12 research outputs found

    Empirical evaluation of the conjunct use of MOF and OCL

    Get PDF
    International audienceMOF and OCL are commonly used for metamodeling: MOF to model the domain structure, and OCL for the well-formedness rules. Thus, metamodelers have to master both formalisms and understand how to articulate them in order to build metamodels that accurately capture domain knowledge. A systematic empirical analysis of the conjunct use of MOF and OCL in existing metamodels could help metamodelers un- derstand how to use these formalisms. However, existing metamodels usually present anomalies that prevent automatic analysis without prior fixing. In particular, it often happens that both parts of the metamodel (MOF and OCL) are inconsistent. In this paper, we propose a process for analyzing metamodels and we report on the pre-processing phase we went through on 52 metamodels in order to get them ready for automatic empirical analysis

    Specification and Implementation of a Deep OCL Dialect

    Full text link
    The deep modeling tool Multi-level Modeling and Ontology Engineering Environment (Melanee) developed by the Software Engineering Group of the University of Mannheim allows clean and strict meta-modeling across multiple classification levels within Eclipse. Modeling with Melanee comprises two dimensions, a linguistic and an ontological dimension. As Melanee is fully embedded in the Eclipse Modeling Framework, it is usable with the Object Constraint Language (OCL). However, the current OCL implementation is not aware of multi-level modeling features like the distinction between ontological and linguistic classification and the existence of multiple ontological levels. The aim of this thesis is to extend the current OCL implementation so that it is multi-level aware. First, a deep OCL dialect is elaborated which takes deep modeling features into consideration. Based on this dialect, an implementation of an interactive level-agnostic OCL Console will enable queries of different values of different model elements

    dACL: the deep constraint and action language for static and dynamic semantic definition in Melanee

    Full text link
    The Unified Modeling Language (UML) is the de facto standard for modeling software. But due to some limitations of UML a new modeling paradigm was born, called Multi-Level Modeling or Deep Modeling, allowing the user to model across multiple ontological levels. The software engineering group at the Uni- versity of Mannheim has developed a multi-level modeling tool which is called “Melanee”. To attract more users to this modeling paradigm, Melanee needs the same extensions as UML, such as a constraint language, an action language or a transformation language in order to help its users create precise and useful models. There has been some effort to integrate a deep modeling constraint language into Melanee, but the usability of this dialect turned out to be limited. This thesis aims at raising the usability of the deep modeling constraint language dialect by customizing the Object Constraint Language (OCL) standard language definition, which is the constraint language extension for UML. Many of the semantic navigation definitions are based on the work of Kantner

    A Model Driven Approach to Model Transformations

    Get PDF
    The OMG's Model Driven Architecture (MDA) initiative has been the focus of much attention in both academia and industry, due to its promise of more rapid and consistent software development through the increased use of models. In order for MDA to reach its full potential, the ability to manipulate and transform models { most obviously from the Platform Independent Model (PIM) to the Platform Specific Models (PSM) { is vital. Recognizing this need, the OMG issued a Request For Proposals (RFP) largely concerned with finding a suitable mechanism for trans- forming models. This paper outlines the relevant background material, summarizes the approach taken by the QVT-Partners (to whom the authors belong), presents a non-trivial example using the QVT-Partners approach, and finally sketches out what the future holds for model transformations

    Scalable Model-based Robustness Testing: Novel Methodologies and Industrial Application

    Get PDF
    Embedded systems, as for example communication and control systems, are being increasingly used in our daily lives and hence require thorough and systematic testing before their actual use. Many of these systems interact with their environment and, therefore, their functionality is largely dependent on this environment whose behavior can be unpredictable. Robustness testing aims at testing the behavior of a system in the presence of faulty situations in its operating environment (e.g., sensors and actuators). In such situations, the system should gracefully degrade its performance instead of abruptly stopping execution. To systematically perform robustness testing, one option is to resort to Model-Based Robustness Testing (MBRT), which is a systematic, rigorous, and automated way of conducting robustness testing. However, to successfully apply MBRT in industrial contexts, new technologies need to be developed to scale to the complexity of real industrial systems. This thesis presents a solution for MBRT on industrial systems, including scalable robustness modeling and executable test case generation. One important contribution of this thesis is a scalable RobUstness Modeling Methodology (RUMM), which is achieved using Aspect-Oriented Modeling (AOM). It is a complete, automated, and practical methodology that covers all features of state machines and aspect concepts necessary for MBRT. Such methodology, relying on a standard (Unified Modeling Language or UML) and using the target notation as the basis to model the aspects themselves, is expected to make the practical adoption of robustness modeling easier in industrial contexts. The applicability of the methodology is demonstrated using an industrial case study. Results showed that the approach significantly reduced modeling effort (98% on average), improved separation of concerns, and eased model evolution. The approach is further empirically evaluated using two controlled experiments involving human subjects and results showed that the proposed methodology significantly improves the readability of models as compared to modeling using standard UML notations. Another important contribution of this thesis is an efficient approach for solving constraints (written in Objects Constraint Language (OCL)) on the operating environment of a system, which is mandatory for emulating faulty situation in the environment for the purpose of MBRT. A set of novel heuristics is devised for various OCL constructs, which are required for the application of search algorithms. The heuristics have been empirically evaluated on an industrial case study for robustness testing and the results showed to be very promising and significantly better than the existing works in the literature on OCL constraint solvers. A final contribution of the thesis is robustness test case generation from the models developed using RUMM. Test case generation also includes scripts generation for environment emulation, which is mandatory for automated robustness testing again using an industrial case study. In preliminary experiments, the execution of test cases found one critical, robustness fault in a deployed industrial system

    The Meaning of UML Models

    No full text
    The Unified Modelling Language (UML) is intended to express complex ideas in an intuitive and easily understood way. It is important because it is widely used in software engineering and other disciplines. Although an official definition document exists, there is much debate over the precise meaning of UML models. ¶ In response, the academic community have put forward many different proposals for formalising UML, but it is not at all obvious how to decide between them. Indeed, given that UML practitioners are inclined to reject formalisms as non-intuitive, it is not even obvious that the definition should be “formal” at all. Rather than searching for yet another formalisation of UML, our main aim is to determine what would constitute a good definition of UML. ¶ The first chapter sets the UML definition problem in a broad context, relating it to work in logic and the philosophy of science. ..

    Traceability of Requirements and Software Architecture for Change Management

    Get PDF
    At the present day, software systems get more and more complex. The requirements of software systems change continuously and new requirements emerge frequently. New and/or modified requirements are integrated with the existing ones, and adaptations to the architecture and source code of the system are made. The process of integration of the new/modified requirements and adaptations to the software system is called change management. The size and complexity of software systems make change management costly and time consuming. To reduce the cost of changes, it is important to apply change management as early as possible in the software development cycle. Requirements traceability is considered crucial in change management for establishing and maintaining consistency between software development artifacts. It is the ability to link requirements back to stakeholders’ rationales and forward to corresponding design artifacts, code, and test cases. When changes for the requirements of the software system are proposed, the impact of these changes on other requirements, design elements and source code should be traced in order to determine parts of the software system to be changed. Determining the impact of changes on the parts of development artifacts is called change impact analysis. Change impact analysis is applicable to many development artifacts like requirements documents, detailed design, source code and test cases. Our focus is change impact analysis in requirements and software architecture. The need for change impact analysis is observed in both requirements and software architecture. When a change is introduced to a requirement, the requirements engineer needs to find out if any other requirement related to the changed requirement is impacted. After determining the impacted requirements, the software architect needs to identify the impacted architectural elements by tracing the changed requirements to software architecture. It is hard, expensive and error prone to manually trace impacted requirements and architectural elements from the changed requirements. There are tools and approaches that automate change impact analysis like IBM Rational RequisitePro and DOORS. In most of these tools, traces are just simple relations and their semantics is not considered. Due to the lack of semantics of traces in these tools, all requirements and architectural elements directly or indirectly traced from the changed requirement are candidate impacted. The requirements engineer has to inspect all these candidate impacted requirements and architectural elements to identify changes if there are any. In this thesis we address the following problems which arise in performing change impact analysis for requirements and software architecture. Explosion of impacts in requirements after a change in requirements. In practice, requirements documents are often textual artifacts with implicit structure. Most of the relations among requirements are not given explicitly. There is a lack of precise definition of relations among requirements in most tools and approaches. Due to the lack of semantics of requirements relations, change impact analysis may produce high number of false positive and false negative impacted requirements. A requirements engineer may have to analyze all requirements in the requirements document for a single change. This may result in neglecting the actual impact of a change. Manual, expensive and error prone trace establishment. Considerable research has been devoted to relating requirements and design artifacts with source code. Less attention has been paid to relating Requirements (R) with Architecture (A) by using well-defined semantics of traces. Designing architecture based on requirements is a problem solving process that relies on human experience and creativity, and is mainly manual. The software architect may need to manually assign traces between R&A. Manual trace assignment is time-consuming, expensive and error prone. The assigned traces might be incomplete and invalid. Explosion of impacts in software architecture after a change in requirements. Due to the lack of semantics of traces between R&A, change impact analysis may produce high number of false positive and false negative impacted architectural elements. A software architect may have to analyze all architectural elements in the architecture for a single requirements change. In this thesis we propose an approach that reduces the explosion of impacts in R&A. The approach employs semantic information of traces and is supported by tools. We consider that every relation between software development artifacts or between elements in these artifacts can play the role of a trace for a certain traceability purpose like change impact analysis. We choose Model Driven Engineering (MDE) as a solution platform for our approach. MDE provides a uniform treatment of software artifacts (e.g. requirements documents, software design and test documents) as models. It also enables using different formalisms to reason about development artifacts described as models. To give an explicit structure to requirements documents and treat requirements, architecture and traces in a uniform way, we use metamodels and models with formally defined semantics. The thesis provides the following contributions: A modeling language for definition of requirements models with formal semantics. The language is defined according to the MDE principles by defining a metamodel. It is based on a survey about the most commonly found requirements types and relation types. With this language, the requirements engineer can explicitly specify the requirements and the relations among them. The semantics of these entities is given in First Order Logic (FOL) and allows two activities. First, new relations among requirements can be inferred from the initial set of relations. Second, requirements models can be automatically checked for consistency of the relations. Tool for Requirements Inferencing and Consistency Checking (TRIC) is developed to support both activities. The defined semantics is used in a technique for change impact analysis in requirements models. A change impact analysis technique for requirements using semantics of requirements relations and requirements change types. The technique aims at solving the problem of explosion of impacts in requirements when semantics of requirements relations is missing. The technique uses formal semantics of requirements relations and requirements change types. A classification of requirements changes based on the structure of a textual requirement is given and formalized. The semantics of requirements change types is based on FOL. We support three activities for impact analysis. First, the requirements engineer proposes changes according to the change classification before implementing the actual changes. Second, the requirements engineer indentifies the propagation of the changes to related requirements. The change alternatives in the propagation are determined based on the semantics of change types and requirements relations. Third, possible contradicting changes are identified. We extend TRIC with a support for these activities. The tool automatically determines the change propagation paths, checks the consistency of the changes, and suggests alternatives for implementing the change. A technique that provides trace establishment between R&A by using architecture verification and semantics of traces. It is hard, expensive and error prone to manually establish traces between R&A. We present an approach that provides trace establishment by using architecture verification together with semantics of requirements relations and traces. We use a trace metamodel with commonly used trace types. The semantics of traces is formalized in FOL. Software architectures are expressed in the Architecture Analysis and Design Language (AADL). AADL is provided with a formal semantics expressed in Maude. The Maude tool set allows simulation and verification of architectures. The first way to establish traces is to use architecture verification techniques. A given requirement is reformulated as a property in terms of the architecture. The architecture is executed and a state space is produced. This execution simulates the behavior of the system on the architectural level. The property derived from the requirement is checked by the Maude model checker. Traces are generated between the requirement and the architectural components used in the verification of the property. The second way to establish traces is to use the requirements relations together with the semantics of traces. Requirements relations are reflected in the connections among the traced architectural elements based on the semantics of traces. Therefore, new traces are inferred from existing traces by using requirements relations. We use semantics of requirements relations and traces to both generate/validate traces and generate/validate requirements relations. There is a tool support for our approach. The tool provides the following: (1) generation/validation of traces by using requirements relations and/or verification of architecture, (2) generation/validation of requirements relations by using traces. A change impact analysis technique for software architecture using architecture verification and semantics of traces between R&A. The software architect needs to identify the impacted architectural elements after requirements change. We present a change impact analysis technique for software architecture using architecture verification and semantics of traces. The technique is semi-automatic and requires participation of the software architect. Our technique has two parts. The first part is to identify the architectural elements that implement the system properties to which proposed requirements changes are introduced. By having the formal semantics of requirements relations and traces, we identify which parts of software architecture are impacted by a proposed change in requirements. We have extended TRIC for determining candidate impacted architectural elements. The second part of our technique is to propose possible changes for software architecture when the software architecture does not satisfy the new and/or changed requirements. The technique is based on architecture verification. The output of verification is a counter example if the requirements are not satisfied. The counter example is used with a classification of architectural changes in order to propose changes in the software architecture. These changes produce a new version of the architecture that possibly satisfies the new or the changed requirements

    Bridging formal models : an engineering perspective

    Get PDF
    The thesis presents different techniques that can be used to build formal behavioral models. If modal properties are formulated, the models can be subjected to verification techniques to determine whether a model possesses the desired properties. However many native environments do not facilitate tools or techniques to verify them. Hence, these models need to be transformed into other models that provide suitable techniques for a formal analysis. The transformations are classified into two engineering approaches, namely syntactically engineered models and semantically engineered models. Syntactically engineered models are constructed from input specifications without explicitly considering the semantics. Semantically engineered models are constructed from input specifications by explicitly considering the semantics. The syntactic engineering approach presents four dedicated modeling techniques that construct or disseminate verification results for formal models. The first modeling technique describes a way to create models from system descriptions that specify concurrent behavior. Here, we model three variations of a 2×2 switch, for which the models are subsequently compared to models created in the specification languages: TLA+, Bluespec, Statecharts, and ACP. The comparison validates that mCRL2 is a suitable specification language to model descriptions or specify the behavior for prototype systems. The second syntactic technique constructs an mCRL2 model from a software implementation that operates a printer for printing Printed Circuit Boards. The model is used to advise (other) software engineers on dangerous language constructs in the control software. Hence, the model is model checked for various safety properties. The implementation is modeled through an over-approximation on the behavior by abstracting from program variables, such that only interface calls between processes and non-deterministic choices in procedures remain. The third modeling technique describes a language transformation from the language Chi 2.0 language to the mCRL2 language. The purpose of the transformation is to facilitate model checking techniques to the discrete part of the Chi 2.0 language
    corecore