.2)

Our estimation procedure is based on the profile likelihood method, which
is commonly used in semiparametric estimation; see, for example, Carroll
et al. (1997), Fan and Huang (2005) and Fan, Huang and Li (2007). Let
Yij = Yi(tij), Zij = Zi(tij) and Xij = Xi(tij). For given β and θ, we can
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estimate η(·) and its derivative η̇(·) at point u by minimizing the following
loss function:

Ln(a, b|β,θ)
(2.3)

=
n∑

i=1

{
wi

h

mi∑

j=1

[Yij −Z
⊤
ijβ− a− b(X⊤

ijθ− u)]2K

(
X

⊤
ijθ− u

h

)}
,

where K(·) is a kernel function, h is a bandwidth and wi, i= 1, . . . , n, are
some weights. It is well known that the local linear smoothing has advan-
tages over the Nadaraya–Watson kernel method, such as higher asymptotic
efficiency, design adaption and automatic boundary correction [Fan and Gij-
bels (1996)]. Following the existing literature such as Wu and Zhang (2006),
the weights wi can be specified by two schemes: wi = 1/Tn (type 1) and
wi = 1/(nmi) (type 2), where Tn =

∑n
i=1mi. The type 1 weight scheme cor-

responds to an equal weight for each observation, while the type 2 scheme
corresponds to an equal weight within each subject. As discussed in Huang,
Wu and Zhou (2002) and Wu and Zhang (2006), the type 2 scheme may
be appropriate if the number of observations varies across subjects. As the
longitudinal data under investigation in this paper are allowed to be unbal-
anced, we use wi = 1/(nmi), which was also used by Li and Hsing (2010)
and Kim and Zhao (2013). We denote

(η̂(u|β,θ), ̂̇η(u|β,θ))⊤ = argmin
a,b

Ln(a, b|β,θ).(2.4)

By some elementary calculations [see, e.g., Fan and Gijbels (1996)], we have

η̂(u|β,θ) =

n∑

i=1

si(u|θ)(Yi −Ziβ)(2.5)

for given β and θ, where

si(u|θ) = (1,0)

[
n∑

i=1

X
⊤
i (u|θ)Ki(u|θ)Xi(u|θ)

]−1

X
⊤
i (u|θ)Ki(u|θ),

Xi(u|θ) = (Xi1(u|θ), . . . ,Ximi
(u|θ))⊤,

(2.6)
Xij(u|θ) = (1,X⊤

ijθ− u)⊤,

Ki(u|θ) = diag

(
wiK

(
X

⊤
i1θ− u

h

)
, . . . ,wiK

(
X

⊤
imi

θ− u

h

))
.

Based on the profile least squares approach with the first-stage local lin-
ear smoothing, we can construct estimators of the parameters β0 and θ0.
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We start with the PULS method which ignores the possible within-subject
correlation structure. Define the PULS loss function by

Qn0(β,θ) =

n∑

i=1

[Yi −Ziβ− η̂(Xi|β,θ)]
⊤[Yi −Ziβ− η̂(Xi|β,θ)]

(2.7)
= [Y− Zβ− η̂(X|β,θ)]⊤[Y−Zβ− η̂(X|β,θ)],

where, for given β and θ, η̂(Xi|β,θ) and η̂(X|β,θ) are the local linear
estimators of the vectors η(Xi,θ) and η(X,θ), respectively; that is, each
element of η̂(Xi|β,θ) and η̂(X|β,θ) is defined as in (2.5). The PULS esti-
mators of β0 and θ0 are obtained by minimizing the loss function Qn0(β,θ)
with respect to β and θ and normalizing the minimizer θ. We denote the

resulting estimators by β̃ and θ̃, respectively.
Although it is easy to verify that both β̃ and θ̃ are consistent, they are

not efficient as the within-subject correlation structure is not taken into
account. Hence, to improve the efficiency of the parametric estimators, we
next introduce a GEE-based method to estimate the parameters β0 and
θ0. Existing literature on GEE-based method in longitudinal data analysis
includes Liang and Zeger (1986), Xie and Yang (2003) and Wang (2011). Let
W = diag{W1, . . . ,Wn}, where Wi =R

−1
i and Ri is an mi ×mi working

covariance matrix whose estimation will be discussed in Section 4. Define

ρZ(Xi,θ) = (ρZ(X
⊤
i1θ|θ), . . . , ρZ(X

⊤
imi

θ|θ))⊤, ρZ(u|θ) = E[Zij |X
⊤
ijθ = u],

ρX(Xi,θ) = (ρX(X
⊤
i1θ|θ), . . . , ρX(X⊤

imi
θ|θ))⊤, ρX(u|θ) = E[Xij|X

⊤
ijθ = u],

Λi(θ) = (Zi − ρZ(Xi,θ), [η̇(Xi,θ)⊗ 1
⊤
p ]⊙ [Xi − ρX(Xi,θ)]),

where η̇(Xi,θ) is a column vector with its elements being the derivatives of

η(·) at points X⊤
ijθ, j = 1, . . . ,mi, 1p is a p-dimensional vector of ones, ⊗

is the Kronecker product and ⊙ denotes the componentwise product. The
construction of the parametric estimators is based on solving the following
equation with respect to β and θ:

n∑

i=1

Λ̂
⊤

i (θ)Wi[Yi −Ziβ− η̂(Xi|β,θ)] = 0,(2.8)

where Λ̂i(θ) is an estimator of Λi(θ) with ρZ(Xi,θ), ρX(Xi,θ) and η̇(Xi,θ)

replaced by their corresponding local linear estimated values. Let β̂ and θ̂1

be the solutions to the estimation equations in (2.8), and let the SGEE-based

estimator of θ0 be defined as θ̂ = θ̂1/‖θ̂1‖, where ‖ · ‖ is the Euclidean
norm. Note that the solutions to the equations in (2.8) generally do not
have a closed form. In the numerical studies, we use the trust-region dogleg
algorithm within the Matlab command “fsolve” to obtain the solutions to
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(2.8). Corollary 1 below shows that the SGEE-based estimators β̂ and θ̂ are

generally asymptotically more efficient than the PULS estimators β̃ and θ̃,
when the weights are chosen appropriately.

Replacing β and θ in η̂(·) by β̂ and θ̂, respectively, we obtain the local
linear estimator of the link function η(·) at u as

η̂(u) = η̂(u|β̂, θ̂) =

n∑

i=1

si(u|θ̂)(Yi −Ziβ̂).(2.9)

In Section 3 below, we will give the large sample properties of the esti-
mators proposed above, and in Section 4, we will discuss how to choose the
working covariance matrix Ri.

3. Theoretical properties. Before establishing the large sample theory
for the proposed parametric and nonparametric estimators, we introduce
some notation. Let B0 be a p× (p− 1) matrix such that M= (θ0,B0) is a
p× p orthogonal matrix, and define

I(B0) =

(
Id Od×(p−1)

Op×d B0

)
,

where Ik is a k × k identity matrix and Ok×l is a k × l null matrix. Let
Λi =Λi(θ0), and assume that there exist two positive semi-definite matrices
Ω0 and Ω1 as well as a sequence of numbers ωn such that ωn →∞,

1

ωn

n∑

i=1

Λ
⊤
i WiΛi

P
→Ω0,(3.1)

1

ωn

n∑

i=1

E[Λ⊤
i Wieie

⊤
i WiΛi]→Ω1,(3.2)

max
1≤i≤n

E[Λ⊤
i Wieie

⊤
i WiΛi] = o(ωn),(3.3)

as n → ∞, and I
⊤(B0)Ω0I(B0) is positive definite. Conditions (3.2) and

(3.3) ensure that the Lindeberg–Feller condition can be satisfied, and thus
the classical central limit theorem for independent sequence [Petrov (1995)]
is applicable. It is not difficult to verify the assumption in (3.3) for the dense
and sparse longitudinal data. In particular, (3.3) excludes the case where
the term Λ

⊤
i Wiei from one or a few subjects dominates those from the

others. For the latter case, it may be possible to derive the consistency of the
proposed parametric estimation, but the proof of the asymptotic normality
would be difficult. Let Ω

+
0 be the Moore–Penrose inverse matrix of Ω0,

which is defined as Ω+
0 = I(B0)[I

⊤(B0)Ω0I(B0)]
−1

I
⊤(B0). We next give the

asymptotic distribution theory for the SGEE-based estimators β̂ and θ̂.
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Theorem 1. Suppose that Assumptions 1–5 in Appendix A and (3.1)–
(3.3) are satisfied. Then we have

ω1/2
n

(
β̂− β0

θ̂− θ0

)
d

−→N(0,Ω+
0 Ω1Ω

+
0 )(3.4)

as n→∞.

Remark 1. Theorem 1 establishes the asymptotically normal distribu-

tion theory for β̂ and θ̂ with convergence rate ω
1/2
n . This ωn is linked to h

through n in a certain way. Specifically, the condition ωnh
6 → 0 in Assump-

tion 5 needs to be satisfied to ensure that the bias term of the parametric
estimation is asymptotically negligible. The specific forms of ωn, Ω0 and
Ω1 can be derived for some particular cases, for instance, when longitudinal
data are balanced, that is, mi ≡m, ωn = nm. Furthermore, assume that the
covariates and the error are i.i.d. with E[e2i (tij)]≡ σ2

e , ei(tij) is independent
of the covariates and Wi, i = 1, . . . , n, are m×m identity matrices. Then
we can show that

Ω0 =

(
Ω0(1) Ω0(2)

Ω⊤
0 (2) Ω0(3)

)
and Ω1 = σ2

e

(
Ω0(1) Ω0(2)

Ω⊤
0 (2) Ω0(3)

)
,

where

Ω0(1) = E{[Z(t)− ρZ(X
⊤(t)θ0|θ0)][Z(t)− ρZ(X

⊤(t)θ0|θ0)]
⊤},

Ω0(2) = E{η̇(X⊤(t)θ0)[Z(t)− ρZ(X
⊤(t)θ0|θ0)][X(t)− ρX(X

⊤(t)θ0|θ0)]
⊤},

Ω0(3) = E{[η̇(X⊤(t)θ0)]
2[X(t)− ρX(X⊤(t)θ0|θ0)][X(t)− ρX(X⊤(t)θ0|θ0)]

⊤}.

Hence Ω
+
0 Ω1Ω

+
0 reduces to σ2

eΩ
+
0 .

In Theorem 1 above, we only require n→∞. As mentioned in Section 1,
both the sparse and dense longitudinal data cases can be included in a unified
framework. For the sparse longitudinal data case when mi is bounded by a
certain positive constant, we can take ωn = n and prove that (3.4) holds. For
the dense longitudinal data case where minimi ≥Mn with Mn →∞, under
some regularity conditions we may prove (3.4) with wn =

∑n
i=1mi. As more

observations are available in the dense longitudinal data case and the order
for the total number of the observations is higher than n, the convergence
rate for the parametric estimators is faster than the well-known root-n rate
in the sparse longitudinal data case.

Using Theorem 1, we can obtain the following corollary.

Corollary 1. Suppose that the weights Wi in (2.8) are chosen as
the inverse of the conditional covariance matrix of ei, and the conditions
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of Theorem 1 are satisfied. Then the SGEE-based estimators β̂ and θ̂ are
asymptotically more efficient than the PULS estimators β̃ and θ̃ defined in
Section 2.

Remark 2. In the proof of the above corollary, we show that the asymp-

totic covariance matrix of the PULS estimators β̃ and θ̃ (after appropriate

normalization) minus that of the SGEE-based estimators β̂ and θ̂ is positive
semi-definite, although the two estimation methods have the same conver-
gence rates. That is, under the conditions assumed in Theorem 1, the limit
matrix of ωn[Var(β̃, θ̃)−Var(β̂, θ̂)] is positive semi-definite. For the case of
independent observations, a recent paper by Luo, Li and Yin (2014) dis-
cussed the efficient bound for the semiparametric estimation in single-index
models. Following their idea, we conjecture that modification of our esti-
mation procedure may be needed to obtain the efficient estimation in the
partially linear single-index longitudinal data models. We will study this
issue in our future research.

To establish the asymptotic distribution theory for the nonparametric
estimator η̂(u) under a unified framework, we assume that there exist a
sequence ϕn(h) and a constant 0< σ2

∗ <∞ such that

ϕn(h) = o(ωn), ϕn(h) max
1≤i≤n

E[si(u|θ0)eie
⊤
i s

⊤
i (u|θ0)] = o(1)(3.5)

and

ϕn(h)
n∑

i=1

E[si(u|θ0)eie
⊤
i s

⊤
i (u|θ0)]→ σ2

∗ .(3.6)

The first restriction in (3.5) is imposed to ensure that the parametric con-
vergence rates are faster than the nonparametric convergence rates, and
the second restriction in (3.5) and the condition in (3.6) are imposed for
the derivation of the asymptotic variance of the local linear estimator η̂(u)
and the satisfaction of the Lindeberg–Feller condition. The specific forms of
ϕn(h) and σ2

∗ will be discussed in Remark 3 below. Let µj =
∫
vjK(v)dv for

j = 0,1,2 and η̈0(·) be the second-order derivative of η0(·).

Theorem 2. Suppose that the conditions of Theorem 1, (3.5) and (3.6)
are satisfied. Then we have

ϕ1/2
n (h)[η̂(u)− η0(u)− bη(u)h

2]
d

−→N(0, σ2
∗),(3.7)

where bη(u) = η̈0(u)µ2/2.
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Remark 3. Theorem 2 provides the asymptotically normal distribu-
tion theory for the nonparametric estimator η̂(u) with a convergence rate

OP (ϕ
−1/2
n (h)+h2). The forms of ϕn(h) and σ2

∗ in Theorem 2 depend on the
type of the longitudinal data under study, that is, whether it is sparse or
dense. We can derive their specific forms for some particular cases. Consider,
for example, the case where ei(tij) = vi + εij , in which εij are i.i.d. across

both i and j with E[εij ] = 0 and E[ε2ij ] = σ2
ε , and {vi} is an i.i.d. sequence of

random variables with E[vi] = 0 and E[v2i ] = σ2
v and is independent of {εij}.

In this case, we note that

E

{[
mi∑

j=1

K

(
X

⊤
ijθ0 − u

h

)
eij

]2}

=E

{[
mi∑

j=1

K

(
X

⊤
ijθ0 − u

h

)
(vi + εij)

]2}

=

mi∑

j=1

E

[
K2

(
X⊤

ijθ0 − u

h

)
(vi + εij)

2

]

+
∑

j1 6=j2

E

[
K

(
X

⊤
ij1

θ0 − u

h

)
K

(
X

⊤
ij2

θ0 − u

h

)
(vi + εij1)(vi + εij2)

]

∼mihν0fθ0(u)(σ
2
v + σ2

ε) +mi(mi − 1)h2µ2
0f

2
θ0
(u)σ2

v ,

where ν0 =
∫
K2(v)dv and fθ0(·) is the probability density function ofX⊤

ijθ0.

For the sparse longitudinal data case, mi(mi − 1)h2µ2
0f

2
θ0
(u)σ2

v is dom-

inated by mihν0fθ0(u)(σ
2
v + σ2

ε), as mi is bounded and h → 0. Then, by
Lemma 1 in the supplementary document [Chen et al. (2015)] and some
elementary calculations, we can prove that

n∑

i=1

E[si(u|θ0)eie
⊤
i s

⊤
i (u|θ0)]∼

1

(nh)2

n∑

i=1

mihν0(σ
2
v + σ2

ε)

m2
i fθ0(u)

(3.8)

∼
ν0(σ

2
v + σ2

ε)

n2hfθ0(u)

n∑

i=1

1

mi
.

Hence, in this case, we can take ϕn(h) = (n2h)(
∑n

i=1 1/mi)
−1 which has the

same order as nh, and σ2
∗ = ν0(σ

2
v + σ2

ε)/fθ0(u). This result is similar to
Theorem 1(i) in Kim and Zhao (2013).

For the dense longitudinal data case, mihν0fθ0(u)(σ
2
v + σ2

ε) is dominated
by mi(mi − 1)h2µ2

0f
2
θ0
(u)σ2

v if we assume that mih → ∞. Then, again by
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Lemma 1 in the supplementary material [Chen et al. (2015)], we can prove
that

n∑

i=1

E[si(u|θ0)eie
⊤
i s

⊤
i (u|θ0)]∼

1

(nh)2

n∑

i=1

mi(mi − 1)h2µ2
0σ

2
v

m2
i

∼
µ2
0σ

2
v

n
.

Hence, in this case, we can take ϕn(h) = n and σ2
∗ = µ2

0σ
2
v , which are analo-

gous to those in Theorem 1(ii) of Kim and Zhao (2013) and quite different
from those in the sparse longitudinal data case.

4. Estimation of covariance matrices. Estimation of the weight or work-
ing covariance matrices, which are involved in the SGEE (2.8), is critical to
improving the efficiency of the proposed semiparametric estimators. How-
ever, the unbalanced longitudinal data structure, which can be either sparse
or dense, makes such covariance matrix estimation very challenging, and
some existing estimation methods based on balanced data [such as Wang
(2011)] cannot be directly used here. In this section, we introduce a semipara-
metric estimation approach that is applicable to both sparse and dense un-
balanced longitudinal data. This approach is based on a variance–correlation
decomposition, and the estimation of the working covariance matrices then
consists of two steps: first, estimate the conditional variance function us-
ing a robust nonparametric method that accommodates heavy-tailed errors,
and second, estimate the parameters in the correlation matrix. For recent
developments on the study of the covariance structure in longitudinal data
analysis, we refer to Fan and Wu (2008), Zhang, Leng and Tang (2015) and
the references therein.

For each 1≤ i≤ n, let Ri be the covariance matrix of ei and

Σi = diag{σ2(ti1), . . . , σ
2(timi

)}

with σ2(tij) = E[e2i (tij)|tij ] = E[e2i (tij)|tij ,Xi(tij),Zi(tij)] for j = 1, . . . ,mi,
and Ci be the correlation matrix of ei. Assume that there exists a q-
dimensional parameter vector φ such that Ci = Ci(φ) where Ci(·), 1 ≤
i≤ n, are pre-specified. By the variance–correlation decomposition, we have

Ri =Σ
1/2
i Ci(φ)Σ

1/2
i .(4.1)

The above semiparametric covariance structure has been studied in some of
the existing literature [see, e.g., Fan, Huang and Li (2007) and Fan and Wu
(2008)] and provides a flexible framework to capture the error covariance
structure, especially when the dimension of φ is large. For example, it is
satisfied when ei(tij) has the AR(1) or ARMA(1,1) dependence structure
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for each i; see, for example, the simulated example in Section 5.1. When

ei(tij) = σ(tij)(vi + εij) in which vi and εij satisfy the conditions discussed
in Remark 3 and σ2

ε + σ2
v = 1, we can also show that the semiparametric

covariance structure is satisfied with φ being σ2
ε or σ2

v . Some existing pa-
pers such as Wu and Pourahmadi (2003) suggest the use of a nonparametric
smoothing method to estimate the covariance matrix. However, they usually
need to assume that the longitudinal data are balanced or nearly balanced,
which would be violated when the data are collected at irregular and possi-
bly subject-specific time points. Yao, Müller and Wang (2005) proposed the
approach of functional data analysis to estimate the covariance structure
for sparse and irregularly-spaced longitudinal data. However, some substan-
tial modification may be needed to extend the method of Yao, Müller and
Wang (2005) to our framework, which includes both the sparse and dense
longitudinal data.

In the present paper, we first estimate the conditional variance function
σ2(·) in the diagonal matrix Σi by using a nonparametric method. In recent
years, there has been a rich literature on the study of nonparametric con-
ditional variance estimation; see, for example, Fan and Yao (1998), Yu and
Jones (2004), Fan, Huang and Li (2007) and Leng and Tang (2011). However,
when the errors are heavy-tailed, which is not uncommon in economic and
financial data analysis, most of these existing methods may not perform
well. This motivates us to devise an estimation method that is robust to
heavy-tailed errors. Let r(tij) = [Yij −Z

⊤
ijβ0 − η(X⊤

ijθ0)]
2. We can then find

a random variable ξ(tij) so that r(tij) = σ2(tij)ξ
2(tij) and E[ξ2(tij)|tij ] = 1

with probability one. By applying the log-transformation [see Peng and Yao
(2003) and Chen, Cheng and Peng (2009) for the application of this trans-
formation in time series analysis] to r(tij), we have

log r(tij) = log[τσ2(tij)] + log[τ−1ξ2(tij)]≡ σ2
⋄(tij) + ξ⋄(tij),(4.2)

where τ is a positive constant such that E[ξ⋄(tij)] = E{log[τ−1ξ2(tij)]}= 0.
Here, ξ⋄(tij) could be viewed as an error term in model (4.2). As rij ≡ r(tij)
are unobservable, we replace them with

r̂ij = [Yij −Z
⊤
ijβ̃− η̂(X⊤

ij θ̃|β̃, θ̃)]
2,

where β̃ and θ̃ are the PULS estimators of β0 and θ0, respectively. In order
to estimate σ2

⋄(t), we define

L̃n(a, b) =

n∑

i=1

{
wi

h1

mi∑

j=1

[log(r̂ij + ζn)− a− b(tij − t)]2K1

(
tij − t

h1

)}
,(4.3)

where K1(·) is a kernel function, h1 is a bandwidth satisfying Assumption 9
in Appendix A, wi = 1/(nmi) as in Section 2 and ζn → 0 as n→∞. Through-
out this paper, we set ζn = 1/Tn, where Tn =

∑n
i=1mi. The ζn is added in
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log(r̂ij + ζn) to avoid the occurrence of invalid log 0 as ζn > 0 for any n.
Such a modification would not affect the asymptotic distribution of the con-
ditional variance estimation under certain mild restrictions. Then σ2

⋄(t) can
be estimated as

σ̂2
⋄(t) = â where (â, b̂)⊤ = argmin

a,b
L̃n(a, b).(4.4)

On the other hand, noting that
exp{σ2

⋄(tij )}
τ ξ2(tij) = rij and E[ξ2(tij)] = 1,

the constant τ can be estimated by

τ̂ =

[
1

Tn

n∑

i=1

mi∑

j=1

r̂ij exp{−σ̂2
⋄(tij)}

]−1

.(4.5)

We then estimate σ2(t) by

σ̂2(t) =
exp{σ̂2

⋄(t)}

τ̂
.(4.6)

It is easy to see that thus defined estimator σ̂2(t) is always positive.
Suppose that there exists a sequence ϕn⋄(h1) which depends on h1, and

a constant 0< σ2
⋄ <∞ such that

ϕn⋄(h1) = o(ωn),
(4.7)

ϕn⋄(h1)

h21
max
1≤i≤n

w2
iE

[
mi∑

j=1

ξ⋄(tij)K1

(
tij − t

h1

)]2
= o(1)

and

ϕn⋄(h1)

fT (t)h21
E

[
n∑

i=1

wi

mi∑

j=1

ξ⋄(tij)K1

(
tij − t

h1

)]2
→ σ2

⋄ ,(4.8)

which are similar to those in (3.5) and (3.6), where fT (·) is the density
function of the observation times tij . Define

bσ1(t) =
exp{σ2

⋄(t)}

2τ
σ̈2
⋄(t)

∫
v2K1(v)dv,

bσ2(t) =
exp{σ2

⋄(t)}

2τ
E[σ̈2

⋄(tij)]

∫
v2K1(v)dv,

where σ̈2
⋄(·) is the second-order derivative of σ2

⋄(·). We then establish the
asymptotic distribution of σ̂2(t) in the following theorem, whose proof is
given in the supplementary material [Chen et al. (2015)].
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Theorem 3. Suppose the conditions in Theorems 1 and 2, Assump-
tions 6–9 in Appendix A, (4.7) and (4.8) are satisfied. Then we have

ϕ
1/2
n⋄ (h1){σ̂

2(t)− σ2(t)− [bσ1(t)− bσ2(t)]h
2
1}

d
−→N

(
0,

σ4(t)

fT (t)
σ2
⋄

)
.(4.9)

Remark 4. Theorem 3 can be seen as an extension of Theorem 1 in
Chen, Cheng and Peng (2009) from the time series case to the longitudinal
data case. The longitudinal data framework in this paper is more flexible
and includes both sparse and dense data types. If ξ⋄(tij) = v⋄i +ε⋄ij , where ε

⋄
ij

are i.i.d. across both i and j with E[ε⋄ij ] = 0 and E[(ε⋄ij)
2]<∞, and {v⋄i } is

an i.i.d. sequence of random variables with E[v⋄i ] = 0 and E[(v⋄i )
2]<∞ and

is independent of {ε⋄ij}, following the discussion in Remark 3, we can again

show that the form of ϕn⋄(h1) depends on the type of the longitudinal data,
and thus the nonparametric conditional variance estimation has different
convergence rates for sparse and dense data.

We next discuss how to obtain the optimal value of the parameter vec-

tor φ. Construct the residuals ẽi =Yi − Ziβ̃ − η̃(Xi, θ̃), where η̃(Xi, θ̃) is
defined in the same way as η(Xi,θ) but with η(·) and θ replaced by η̃(·)≡

η̂(·|β̃, θ̃) and θ̃, respectively. Let Λ̃i ≡ Λ̂i(θ̃), Σ̂i = diag{σ̂2(ti1), . . . , σ̂
2(timi

)},

and define R∗
i (φ) = Σ̂

1/2

i Ci(φ)Σ̂
1/2

i . Motivated by equations (3.1) and (3.2),
we construct

Ω
∗
0(φ) =

n∑

i=1

Λ̃
⊤

i [R
∗
i (φ)]

−1
Λ̃i(4.10)

and

Ω
∗
1(φ) =

n∑

i=1

Λ̃
⊤

i [R
∗
i (φ)]

−1
ẽiẽ

⊤
i [R

∗
i (φ)]

−1
Λ̃i.(4.11)

By Theorem 1, the sandwich formula estimate [Ω∗
0(φ)]

+
Ω

∗
1(φ)[Ω

∗
0(φ)]

+ is
asymptotically proportional to the asymptotic covariance of the proposed
SGEE estimators when the inverse of R∗

i (φ) is chosen as the weight matrix.

The optimal value of φ, denoted by φ̂, can be chosen to minimize the de-
terminant |[Ω∗

0(φ)]
+
Ω

∗
1(φ)[Ω

∗
0(φ)]

+|. Such a method is called the minimum
generalized variance method [Fan, Huang and Li (2007)]. With the chosen

φ̂, we can estimate the covariance matrices by

Ri(φ̂) = Σ̂
1/2

i Ci(φ̂)Σ̂
1/2

i ,(4.12)

whose inverse will be used as the weight matrices in the SGEE method.
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5. Numerical studies. In this section, we first study the finite sample
performance of the proposed SGEE estimators through Monte Carlo sim-
ulation, and then give an empirical application of the proposed model and
methodology.

5.1. Simulation studies. We investigate both sparse and dense longitu-
dinal data cases with an average time dimension m of 10 for the sparse
data and 30 for the dense data. We use two types of within-subject cor-
relation structure, AR(1) and ARMA(1,1), in the error terms ei(tij). We
investigate the finite sample performance of the proposed estimators under
both correct specification and misspecification of the correlation structure in
the construction of the covariance matrix estimator proposed in Section 4.
For the misspecified case, we fit an AR(1) correlation structure while the
true underlying structure is ARMA(1,1) and examine the robustness of the
estimators.

Simulated data are generated from model (1.2) with two-dimensional
Zi(tij) and three-dimensional Xi(tij), and

β0 = (2,1)⊤, θ0 = (2,1,2)⊤/3 and η(u) = 0.5exp(u).

The covariates (Z⊤
i (tij),X

⊤
i (tij))

⊤ are generated independently from a five-
dimensional Gaussian distribution with mean 0, variance 1 and pairwise
correlation 0.1. The observation times tij are generated in the same way
as in Fan, Huang and Li (2007): for each subject, {0,1,2, . . . , T} is a set of
scheduled times, and each scheduled time from 1 to T has a 0.2 probability
of being skipped; each actual observation time is a perturbation of a non-
skipped scheduled time; that is, a uniform [0,1] random number is added to
the nonskipped scheduled time. Here T is set to be 12 or 36, which corre-
sponds to an average time dimension of m= 10 or m= 30, respectively. For
each i, the error terms ei(tij) are generated from a Gaussian process with
mean 0, variance function

var[e(t)] = σ2(t) = 0.25exp(t/12)(5.1)

and serial correlation structure

cor(e(t), e(s)) =

{
1, t= s,

γρ|t−s|, t 6= s.
(5.2)

Note that (5.2) corresponds to an ARMA(1,1) correlation structure and
reduces to an AR(1) correlation structure when γ = 1. The number of sub-
jects, n, is taken to be 30 or 50. The values for γ and ρ are (γ, ρ) = (0.85,0.9)
in the ARMA(1,1) correlation structure and (γ, ρ) = (1,0.9) in the AR(1)
structure.

For each combination of m, n, and the correlation structure, the number
of simulation replications is 200. For the selection of the bandwidth, however,
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Table 1

Performance of parameter estimation methods under correct specification of an
underlying AR(1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS 0.0048 0.0402 0.0288 −0.0030 0.0308 0.0195
SGEE −0.0026 0.0508 0.0081 −0.0016 0.0259 0.0074

β2 PULS −0.0024 0.0409 0.0243 0.0049 0.0267 0.0180
SGEE −0.0018 0.0298 0.0110 0.0033 0.0310 0.0077

θ1 PULS −0.0049 0.0299 0.0180 −0.0009 0.0197 0.0134
SGEE −0.0013 0.0164 0.0083 −0.0002 0.0118 0.0046

θ2 PULS 0.0011 0.0380 0.0229 −0.0016 0.0237 0.0161
SGEE 0.0026 0.0188 0.0100 0.0006 0.0108 0.0067

θ3 PULS 0.0018 0.0314 0.0188 0.0006 0.0203 0.0147
SGEE −0.0007 0.0182 0.0090 −0.0004 0.0088 0.0052

30 β1 PULS 0.0003 0.0408 0.0277 0.0016 0.0328 0.0222
SGEE −0.0081 0.1134 0.0106 0.0007 0.0108 0.0083

β2 PULS −0.0020 0.0425 0.0317 0.0005 0.0351 0.0202
SGEE −0.0017 0.0420 0.0096 −0.0064 0.0152 0.0079

θ1 PULS 0.0020 0.0315 0.0213 −0.0020 0.0244 0.0182

SGEE −0.0008 0.0247 0.0075 0.0001 0.0148 0.0064

θ2 PULS −0.0035 0.0340 0.0240 −0.0083 0.0278 0.0163
SGEE −0.0027 0.0242 0.0090 −0.0013 0.0104 0.0066

θ3 PULS −0.0027 0.0321 0.0185 0.0045 0.0267 0.0169
SGEE 0.0009 0.0230 0.0074 0.0001 0.0162 0.0068

due to the running time limitation, we first run a leave-one-unit-out (i.e.,
leave out observations from one subject at a time) cross-validation (CV) to
choose the optimal bandwidths from 20 replications. We then use the aver-
age of the optimal bandwidths from these 20 replications as the bandwidth
in the 200 replications of the simulation study. For the SGEE method, we
choose the weight matrix as the inverse of the estimated within-subject co-
variance matrix as constructed in (4.12) of Section 4. We first study the
performance of the proposed estimators in the case where the correlation
structure in the estimation of the covariance matrix is correctly specified,
and then investigate the robustness of the estimators to the misspecifica-
tion of the correlation structure. The bias, calculated as the average of the
estimates from the 200 replications minus the true parameter values, the
standard deviation (SD), calculated as the sample standard deviation of the
200 estimates and the median absolute deviation (MAD), calculated as the
median absolute deviation of the 200 estimates are reported in Tables 1
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Table 2

Performance of parameter estimation methods under correct specification of an
underlying ARMA(1,1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS −0.0029 0.0400 0.0280 0.0006 0.0322 0.0221
SGEE −0.0025 0.0244 0.0155 0.0000 0.0193 0.0124

β2 PULS 0.0032 0.0386 0.0282 −0.0045 0.0299 0.0205
SGEE 0.0009 0.0249 0.0171 0.0001 0.0212 0.0126

θ1 PULS −0.0004 0.0267 0.0181 −0.0003 0.0188 0.0126
SGEE −0.0002 0.0161 0.0104 0.0006 0.0146 0.0073

θ2 PULS −0.0047 0.0343 0.0209 0.0005 0.0223 0.0156
SGEE −0.0031 0.0192 0.0113 −0.0002 0.0145 0.0087

θ3 PULS 0.0008 0.0253 0.0158 −0.0009 0.0201 0.0121
SGEE 0.0011 0.0148 0.0102 −0.0009 0.0146 0.0074

30 β1 PULS −0.0026 0.0450 0.0296 −0.0016 0.0374 0.0273
SGEE 0.0005 0.0214 0.0138 0.0015 0.0288 0.0105

β2 PULS −0.0013 0.0461 0.0291 0.0035 0.0361 0.0252
SGEE 0.0040 0.0335 0.0147 0.0014 0.0152 0.0104

θ1 PULS −0.0014 0.0296 0.0192 −0.0010 0.0207 0.0159
SGEE −0.0005 0.0166 0.0095 0.0006 0.0092 0.0063

θ2 PULS −0.0050 0.0355 0.0231 0.0011 0.0229 0.0173
SGEE −0.0037 0.0371 0.0120 −0.0003 0.0116 0.0072

θ3 PULS 0.0017 0.0279 0.0186 −0.0006 0.0215 0.0154
SGEE 0.0009 0.0181 0.0095 −0.0007 0.0100 0.0070

and 2. Table 1 gives the results obtained under the correct specification of
an underlying within-subject AR(1) correlation structure in ei(tij), and Ta-
ble 2 gives those obtained under the correct specification of an underlying
ARMA(1,1) structure in ei(tij). For comparison, we also report the results
from the PULS estimation. The results in Tables 1 and 2 show that the
SGEE estimates are comparable with the PULS estimates in terms of bias
and are more efficient than the PULS estimates, which supports the asymp-
totic theory developed in Section 3. In Figures 1 and 2, we plot the local
linear estimated link function from a typical realization together with the
real curve for each combination of n and m.

To investigate the robustness of the SGEE and PULS estimators to cor-
relation structure misspecification, we also carry out a simulation study in
which an AR(1) correlation structure is used in the covariance matrix esti-
mation detailed in Section 4, when the true underlying correlation structure
is ARMA(1,1). Table 3 reports the results under this misspecification. The
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(a) (b)

(c) (d)

Fig. 1. Estimated link function (dot-dashed line), together with the true link function
(solid line), from a typical realization of model (1.2) with AR(1) correlation structure for
each combination of n and m: (a) n= 30, m= 10; (b) n= 50, m= 10; (c) n= 30, m= 30;
(d) n= 50, m= 30.

table shows that in the presence of correlation structure misspecification,
SGEE still produces more efficient parameter estimates than PULS.

We also include a simulated example where the covariates in Z follow
discrete distributions. The same model as above is used except that the
covariates X⊤

i (tij) are drawn independently from a three-dimensional Gaus-
sian distribution with mean 0, variance 1 and pairwise correlation 0.1, and
Z
⊤
i (tij) are independently drawn from a binomial distribution with success

probability 0.5. The errors ei(tij) are generated with the AR(1) serial corre-
lation structure of (γ, ρ) = (1,0.9). The simulation results for this example
are presented in Table 4. The same finding as above can be obtained. Some
additional results, that is, those on the average angles between the estimated
and the true parameter vectors, are given in Appendix D of the supplemen-
tary material [Chen et al. (2015)].

5.2. Real data analysis. We next illustrate the partially linear single-
index model and the proposed SGEE estimation method through an empir-
ical example which explores the relationship between lung function and air
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(a) (b)

(c) (d)

Fig. 2. Estimated link function (dot-dashed line), together with the true link function
(solid line), from a typical realization of model (1.2) with ARMA(1,1) correlation structure
for each combination of n and m: (a) n = 30, m = 10; (b) n = 50, m = 10; (c) n = 30,
m= 30; (d) n= 50, m= 30.

pollution. There is voluminous literature studying the effects of air pollu-
tion on people’s health. For a review of the literature, the reader is referred
to Pope, Bates and Raizenne (1995). Many studies have found association
between air pollution and health problems such as increased respiratory
symptoms, decreased lung function, increased hospitalizations or hospital
visits for respiratory and cardiovascular diseases and increased respiratory
morbidity [Dockery et al. (1989), Kinney et al. (1989), Pope (1991), Braun-
Fahrländer et al. (1992), Lipfert and Hammerstrom (1992)]. While earlier
research often used time series or cross-sectional data to evaluate the health
effects of air pollution, recent advances in longitudinal data analysis tech-
niques offer greater opportunities for studying this problem. In this paper,
we will examine whether air pollution has a significant adverse effect on
lung function, and, if so, to what extent. The use of the partially linear
single-index model and the SGEE method would provide greater modeling
flexibility than linear models and allow the within-subject correlation to be
adequately taken into account. We will use a longitudinal data set obtained
from a study where a total of 971 4th-grade children aged between 8 and 14
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Table 3

Performance of parameter estimation methods under misspecification of an underlying
ARMA(1,1) correlation structure

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS 0.0072 0.0410 0.0357 −0.0038 0.0299 0.0201
SGEE −0.0054 0.0261 0.0210 −0.0055 0.0211 0.0147

β2 PULS 0.0068 0.0336 0.0256 0.0037 0.0290 0.0163
SGEE 0.0025 0.0267 0.0157 0.0023 0.0190 0.0136

θ1 PULS 0.0037 0.0166 0.0114 0.0061 0.0157 0.0096
SGEE 0.0033 0.0144 0.0122 0.0016 0.0163 0.0081

θ2 PULS −0.0092 0.0303 0.0184 −0.0084 0.0224 0.0174
SGEE −0.0007 0.0198 0.0144 −0.0045 0.0203 0.0130

θ3 PULS −0.0005 0.0229 0.0158 −0.0028 0.0160 0.0111
SGEE −0.0035 0.0141 0.0094 0.0000 0.0134 0.0092

30 β1 PULS 0.0066 0.0403 0.0259 −0.0221 0.0502 0.0252
SGEE 0.0093 0.0144 0.0087 0.0001 0.0165 0.0118

β2 PULS −0.0138 0.0435 0.0353 0.0107 0.0312 0.0233
SGEE −0.0017 0.0268 0.0096 0.0035 0.0170 0.0096

θ1 PULS 0.0027 0.0252 0.0165 0.0020 0.0181 0.0067
SGEE 0.0054 0.0136 0.0078 0.0019 0.0096 0.0098

θ2 PULS −0.0063 0.0265 0.0245 0.0021 0.0315 0.0273
SGEE 0.0009 0.0198 0.0118 0.0046 0.0136 0.0094

θ3 PULS −0.0011 0.0285 0.0258 −0.0042 0.0217 0.0136
SGEE −0.0065 0.0178 0.0137 −0.0046 0.0120 0.0084

years (at their first visit to the hospital/clinic) were followed over 10 years.
For each yearly visit of the children to the hospital/clinic, records on their
forced expiratory volume (FEV), asthma symptom at visit (ASSPM, 1 for
those with symptoms and 0 for those without), asthmatic status (ASS, 1 for
asthma patient and 0 for nonasthma patient), gender (G, 1 for males and
0 for females), race (R, 1 for nonwhites and 0 for whites), age (A), height
(H), BMI and respiratory infection at visit (RINF, 1 for those with infection
and 0 for those without) were taken. Together with the measurements from
the children, the mean levels of ozone and NO2 in the month prior to the
visit were also recorded. Due to dropout or other reasons, the majority of
children had 4 to 5 years of records, and the total number of observations
in the data set is 3809.

As in many other studies, the FEV will be used as a measure of lung
function, and its log-transformed values, log(FEV), will be used as the re-
sponse values in our model. Our main interest is to determine whether higher
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Table 4

Performance of parameter estimation methods under correct specification of an
underlying AR(1) correlation structure when the covariates in Z are discrete

n 30 50

m Parameters Methods Bias SD MAD Bias SD MAD

10 β1 PULS 0.0215 0.0530 0.0404 0.0018 0.0646 0.0472
SGEE 0.0228 0.0511 0.0208 0.0037 0.0298 0.0138

β2 PULS −0.0309 0.0858 0.0735 0.0193 0.0526 0.0498
SGEE 0.0024 0.0313 0.0193 0.0074 0.0339 0.0274

θ1 PULS −0.0012 0.0185 0.0090 −0.0116 0.0201 0.0175
SGEE −0.0060 0.0157 0.0082 0.0020 0.0086 0.0066

θ2 PULS −0.0020 0.0263 0.0232 0.0138 0.0229 0.0172
SGEE 0.0122 0.0241 0.0143 −0.0004 0.0087 0.0063

θ3 PULS 0.0012 0.0206 0.0075 0.0036 0.0153 0.0132
SGEE −0.0008 0.0078 0.0048 −0.0020 0.0070 0.0034

30 β1 PULS 0.0075 0.0427 0.0222 0.0108 0.0723 0.0513
SGEE 0.0061 0.0284 0.0233 0.0033 0.0226 0.0175

β2 PULS −0.0143 0.0768 0.0401 0.0023 0.0681 0.0417
SGEE 0.0116 0.0275 0.0125 −0.0039 0.0259 0.0196

θ1 PULS −0.0159 0.0310 0.0252 0.0031 0.0218 0.0168
SGEE −0.0030 0.0083 0.0045 0.0015 0.0098 0.0064

θ2 PULS −0.0026 0.0192 0.0112 0.0048 0.0252 0.0200
SGEE 0.0040 0.0200 0.0133 0.0002 0.0115 0.0084

θ3 PULS 0.0151 0.0331 0.0308 −0.0067 0.0228 0.0150
SGEE 0.0006 0.0133 0.0083 −0.0018 0.0103 0.0064

levels of ozone and NO2 would lead to decrements in lung function. To
account for the effects of other confounding factors, we include all other
recorded variables. As age and height exhibit strong co-linearity (with a
correlation of 0.78), we will only use height in the study. In fitting the par-
tially linear single-index model to the data, all the continuous variables (i.e.,
FEV, H, BMI, OZONE and NO2) are log-transformed, and the log(BMI),
log(OZONE) and log(NO2) are included in the single-index part. The log(H)
and all the binary variables are included in the linear part of the model.

The scatter plots of the response variable against the continuous regres-
sors are shown in Figure 3, and the box plots of the response against the
binary regressors are given in Figure 4. We use an ARMA(1,1) within-
subject correlation structure in the estimation of the covariance matrix for
the proposed SGEE method. The resulting estimated model is as follows:

log(FEV)

≈ 0.0325 ∗G− 0.0111 ∗ASS− 0.0671 ∗R
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Fig. 3. The scatter plots of the response variable log(FEV) against the continuous re-
gressors, that is, (clockwise from top left) log(H), log(BMI), log(NO2), log(OZONE).

(0.0041) (0.0080) (0.0059)

− 0.0047 ∗ASSPM− 0.0068 ∗RINF+ 2.3206 ∗ log(H),

(0.0085) (0.0043) (0.0307)

+ η̂[0.9929 ∗ log(BMI)− 0.0924 ∗ log(OZONE)− 0.0753 ∗ log(NO2)]

(0.0560) (0.0127) (0.0125),

where the numbers in the parentheses under the estimated coefficien’s are
their respective estimated standard errors. The estimated link function and
its 95% point-wise confidence intervals are plotted in Figure 5.

From Figure 5, it can be seen that the estimated link function is overall
increasing. The 95% point-wise confidence intervals show that a linear func-
tional form for the unknown link function would be rejected, and thus the
partially liner single-index model might be more appropriate than the tra-
ditional linear regression model. Meanwhile, it can be seen from the above
estimated model that height and BMI are significant positive factors in ac-
counting for lung function. Taller children and children with larger BMI tend
to have higher FEV. Furthermore, male and white children have, on average,
higher FEV than female or nonwhite children. Furthermore, both OZONE
and NO2 in the single-index component have negative effects on children’s
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Fig. 4. The box plots of the response variable log(FEV) against the binary regressors,
that is, (clockwise from top left) G, ASS, R, RINF, ASSPM.

lung function, as the estimated coefficients for OZONE and NO2 are nega-
tive, and the estimated link function is increasing. Although these negative
effects are relatively small in magnitude compared to the effect of BMI, they
are statistically significant. This means that higher levels of ozone and NO2

tend to lead to reduced lung function as represented by lower values of FEV.

6. Conclusions and discussions. In this paper, we study a partially linear
single-index modeling structure for possibly unbalanced longitudinal data in

Fig. 5. The estimated link function and its 95% point-wise confidence intervals.
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a general framework, which includes both the sparse and dense longitudinal
data cases. An SGEE method with the first-stage local linear smoothing is
introduced to estimate the two parameter vectors as well as the unspecified
link function.

In Theorems 1 and 2, we derive the asymptotic properties of the pro-
posed parametric and nonparametric estimators in different scenarios, from
which we find that the convergence rates and asymptotic variances of the
resulting estimators in the sparse longitudinal data case could be substan-
tially different from those in the dense longitudinal data. In Section 4, we
propose a semiparametric method to estimate the error covariance matrices
which are involved in the estimation equations. The conditional variance
function is estimated by using the log-transformed local linear method, and
the parameters in the correlation matrices are estimated by the minimum
generalized variance method. In particular, if the correlation matrices are
correctly specified, as is stated in Corollary 1, the SGEE-based estimators
β̂ and θ̂ are generally asymptotically more efficient than the correspond-

ing PULS estimators β̃ and θ̃ in the sense that the asymptotic covariance
matrix of the SGEE estimators minus that of the PULS estimators is nega-
tive semi-definite. Both the simulation study and empirical data analysis in
Section 5 show that the proposed methods work well in the finite samples.

Recently, Yao and Li (2013) developed a new nonparametric regression
function estimation method for a longitudinal regression model. This method
takes into account the within-subject correlation information and thus gen-
erally improves the asymptotic estimation efficiency. It would also be inter-
esting to incorporate the within-subject correlation information in the local
linear estimation of the unknown link function in this paper and to examine
both theoretical and empirical performance of the resulting estimator. We
will leave this issue for future research. Another possible future topic is to
extend the semiparametric techniques of variable selection and specification
testing proposed by Liang et al. (2010) from the i.i.d. case to the general
longitudinal data case discussed in the present paper.

APPENDIX A: REGULARITY CONDITIONS

To establish the asymptotic properties of the SGEE estimators proposed
in Section 2, we introduce the following regularity conditions, although some
of them might not be the weakest possible.

Assumption 1. The kernel function K(·) is a bounded and symmetric
probability density function with compact support. Furthermore, the kernel
function has a continuous first-order derivative function denoted by K̇(·).
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Assumption 2. (i) The errors eij ≡ ei(tij), 1 ≤ i ≤ n, 1 ≤ j ≤mi, are
independent across i; that is, ei defined in Section 2, 1≤ i≤ n, are mutually
independent.

(ii) The covariates Xij and Zij , 1 ≤ i ≤ n, 1 ≤ j ≤mi, are i.i.d. random
vectors.

(iii) The errors eij are independent of the covariates Zij and Xij , and
for each i, eij , 1≤ j ≤mi, may be correlated with each other. Furthermore,
E[eij ] = 0, 0 < E[e2ij ] <∞ and E[|eij |

2+δ ] <∞ for some δ > 0. The largest

eigenvalues of Wi and WiE[eiei]Wi are bounded for any i.

Assumption 3. (i) The density function fθ(·) of X⊤
ijθ is positive and

has a continuous second-order derivative in U = {x⊤θ :x ∈X ,θ ∈Θ}, where
Θ is a compact parameter space for θ and X is a compact support of Xij .

(ii) The function ρZ(u|θ) = E[Zij |X
⊤
ijθ = u] has a bounded and continuous

second-order derivative (with respect to u) for any θ ∈Θ, and E[‖Zij‖
2+δ]<

∞, where δ was defined in Assumption 2(iii).

Assumption 4. The link function η(·) has continuous derivatives up to
the second order.

Assumption 5. The bandwidth h satisfies

ωnh
6 → 0,

n2h2

Nn(h) logn
→∞,

T
2/(2+δ)
n logn

h2Nn(h)
= o(1),(A.1)

where Nn(h) =
∑n

i=1 1/(mih), Tn =
∑n

i=1mi and δ was defined in Assump-

tion 2(iii). Furthermore, max1≤i≤n(m
4
i +m3

ih
−1) = o(wn).

Remark 5. Assumption 1 imposes some mild restrictions on the kernel
functions, which have been used in the existing literature in i.i.d. and weakly
dependent time series cases; see, for example, Fan and Gijbels (1996) and
Gao (2007). The compact support restriction on the kernel functions can be
removed if we impose certain restrictions on the tail of the kernel function.
In Assumption 2(i), the longitudinal data under investigation is assumed to
be independent across subjects i, which is not uncommon in longitudinal
data analysis; see, for example, Wu and Zhang (2006) and Zhang, Fan and
Sun (2009). Assumption 2(ii) is imposed to simplify the presentation of
the asymptotic results. However, we may replace Assumption 2(ii) with the
conditions that the covariates Xij and Zij are i.i.d. across i and identically
distributed across j, and in the case of dense longitudinal data, it is further
satisfied that for κ= 0,1,2, . . . ,

Var

[
1

mi

mi∑

j=1

Uij

h

(
X

⊤
ijθ− u

h

)κ

K

(
X

⊤
ijθ− u

h

)]
≤C(mih)

−1(A.2)
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uniformly for u ∈ U and θ ∈Θ, where Uij can be 1, ZijB1(Zij), orXijB2(Xij),
B1(·) and B2(·) are two bounded functions, and C is a positive constant
which is independent of i. When Xij and Zij are stationary and α-mixing
dependent across j for the case of dense longitudinal data, it is easy to vali-
date the high-level condition (A.2). In Assumption 2(iii), we allow the error
terms to have certain within-subject correlation, which makes the model
assumptions more realistic. Assumption 3 gives some commonly-used condi-
tions in partially linear single-index models; see Xia and Härdle (2006) and
Chen, Gao and Li (2013b), for example. Assumption 4 is a mild smoothness
condition on the link function imposed for the application of the local linear
fitting. Assumption 5 gives a set of restrictions on the bandwidth h, which
is involved in the estimation of the link function. Note that the bandwidth
conditions in Assumption 5 imply that the milder bandwidth conditions in
(C.1) of Lemma 1 in the supplemental material [Chen et al. (2015)] are
satisfied. Hence we can use Lemma 1 to prove our main theoretical results.

We next give some regularity conditions, which are needed to derive the
asymptotic property of the nonparametric conditional variance estimators
in Section 4.

Assumption 6. The kernel function K1(·) is a continuous and symmet-
ric probability density function with compact support.

Assumption 7. The observation times, tij , are i.i.d. and have a contin-
uous and positive probability density function fT (t), which has a compact
support T . The density function of ξ2(tij) is continuous and bounded. Let
δ > 2, which strengthens the moment conditions in Assumptions 2 and 3.

Assumption 8. The conditional variance function σ2(·) has a continu-
ous second-order derivative and satisfies inft∈T σ2(t)> 0. Let σ̇2(·) and σ̈2(·)
be its first-order and second-order derivative functions, respectively.

Assumption 9. The bandwidth h1 satisfies

h1 → 0,
T
2/(2+δ/2)
n logn

h21Nn(h1)
= o(1),(A.3)

where Nn(h1) =
∑n

i=1 1/(mih1).

Remark 6. Assumption 7 imposes a mild condition on the observation
times [see, e.g., Jiang and Wang (2011)] and strengthens the moment condi-
tions on eij and Zij . However, such moment conditions are not uncommon
in the asymptotic theory for nonparametric conditional variance estimation
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[Chen, Cheng and Peng (2009)]. Since the local linear smoothing technique
is applied, a certain smoothness condition has to be assumed on σ2(·), as
is done in Assumption 8. Assumption 9 gives some mild restrictions on the
bandwidth h1, which is used in the estimation of the conditional variance
function.

APPENDIX B: PROOFS OF THE MAIN RESULTS

In this appendix, we provide the detailed proofs of the main results given
in Section 3.

B.1. Proof of Theorem 1. By the definition of the weighted local linear
estimators in (2.4) and (2.5), we have

η̂(u|β,θ)− η(u) =

n∑

i=1

si(u|θ)(Yi −Ziβ)− η(u)

=

n∑

i=1

si(u|θ)ei +

n∑

i=1

si(u|θ)Zi(β0 −β)

+
n∑

i=1

si(u|θ)[η(Xi,θ0)− η(Xi,θ)](B.1)

+

n∑

i=1

si(u|θ)η(Xi,θ)− η(u)

≡ In1 + In2 + In3 + In4.

For In1, note that by a first-order Taylor expansion of K(·), we have, for
i= 1, . . . , n and j = 1, . . . ,mi,

K

(
X

⊤
ijθ− u

h

)
=K

(
X

⊤
ijθ0 − u

h

)
+ K̇

(
X

⊤
ijθ∗ − u

h

)
X

⊤
ij(θ− θ0)

h
,

where K̇(·) is the first-order derivative of K(·) and θ∗ = θ0 + λ∗(θ − θ0),
0< λ∗ < 1. Hence, by some standard calculations and the assumption that
n2h2/{Nn(h) logn}→∞, we have

In1 =

n∑

i=1

si(u|θ0)ei +

n∑

i=1

[si(u|θ)− si(u|θ0)]ei

=
n∑

i=1

si(u|θ0)ei +OP

(
‖θ− θ0‖ ·

√
Nn(h) logn

nh

)
(B.2)
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=

n∑

i=1

si(u|θ0)ei + oP (‖θ− θ0‖)

for any u ∈ U and θ ∈Θ.
By Lemma 2 in the supplementary material [Chen et al. (2015)], we can

prove that

In2 =−ρ⊤Z(u)(β− β0) +OP (‖β− β0‖
2 + ‖θ− θ0‖

2)(B.3)

for any u ∈ U , where ρZ(u)≡ ρZ(u|θ0) = E[Zij|X
⊤
ijθ0 = u].

Note that

η(X⊤
ijθ)− η(X⊤

ijθ0) = η̇(X⊤
ijθ0)X

⊤
ij(θ− θ0) +OP (‖θ− θ0‖

2),

which, together with Lemma 3 in the supplementary material [Chen et al.
(2015)], leads to

In3 =−η̇(u)ρ⊤X(u)(θ − θ0) +OP (‖θ− θ0‖
2)(B.4)

for any u ∈ U , where ρX(u)≡ ρX(u|θ0) = E[Xij|X
⊤
ijθ0 = u].

By a second-order Taylor expansion of η(·) and the first-order Taylor
expansion of K(·) used to handle In1, we can prove that, for any u ∈ U , we
have

In4 =
1
2µ2η̈(u)h

2[1 +OP (h)] + oP (‖θ − θ0‖).(B.5)

Recall that β̂ and θ̂1 are the solutions to the equations in (2.8). By (B.1)–
(B.5), we can prove that, uniformly for i= 1, . . . , n and j = 1, . . . ,mi,

η̂(X⊤
ij θ̂1|β̂, θ̂1)− η(X⊤

ijθ0)

= η̂(X⊤
ij θ̂1|β̂, θ̂1)− η̂(X⊤

ijθ0|β̂, θ̂1) + η̂(X⊤
ijθ0|β̂, θ̂1)− η(X⊤

ijθ0)

= ̂̇η(X⊤
ijθ0|β̂, θ̂1)X

⊤
ij(θ̂1 − θ0) + η̂(X⊤

ijθ0|β̂, θ̂1)− η(X⊤
ijθ0)

+OP (‖θ̂1 − θ0‖
2)(B.6)

= η̇(X⊤
ijθ0)[Xij − ρX(X

⊤
ijθ0)]

⊤(θ̂1 − θ0)(1 + oP (1))

+

n∑

k=1

sk(X
⊤
ijθ0)ek − ρ⊤Z(X

⊤
ijθ0)(β̂−β0)(1 + oP (1))

+ 1
2µ2η̈(X

⊤
ijθ0)h

2 +OP (h
3) +OP (‖θ̂1 − θ0‖

2 + ‖β̂−β0‖
2),

where sk(X
⊤
ijθ0)≡ sk(X

⊤
ijθ0|θ0).

By the definitions of β̂ and θ̂1 [see (2.8) in Section 2], we have

n∑

i=1

Λ̂
⊤

i (θ̂1)Wi[Yi −Ziβ̂− η̂(Xi|β̂, θ̂1)] = 0.(B.7)
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By the uniform consistency results for the local linear estimators (such as
Lemmas 2 and 3 in the supplementary material [Chen et al. (2015)]), we can

approximate Λ̂i(θ̂1) in (B.7) by Λi =Λi(θ0) when deriving the asymptotic
distribution theory. Then we have

0=

n∑

i=1

Λ̂
⊤

i (θ̂1)Wi[Yi −Ziβ̂− η̂(Xi|β̂, θ̂1)]

=

n∑

i=1

Λ
⊤
i Wi[Yi −Ziβ̂− η̂(Xi|β̂, θ̂1)](B.8)

+

n∑

i=1

(Λ̂i(θ̂1)−Λi)
⊤
Wi[Yi −Ziβ̂− η̂(Xi|β̂, θ̂1)]

P
∼

n∑

i=1

Λ
⊤
i Wi[Yi −Ziβ̂− η̂(Xi|β̂, θ̂1)][1 +OP (‖θ̂1 − θ0‖)],

where and below an
P
∼ bn denotes an = bn(1+oP (1)). Furthermore, note that

Yi −Ziβ̂− η̂(Xi|β̂, θ̂1) = ei −Zi(β̂−β0)− [η̂(Xi|β̂, θ̂1)− η(Xi,θ0)],

which, together with (B.6) and the bandwidth condition ωnh
6 = o(1), implies

that
n∑

i=1

Λ
⊤
i Wi[Yi −Ziβ̂− η̂(Xi|β̂, θ̂1)]

=

n∑

i=1

Λ
⊤
i Wiei −

n∑

i=1

Λ
⊤
i WiZi(β̂−β0)

−

n∑

i=1

Λ
⊤
i Wi[η̂(Xi|β̂, θ̂1)− η(Xi,θ0)]

=−
n∑

i=1

Λ
⊤
i Wi[Zi − ρZ(Xi,θ0)](β̂−β0)(1 + oP (1))

(B.9)

−

n∑

i=1

Λ
⊤
i Wi{[η̇(Xi,θ0)⊗ 1

⊤
p ]⊙ [Xi − ρX(Xi,θ0)]}

× (θ̂1 − θ0)(1 + oP (1))

+

n∑

i=1

Λ
⊤
i Wi

[
ei −

n∑

k=1

sk(Xi,θ0)ek

]

+OP (‖β̂− β0‖
2 + ‖θ̂1 − θ0‖

2),
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where sk(Xi,θ0) = [s⊤k (X
⊤
i1θ0), . . . , s

⊤
k (X

⊤
imi

θ0)]
⊤, ρZ(Xi,θ0) and ρX(Xi,θ0)

were defined in Section 2. Following the standard proof in the existing lit-
erature [see, e.g., Ichimura (1993), Chen, Gao and Li (2013b)], we can show

the weak consistency of β̂ and θ̂1. Note that

n∑

i=1

Λ
⊤
i WiΛi

(
β̂− β0

θ̂1 − θ0

)

=
n∑

i=1

Λ
⊤
i Wi{[η̇(Xi,θ0)⊗ 1

⊤
p ]⊙ [Xi − ρX(Xi,θ0)]}(θ̂1 − θ0)

+

n∑

i=1

Λ
⊤
i Wi[Zi − ρZ(Xi,θ0)](β̂ −β0)

and
n∑

i=1

Λ
⊤
i Wi

[
n∑

k=1

sk(Xi,θ0)ek

]
= oP (ω

1/2
n ),

which, together with (B.8) and (B.9), lead to
[

n∑

i=1

Λ
⊤
i WiΛi

](
β̂−β0

θ̂1 − θ0

)
P
∼

n∑

i=1

Λ
⊤
i Wiei.(B.10)

Define I(θ0,B0) = diag{Id,M},O(θ0) =
(
Od×d Od×1

Op×d θ0

)
, whereM= (θ0,B0)

was defined in Section 3. It is easy to find that

Id+p = I(θ0,B0)I
⊤(θ0,B0) =O(θ0)O

⊤(θ0) + I(B0)I
⊤(B0).(B.11)

By the identification condition on θ0, we may show that

θ̂− θ0 =
θ̂1

‖θ̂1‖
−

θ0

‖θ0‖
=

θ̂1

‖θ̂1‖
−

θ0

‖θ̂1‖
+

θ0

‖θ̂1‖
−

θ0

‖θ0‖

P
∼

θ̂1 − θ0

‖θ0‖
− θ0θ

⊤
0

θ̂1 − θ0

‖θ0‖
= (Ip − θ0θ

⊤
0 )(θ̂1 − θ0),

which implies that θ̂− θ0 =B0B
⊤
0 (θ̂1 − θ0) and

(
β̂−β0

θ̂− θ0

)
= I(B0)I

⊤(B0)

(
β̂−β0

θ̂1 − θ0

)
.(B.12)

By (B.10), (B.11) and using the fact that ΛiO(θ0) = 0, we have

I
⊤(B0)

[
n∑

i=1

Λ
⊤
i WiΛi

]
I(B0)I

⊤(B0)

(
β̂− β0

θ̂1 − θ0

)
P
∼ I

⊤(B0)

[
n∑

i=1

Λ
⊤
i Wiei

]
,
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which, together with (B.12), implies that
(
β̂− β0

θ̂− θ0

)
P
∼ I(B0)

{
I
⊤(B0)

[
n∑

i=1

Λ
⊤
i WiΛi

]
I(B0)

}−1

I
⊤(B0)

[
n∑

i=1

Λ
⊤
i Wiei

]
.

Thus, by (3.1)–(3.3), the definition of the Moore–Penrose inverse and the
classical central limit theorem for independent sequence, we can show that
(3.4) in Theorem 1 holds.

B.2. Proof of Corollary 1. By Theorem 1, the PULS estimators β̃ and
θ̃ have the following asymptotic normal distribution:

ω1/2
n

(
β̃−β0

θ̃− θ0

)
d

−→N(0,Ω+
0∗Ω1∗Ω

+
0∗),(B.13)

where Ω0∗ and Ω1∗ are two matrices such that

1

ωn

n∑

i=1

Λ
⊤
i Λi

P
→Ω0∗,

1

ωn

n∑

i=1

E[Λ⊤
i ViΛi]→Ω1∗,

and Vi is the conditional covariance matrix of ei.
On the other hand, when the weights Wi, i= 1, . . . , n, are chosen as the

inverse of Vi, by Theorem 1, we have

ω1/2
n

(
β̂−β0

θ̂− θ0

)
d

−→N(0,Ω+
∗ ),(B.14)

where Ω∗ is a positive semi-definite matrix such that

1

ωn

n∑

i=1

E[Λ⊤
i V

−1
i Λi]→Ω∗.

In order to prove Corollary 1, by (B.13) and (B.14), we need only to

show Ω
+
0∗Ω1∗Ω

+
0∗ −Ω

+
∗ is positive semi-definite. Letting Θi =Ω

+
0∗ΛiV

1/2
i −

Ω
+
∗ ΛiV

−1/2
i , we have

ΘiΘ
⊤
i = (Ω+

0∗ΛiV
1/2
i −Ω

+
∗ ΛiV

−1/2
i )(Ω+

0∗ΛiV
1/2
i −Ω

+
∗ ΛiV

−1/2
i )⊤

=Ω
+
0∗ΛiViΛiΩ

+
0∗ −Ω

+
0∗ΛiΛiΩ

+
∗ −Ω

+
∗ ΛiΛiΩ

+
0∗ +Ω

+
∗ ΛiV

−1
i ΛiΩ

+
∗ ,

which indicates that

1

ωn

n∑

i=1

E[ΘiΘ
⊤
i ]→Ω

+
0∗Ω1∗Ω

+
0∗ −Ω

+
∗ .(B.15)

As E[ΘiΘ
⊤
i ] is positive semi-definite, by (B.15) we know that Ω+

0∗Ω1∗Ω
+
0∗−

Ω
+
∗ is also positive semi-definite. Hence the proof of Corollary 1 is complete.
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B.3. Proof of Theorem 2. Note that

η̂(u)− η(u) =

n∑

i=1

si(u|θ̂)(Yi −Z
⊤
i β̂)− η(u)

=

n∑

i=1

si(u|θ̂)ei +

[
n∑

i=1

si(u|θ̂)η(Xi,θ0)− η(u)

]

(B.16)

+

n∑

i=1

si(u|θ̂)Z
⊤
i (β0 − β̂)

≡ In1,∗ + In2,∗ + In3,∗.

By Assumption 1, we have

K

(
X

⊤
ij θ̂− u

h

)
=K

(
X

⊤
ijθ0 − u

h

)
+ K̇

(
X

⊤
ijθ♦ − u

h

)
X

⊤
ij(θ̂− θ0)

h
,(B.17)

where θ♦ = θ0 + λ♦(θ̂− θ0) for some 0< λ♦ < 1. By Theorem 1, we have

‖θ̂− θ0‖+ ‖β̂− β0‖=OP (ω
−1/2
n ).(B.18)

It follows from (B.17), (B.18) and (3.5) that

In3,∗ =
n∑

i=1

si(u|θ0)Z
⊤
i (β0 − β̂) +

n∑

i=1

[si(u|θ̂)− si(u|θ0)]Z
⊤
i (β0 − β̂)

=OP (ω
−1/2
n ) +OP (ω

−1
n )(B.19)

= oP (ϕ
−1/2
n (h)).

Similar to the proof of (B.5), we can show that

In2,∗ =
1
2 η̈(u)µ2h

2(1 + oP (1)).(B.20)

For In1,∗, note that by (B.17) and (B.18), we can show that
∑n

i=1 si(u|θ0)ei
is the leading term of In1,∗. Letting zi(θ0) = si(u|θ0)ei and by Assumption 2,
it is easy to check that {zi(θ0) : i≥ 1} is a sequence of independent random
variables. By Assumption 2(iii), we have E[zi(θ0)] = 0. By (3.5), (3.6) and
the central limit theorem, it can be readily seen that

ϕ1/2
n (h)In1,∗

d
→N(0, σ2

∗).(B.21)

In view of (B.16), (B.19)–(B.21), the proof of Theorem 2 is complete.
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SUPPLEMENTARY MATERIAL

Supplement to “Semiparametric GEE analysis in partially linear single-

index models for longitudinal data” (DOI: 10.1214/15-AOS1320SUPP; .pdf).
The supplement gives the proof of Theorem 3 and some technical lemmas
that were used to prove the main results in Appendix B. It also includes
some additional results of our simulation studies described in Section 5.
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