30,416 research outputs found

    Joint received signal strength, angle-of-arrival, and time-of-flight positioning

    Get PDF
    This paper presents a software positioning framework that is able to jointly use measured values of three parameters: the received signal strength, the angle-of-arrival, and the time-of-flight of the wireless signals. Based on experimentally determined measurement accuracies of these three parameters, results of a realistic simulation scenario are presented. It is shown that for the given configuration, angle-of-arrival and received signal strength measurements benefit from a hybrid system that combines both. Thanks to their higher accuracy, time-of-flight systems perform significantly better, and obtain less added value from a combination with the other two parameters

    Position Estimation of Robotic Mobile Nodes in Wireless Testbed using GENI

    Full text link
    We present a low complexity experimental RF-based indoor localization system based on the collection and processing of WiFi RSSI signals and processing using a RSS-based multi-lateration algorithm to determine a robotic mobile node's location. We use a real indoor wireless testbed called w-iLab.t that is deployed in Zwijnaarde, Ghent, Belgium. One of the unique attributes of this testbed is that it provides tools and interfaces using Global Environment for Network Innovations (GENI) project to easily create reproducible wireless network experiments in a controlled environment. We provide a low complexity algorithm to estimate the location of the mobile robots in the indoor environment. In addition, we provide a comparison between some of our collected measurements with their corresponding location estimation and the actual robot location. The comparison shows an accuracy between 0.65 and 5 meters.Comment: (c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other work

    Benchmarking of localization solutions : guidelines for the selection of evaluation points

    Get PDF
    Indoor localization solutions are key enablers for next-generation indoor navigation and track and tracing solutions. As a result, an increasing number of different localization algorithms have been proposed and evaluated in scientific literature. However, many of these publications do not accurately substantiate the used evaluation methods. In particular, many authors utilize a different number of evaluation points, but they do not (i) analyze if the number of used evaluation points is sufficient to accurately evaluate the performance of their solutions and (ii) report on the uncertainty of the published results. To remedy this, this paper evaluates the influence of the selection of evaluation points. Based on statistical parameters such as the standard error of the mean value, an estimator is defined that can be used to quantitatively analyze the impact of the number of used evaluation points on the confidence interval of the mean value of the obtained results. This estimator is used to estimate the uncertainty of the presented accuracy results, and can be used to identify if more evaluations are required. To validate the proposed estimator, two different localization algorithms are evaluated in different testbeds and using different types of technology, showing that the number of required evaluation points does indeed vary significantly depending on the evaluated solution. (C) 2017 Elsevier B.V. All rights reserved

    A linear regression based cost function for WSN localization

    Get PDF
    Localization with Wireless Sensor Networks (WSN) creates new opportunities for location-based consumer communication applications. There is a great need for cost functions of maximum likelihood localization algorithms that are not only accurate but also lack local minima. In this paper we present Linear Regression based Cost Function for Localization (LiReCoFuL), a new cost function based on regression tools that fulfills these requirements. With empirical test results on a real-life test bed, we show that our cost function outperforms the accuracy of a minimum mean square error cost function. Furthermore we show that LiReCoFuL is as accurate as relative location estimation error cost functions and has very few local extremes

    Distributed and adaptive location identification system for mobile devices

    Full text link
    Indoor location identification and navigation need to be as simple, seamless, and ubiquitous as its outdoor GPS-based counterpart is. It would be of great convenience to the mobile user to be able to continue navigating seamlessly as he or she moves from a GPS-clear outdoor environment into an indoor environment or a GPS-obstructed outdoor environment such as a tunnel or forest. Existing infrastructure-based indoor localization systems lack such capability, on top of potentially facing several critical technical challenges such as increased cost of installation, centralization, lack of reliability, poor localization accuracy, poor adaptation to the dynamics of the surrounding environment, latency, system-level and computational complexities, repetitive labor-intensive parameter tuning, and user privacy. To this end, this paper presents a novel mechanism with the potential to overcome most (if not all) of the abovementioned challenges. The proposed mechanism is simple, distributed, adaptive, collaborative, and cost-effective. Based on the proposed algorithm, a mobile blind device can potentially utilize, as GPS-like reference nodes, either in-range location-aware compatible mobile devices or preinstalled low-cost infrastructure-less location-aware beacon nodes. The proposed approach is model-based and calibration-free that uses the received signal strength to periodically and collaboratively measure and update the radio frequency characteristics of the operating environment to estimate the distances to the reference nodes. Trilateration is then used by the blind device to identify its own location, similar to that used in the GPS-based system. Simulation and empirical testing ascertained that the proposed approach can potentially be the core of future indoor and GPS-obstructed environments
    corecore