EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Bridging formal models : an engineering perspective

Citation for published version (APA):

Stappers, F. P. M. (2012). Bridging formal models : an engineering perspective. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Mathematics and Computer Science]. Technische Universiteit Eindhoven.
https://doi.org/10.6100/IR738909

DOI:
10.6100/IR738909

Document status and date:
Published: 01/01/2012

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023


https://doi.org/10.6100/IR738909
https://doi.org/10.6100/IR738909
https://research.tue.nl/en/publications/f10c0e45-ee08-41e1-9152-568cf11a502f

Bridging Formal Models

An Engineering Perspective

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van de
rector magnificus, prof.dr.ir. C.J. van Duijn, voor een
commissie aangewezen door het College voor
Promoties in het openbaar te verdedigen
op donderdag 8 november 2012 om 16.00 uur

door

Frank Petrus Maria Stappers

geboren te Weert



Dit proefschrift is goedgekeurd door de promotoren:

prof.dr.ir. J.E Groote
en
prof.dr. M.G.J. van den Brand

Copromotor:
dr.ir. M.A. Reniers



“If our lives don’t have meaning, what can we leave behind for those we care about?”
Michael C. Hall as Dexter Morgan (Dexter, 2011).



Promotor: prof.dr.ir. J.E Groote (Technische Universiteit Eindhoven)
prof.dr. M.G.J. van den Brand (Technische Universiteit Eindhoven)
Copromotor: dr.ir. M.A. Reniers (Technische Universiteit Eindhoven)

Kerncommissie:

Prof.dr. J.J.M. Hooman (Radboud Universiteit Nijmegen)

Prof.dr. J.J. Lukkien (Technische Universiteit Eindhoven)

dr. W. Serwe (Centre de Recherche Inria, Grenoble, Rhone-Alpes)

© 2012 by Frank Stappers. All rights reserved.
IPA dissertation series 2012-12.
Typeset using BIEX (TgXLive 2012).

Cover design by Rob Jacobs.
Printed by Printservice Eindhoven University of Technology.

(s

NS
DE §

Tz,
v,
,
o,
S %
% —
2, &
4 &8
Uy e

e

The work in this thesis has been carried out under the auspices of the research school
IPA (Institute for Programming research and Algorithmics), supported by “ITEA project
TWINS: Optimizing Software Hardware Co-design Flow for Software Intensive Systems”
(No. 05004) and “KWR project LithoSysSL: Language-oriented, Domain Specific Mod-
eling Environments for the Specification Verification and Validation of Lithography Sys-
tems” (No. 09124).

A catalogue record is available from the Eindhoven University of Technology Library
ISBN: 978-90-386-3263-6



Acknowledgments

It has been over five years ago that I started as a PhD-student. Jan Friso Groote asked
me during one of the drinks at the Formal Methods Group, whether I would like to
participate in the European ITEA2 Twins project. The start of this project and the
ensuing five years finally led to this thesis. As science and experts constantly scan the
horizon for new problems to be solved in both academia and industry, there are many
people to whom I owe thanks.

First of all, I would like to express my gratitude towards my supervisors Jan Friso
Groote and Michel Reniers. Jan Friso gave me the opportunity to conduct research
and freely explore my fields of interest. Michel helped me to structure my chaotic
ideas into human readable results. As co-author of almost all of the work in this
thesis, it is more than safe to say that without Michel’s help this thesis would have
been a lot shorter. Furthermore, I thank them for the patience they had to listen to
me. I enjoyed the countless discussions and numerous conversations we had.

I would also like to thank the reading committee for carefully reviewing my thesis:
Mark van den Brand, Jozef Hooman, Johan Lukkien and Wendelin Serwe. They have
provided me valuable comments and feedback that improved the manuscript sub-
stantially. I am also honored that Jean-Marie Jacquet agreed to serve as an opponent
during the defense.

During my time as a PhD-student, I participated in the ITEA2 Twins project and the
LithoSysSL project at ASML. Both projects allowed me to work with many inspiring
people, led me to do some amazing assignments at different sites, and enabled me
to directly discuss research and its practice with people that share similar interests.
Here, I would like to thank all participants from the Twins Project for the wonderful
times we had during the European meetings. My thanks go out to Suzana Andova,
Jos Baeten, Istvan Nagy and Sven Weber for giving me the opportunity to participate
in the LithoSysSL Project. The internship at ASML's Production Control Group repo-
sitioned my research direction. It showed me the kind of research that is important
to industry. In particular, I am indebted to Sven as being my daily supervisor dur-
ing the internship period, his enthusiasm for applying formal methods, and being a



ii

committed co-author for the work presented in the second part of this thesis.

For my time at the university, I have spent the first two and a half years at the De-
sign And Analysis Group, one year at the Formal Methods Group, and one and a half
year at the Model Driven Software Engineering Group. Here, I had the opportunity
to work with, and to meet fascinating people. I would like to say a word of thanks
to all mCRL2 developers which I have met throughout the years, and all the people
with which I had to share rooms: Jeroen van der Wulp, Aad Mathijssen, Doaa Hassan,
Harsh Beohar, Tim Willemse and Maciej Gazda. Furthermore, I would like to thank
all co-authors, people and companies that provided me content to work with: Suzana
Andova, Sjoerd Cranen, Lou Dohmen, Jan Friso Groote, Jeroen Keiren, Aad Mathijs-
sen, Maarten Meulen, Istvan Nagy, Bas Ploeger, Michel Reniers, Eugen Schindler, Kle-
ment Schindler, Lou Somers, Carst Tankink, Yaroslav Usenko, Sven Weber, Muck van
Weerdenburg, Wieger Wesselink, Tim Willemse, Jeroen van der Wulp, NBG Indus-
trial Automation and ASML. In particular, I would like to thank Jeroen Keiren and
Sven Weber for spending their valuable time to read my thesis and provide helpful
comments.

A special word of thanks I am allowed to all my family and friends for supporting
me during my PhD candidacy.

Finally, I thank my parents, Albert and Ine, and my brother Mark for their uncondi-
tional love, care and support throughout the years.

Frank Stappers, Augustus 2012



Contents

Acknowledgments i
List of Figures ix
List of Tables Xi
1 Introduction 1
1.1 Motivation and Background . . .. ................ ... ... 1
1.2 Model Engineering Framework . ... .................... 2
1.2.1 EnVIrONMeNts . . . . v v vt vttt et et e e e e e e e 4

1.2.2 Model Engineering Bridges . . . ... ................ 5

1.3 Problem Statement. . . .. ...... ... ... 5
1.3.1 Language Implementation Gap . . ................. 6

1.3.2 Semantic TransformationGap . . . .. ... ............ 6

1.3.3 Cognitive Feedback Gap. . . . . ....... ... ......... 7

1.4 Syntactically Engineered Models . ... ................... 7
1.4.1 Modeling System Descriptions . . . ... .............. 8

1.4.2 Modeling Implementations . . . . ... ... ............ 8

1.4.3 Modeling Language Constructs . ... ... ............ 9

1.4.4 Disseminating AnalysisResults . .................. 9

1.5 Semantically Engineered Models . .. .................... 10
1.5.1 Formalizing a Behavioral Language . . . . . ... ......... 10

1.5.2 Creating a Semantic Engineered Bridge . . ............ 11

1.5.3 Applying the Semantic Engineered Bridge . ........... 11

1.5.4 Reflecting on the Semantic Engineered Bridge . . . . . ... .. 11

1.6 Structureof the Thesis . . ....... ... ... ... ... . . ...... 12

2 Preliminaries 13
2.1 Structural Operational Semantics . . . . ... ... ... ... ....... 13

iii



Contents

2.2 ThemCRL2Language . . .. ... ...t tunnnnnnn.. . 14
2.2 1 Syntactic CONCEPLS . . v v v v v v vt et e e e e e 15
2.2.2 SemanticConecepts . . . . . ... i it 18
2.2.3 mCRL2’s Structural Operational Semantics . . . ......... 22

2.3 Linear Process Specifications . . . . . ... ... ...t 22

2.4 Modal p-Calculus. . . .. ... o 25

Syntactically Engineered Models 29

Modeling System Descriptions 31

3.1 IntroducCtion . . . . . . .. .o i v e 31

3.2 Specification of the Simplified 2x2 Switch ... ... ........... 32
3.2.1 BitsandPackets. . . ... ... .. ... 33
3.2.2 CapacityoftheBuffers .............. ... ...... 34
3.2.3 Information Exchange between Processes . . . ... ....... 34
3.2.4  Output Buffers with Capacitycap . . . ... ... ......... 35
3.2.5 Input Buffers with Capacitycap . .................. 36

3.3 Specification of the Original 2x2 Switch . ................. 38
3.3.1 Packets . ... ... 39
3.3.2 TheActofCounting . ............... .. oou.n... 39
3.3.3 Adapting the InputBuffer ...................... 40

3.4 Specification of the Modified 2x2 Switch . . .. ... ........... 41

3.5 Propertiesofthe Models . ............ ... ........... 41
3.5.1 Deadlock Detection . ............ ... .. ...... 42
3.5.2  Absence of Overflowing Buffers . . . .. .............. 42
3.5.3 Absence of Colliding Packets . . . . ................. 43
3.5.4 Maximal Progress . .. ... ........ it 44
3.5.5 VerificationResults . . . ... ... ... ... . ... 44

3.6 Comparison to Other Specification Languages . . ... .......... 44
3.6.1 Localityof Reasoning . ........................ 45
3.6.2 Adaptability . ... ... ... . .. 46
3.6.3 Maximal Throughput ................ ... ...... 47
3.6.4 Verification. . . .. ... ... 47

3.7 Conclusions . . . .. ...t 49

Modeling Implementations 51

4.1 Introduction . . . .. .. .. .. ittt 51

4.2 System Description . . . . . . ... u i 52

4.3 Simplified Concurrency Programming Language . . . . ... ....... 53

4.4 Relating the Implementationto SCPL . . . ... .............. 54
441 ExecuteTasks . . ....... ... .. ... ... 55
442 SwitchTasks. . ... ... ... . ... i 56

4.5 Transformation Scheme . . . .. .. ... ... .. ... .. .. .. 57



Contents v

4.5.1  ProCESSES . & v v v v i e e e e e e e e e e e e 58
4.5.2  StatementS. . . . v v v v vttt e e e e e e e e e 59

4.5.3 Transformation by Example . .................... 62

4.6 Verification. . . . ... ... .. 62
4.6.1 Warnings . . . . . . .. e e 63

4.6.2 Critical Errors . . . . . . .. . e 63

4.6.3 SoundnessoftheModel. . .. .................... 64
4.6.4 Verification Details . . . . .. ... ... ... . ... 65

4.7 Relatedwork ... .. ... .. ... ... 65
4.8 Conclusions . . ... . ... .. 67
5 Modeling Specification Languages 69
5.1 Introduction . ... ... ... .. .. 69
5.2 Syntax and Semantics of the Chi 2.0 language . . . . ... ........ 70
5.2.1 Syntactic and Semantic Differences. . . . . . ... ... ... .. 71

5.2.2 0 SYNAX . . v e e 76

5.2.3  Semantics . . . .. ... 79

5.3 Translation Scheme . ........... ... ... . . . . ... ... 80
5.3.1 Time with MicroSteps . .. ... ... ............... 81

5.3.2 Ultimate Delay Function . ...................... 81

5.3.3 Relating Transition Relations . . . . ... .............. 81

5.3.4 Global Urgency Mapping . . . ... ... ... ....o...... 82

5.3.5 Translating a Specification . . .................... 83
5.3.6 AtomicTerms . .. ... .. ...t 87
537 ProcessTerms . . ... ... .. 91

5.4 Additional Considerations . . ............. ... .... 97
5.4.1 Valuation with Undefined Variables . . . . ... .......... 97

5.4.2 Setof Changing Variables. . . . ... ................ 98

543 Time . ... .. 98
5.4.4 Urgencyon ChannelEnds ...................... 98

55 Examples. . . . ... 99
5.5.1 Guarded Action Update Example . . ................ 100

5.5.2  Alternative Composition Example . . . .. ............. 101

5.5.3 Parallel Composition Example . . . .. ............... 104
5.5.4 Communication Example . . . .. ......... ... ...... 105

5.6 Related Work . ... ... ... ... . . ... ... 107
5.7 Conclusions . . . ... ... .. 107
6 Disseminating Verification Results 109
6.1 Introduction . ... ... ... ... ... 109
6.2 Approach . .. .. ... ... 110
6.2.1 ActionTrace . . . .. .. ...t 111

6.2.2 Physical Model ... ......... ... . ... . ... ... ... 112

6.2.3 KinematicLanguage . ... ... ... ... ... 112



vi

II

Contents

6.2.4 Kinematic Pre-processor . ...................... 113

6.2.5 Kinematic Visualizer . . . ... ........... ... ...... 116

6.3 CaseStudy . . . . .. i e 116
6.3.1 Design Rules and Assumptions . . ................. 118

6.3.2 TheTrace . .. ... ...t 118
6.3.3 The Physical Model . ............ ... ... ..... 119
6.3.4 The Interconnecting Model . . . . . ................. 120

6.3.5 Visualization. . ... ... ... ... ... ... 123

6.4 RelatedWork . ... .. ... ... . ... ... 123
6.5 Conclusions . . ... ... ... ... e 125
Semantically Engineered Models 127
Formalizing a Behavioral Language 129
7.1 Introduction . .. ... ... ... ... 129
7.2  Formalizing Domain Notions . . . . .. .................... 130
7.2.1 Running Example. . ... ... ... ... ... .. . ... ..., 132

7.2.2  Concrete Syntax Projection . . . .. ................. 132

7.2.3  Derived Formal Syntax, Taxonomy and Static Semantics . . . . 137
7.2.4 Validation of the Formal Syntax . . . ... ............. 138

7.2.5 Formal Syntax for Legacy Constructs . . . . .. .......... 140

7.3 Formalizing Dynamic Semantics . . . . . . ... ... ... 140
7.3.1 Semantic Preliminaries . ....................... 141

7.3.2 Operational Semantics . ....................... 141

7.3.3 Auxiliary Operational Semantics . . ................ 145
7.3.4 Validation of the Formal Semantics . . . . ............. 146

7.4 Related Work . .. ... ... . . ... e 147
7.5 Conclusions . . ... ... .. ... .. 149
Defining a Semantic Bridge 151
8.1 Introduction . .. ... ... ... ... 151
82 Method . . ... ... . e 152
8.2.1 Signature Transformation. . . ... ................. 153
8.2.2 Transition Relations . ............ ... . ......... 153
8.2.3 Linear Process Transition Generator . ............... 156

8.3 Correspondence . . . ... ... 156
8.4 Application . ... ... ... ... 157
8.5 Implementation . . . .. ... ... ...ttt 159
8.6 Predicate Extension . ... ... ... ... ... 160
8.7 Rule FormatExtensions . . .................c...ui..... 163
8.8 RelatedWork . .. ... ... . . . . ... e 164
8.9 Conclusions . . . . ... ..ttt 165



Contents

9 Applying the Semantic Bridge

9.1
9.2

9.3

9.4
9.5
9.6
9.7
9.8

Introduction . . . . . ... e
mCRL2 Specific Design Decisions . . . ... ... ..............
9.2.1 DeductionRules . ......... ... ... . ...,
9.2.2  Successful Termination . .......................
9.2.3 ProcessTerm . ... .. .. ...t
9.2.4 Data. ... ..ot e
9.2.5 DataExpressions . ... ....... ...t
9.2.6 Multi-actions . . ........ ... . ... .
9.2.7 Transition Relation Representation . . . ..............
Modeling DeductionRules . . .. ... ....................
9.3.1 Deadlock . . . ... ...
9.3.2 Multi-actions . . . . . . .. it
9.3.3 Alternative Operator . . . . . . . . v v v vt i
9.3.4 Sequential Operator . .. ................oo.....
9.3.5 Conditional Choice . . .. ... ... ... ...... . ........
9.3.6 SumMOPerator . . . . ... ...
9.3.7 ParallelOperator . . ......... ... ...
9.3.8 SyncOperator. . . . ... ...ttt
9.3.9 Left Merge Operator . . . . . . v v v v v v i vt i ee e
9.3.10 Allow Operator . . . . .. .. ... viun e nnnn..
9.3.11 Block Operator . . . ... ... ... ...,
9.3.12 Action Rename Operator . . .....................
9.3.13 Hide Operator. . . . . . ..ot i i e e e
9.3.14 Prehide Operator . . . ... ... ..t
9.3.15 Communication Operator . . . . . . . . v v v v v v v v v v v v
9.3.16 Process Definition . . ................. .. ......
Examples . . . . . .. e
Discovered ISSUES . . . . . . o it i e
Implementation . . . . .. ... ... .
Related Work . ... .. ... .. .. . .
Conclusions . . ... ... ...

10 A Reflection on the Semantic Bridge

10.1
10.2
10.3
10.4

Introduction . . . . . . . .. e
Model Correspondence . . .. ... ... ... v v iu e
ReStrictions . . . . . . oo v it e
Suitability . . ... ... . ..
10.4.1 Language Prototyping . . ... ... .................
10.4.2 Integration into Development . . ..................
10.4.3 Separationof Concerns . . .. ... ... . ... ...,
10.4.4 Maintainability . . ........... ... ... ... ... ...
10.4.5 Reusability . . . . ... .. ...



viii

Contents

11 Conclusions 217
11.1 Contributions . . . . . .. .. i 217
11.2 Future Work . . . . . . . e 219

A Proofs 221
A.1 Correspondence Relation Between Chi 2.0 and mCRL2 Specifications 221

A1.1 RelatingChi2.0tomCRL2 . . ... ................. 221
A.1.2 RelatingmCRL2toChi2.0 .. .................... 223
A.2 Correspondence Relation between TSSand LPS . . ... ... ...... 227
A.2.1 Labeled Transition System Associated with a Linear Process
Specification . . . . ... ... ... 227
A.2.2 Labeled Transition System Associated with a Transition Sys-
tem Specification . . . . ... ... oo 228
A23 Lemmas . .. ... 228
A.2.4 Proof of the Correspondence Theorem . . . . .. ......... 229

B Models 233

B.1 2x2SwitchModels .. ... ... ... .. ... . ... . 233
B.1.1 The Simplified Switch . . . . ... ... ............... 233
B.1.2 The Original Switch . . ... ... ... ...... ... ...... 234
B.1.3 The Modified Switch . ... ..................... 236

B.2 Translated Chi2.0 Models . ... ....... ... ... . ... . ..... 238
B.2.1 Guarded Action Update Example . . ................ 238
B.2.2  Alternative Composition Example . . . . .. ... ......... 239
B.2.3  Parallel Composition Example . . . .. ............... 240
B.2.4 Communication Example . . ... .................. 242

B.3 The Wafer Dryer Facility Model . . . ... ..... ... ... ..... 244

B.4 Minimal Process Theory Models . . . ... .................. 248

B.5 Semantically Engineered mCRL2 Models . ................. 251
B.5.1 Language SemantiCs . . . . . . v v v v v v vt e 251
B.5.2 Model Specific Semantics . . . . ... ... ... ... 266
B.5.3 InputModels . ......... ... . ... ... 268

Summary 287

Samenvatting 289

Curriculum Vitae 291

Index 293



List of Figures

1.1

3.1
3.2

4.1
4.2
4.3

5.1

5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
7.4

8.1
8.2

9.1

Bermuda Triangle of model engineering . . ................. 3
A2x2switchandacounter. . .. ....................... 33
Complexity of the mCRL2 specifications expressed in the number of
states and transitions for the simplified and original switch models .. 48
State diagram for an Execute Task . . . .. .. .......... ... ... 56
State diagram for a Switch Task . . ...................... 56
LTS for an SCPL specification . . . . .. .................... 63
; Mem([[V]])
Information exchange between a memory process X p:o and a
translated process X IfthiRLz ............................ 85
Information exchange between a time process X ;’g&z and a translated
process XM o 87

Relationship between components for the proposed co-design solution 111

Schematic control flow for the wafer drying facility . ........... 117
The state space for the dryer system with a red colored deadlock . . . . 119
Three objects from the physical model . . .................. 120
Four still images taken from the kinematic visualization ......... 124
Partial Tiramisu recipe in the DSL’s concrete syntax . . . ... ... ... 132
Subplans and their initialization in the DSL’s formal syntax . ... ... 139
Ambiguity on finish—start and start—start relations . . .......... 139
Generated LTSs for a discovered disambiguation . . . ... ........ 148
Three generated LTSs for different MPT SOS input models . . . . . . .. 159
Generated LTS for the input model alt(a,(zero),a,(one)) . . . . ... .. 163
Six generated LTSs for different mCRL2 SOS input models . . . . . . .. 204

ix



List of Figures

9.2 Generated LTS for the mCRL2 process Py(v;:B) = a;(v;) - P4(—v;) ... 206

10.1 Relating the (meta)-models in the semantical engineering approach . . 213



List of Tables

2.1
2.2
2.3
2.4
2.5
2.6
2.7

3.1

5.1

7.1
7.2
7.3

7.4
7.5
7.6

9.1

SOS deduction rules for the basic operators . . . . ............. 23
SOS deduction rules for the sum operator . . . ............... 24
SOS deduction rules for the time and the initialization operator . ... 24
SOS deduction rules for the parallel operator . . . . ............ 25
SOS deduction rules for the auxiliary parallel operators . ........ 26
SOS deduction rules for the auxiliary operators. . . ... ......... 27
SOS deduction rules forrecursion . . . .. ... ... ... L. 27
Verification results for five modal properties. . . . ... .......... 44
Suggested definition for urgency on channelends . . ........... 98
Formal abstract syntax and taxonomy forthe DSL . . .. ......... 137
Static semantics forthe DSL . . . .. ... ... .. ... . .. 138
Formal abstract syntax for expressing the DSL’s legacy language con-

STTUCES © . v v v e e e e e e e e e e e 140
Deduction rules for the DSL’s basic operators . . . . ............ 142
Definition for the DSL’s process term Pgemantics « « « « « + = = = » « « « « « « 145
Deduction rules for the DSL’s auxiliary operators . . . . ... ....... 147
Example of a missing operator in a deductionrule . . . ... ....... 207

Xi



xii List of Tables



e 1

Chapter

Introduction

1.1 Motivation and Background

Modern systems are a synergistic combination of hardware components and govern-
ing control software. These systems find their applications in different fields ranging
from consumer electronics to aerospace flight systems. Because these systems are in-
creasingly facilitating our day-to-day services, they require to be functionally reliable.

By providing additional services the complexity of these systems grows. This means
that it becomes harder to guarantee the absence of errors, as tests become more
time-consuming and costly. Consequently, it becomes unfeasible to manually and
exhaustively test all possible behavior. Hence, the chances increase that errors remain
undetected in manufactured systems.

Since it is practically impossible, and in some cases even undesired, to test all be-
havior on a (physical) system, other techniques are required that ensure correctly
operating systems. Here, formal analysis using behavioral models can assist. These
models describe the essential behavior without ambiguity, which makes them suit-
able for different kinds of analysis, such as demonstrating use cases, running virtual
simulations, or proving their correctness.

Within a field of a single engineering discipline many different formalisms, methods
and tools are available to carry out such an analysis. The tools that support an analysis
are as weak as the most difficult concept that needs to be specified and analyzed.
Therefore, selecting an appropriate formalism that allows for the specification, the
modeling, and the analysis of a system is a difficult task.

To assist engineers, this thesis puts forward two research questions, namely:

I “What are practiced methods to create formal behavioral models, suitable for verifi-
cation?”, and



2 Chapter 1. Introduction

I “Can we systematically administer formal techniques to translate behavioral models
into a formalism that facilitates formal verification?”

The first part of the thesis investigates the first research question. It sketches the
difficulties that engineers face when hand-crafting formal models. With the help of
a model engineering framework we formulate, position and explain the practical
(bridging) problem statement when formal models are engineered for a behavioral
analysis. The framework describes the different application environments and the
model-to-model transformations (bridges) that connect them. Illustrated by several
case studies, we show the usage, benefits and pitfalls for several of these bridges.

The second part of the thesis addresses the second research question. It investi-
gates how the quality of formal models can be improved, while reducing the labor
intensive task of hand-crafting formal models. It constitutes a technique that allows
the engineering of formal models in a processable manner using the semantics of a
language. The thesis explains the entire process. It starts with the formalization of
an informal language. Then we present the technique that transforms a model, along
with a formal language definition, into a formal model suitable for analysis. With the
help of this technique, we finally analyze a formal language and its implementation.
The language and implementation are used for the specification, modeling, validation
and verification of system behavior.

1.2 Model Engineering Framework

In multidisciplinary system development, models are typically created in different lan-
guages to represent different views on a system. The way in which the different views
are related is depicted in Figure 1.1, which presents the model engineering framework.

An environment defines a perspective where engineers specify, reason about, ana-
lyze, and possibly execute behavior that is associated with these models. An environ-
ment consists of at most three components. The components that are obligatory are
a language component and a model component. The engine component is optional.

A language component is dissected into two parts, namely syntax and semantics.
Syntax specifies the form of a language. Semantics specifies the meaning of a lan-
guage. Both can be decomposed into two parts.

Syntax is decomposed into abstract syntax and concrete syntax.

e The abstract syntax represents the mathematical notions of a language, typically
reflected by processable and algebraic tree-like data structures.

o The concrete syntax consists of the visible notions of a language including all
the visible features of a language like parentheses and delimiters.

Semantics is decomposed into static semantics and dynamic semantics.

o The static semantics defines the restrictions on a structure of valid notions. Static
semantics is used to e.g., check that identifiers occur in an appropriate context,
or that variables are properly typed.



1.2. Model Engineering Framework 3

Specification
—
Model
—_—
5 Language, | 3,
< F %,

Analysis Interchange Execution
—_— —_— —_—
Model, Model, Model,
Bridge Bridge
Language, Language, Language,
—_— —_—
Engine, | — > Engine,

r ridge

Figure 1.1 Bermuda Triangle of model engineering

e The dynamic semantics defines the computational model for the (composed)
execution behavior of the language’s abstract notions. The dynamic semantics
can be defined in three different classes. Operational semantics is a commonly
used class to express dynamic semantics. Examples of these notations are found
in [Chu32, GKOTO00, Plo04].

Axiomatic semantics is an alternative class that assigns meaning to a set of ab-

stract notions and their relations through predetermined assertions. An exam-
ple is found in [Wil11].

The final class is denotational semantics, which describes the effect of a set of
abstract notions and their relations [Sco70] through another piece of syntax,
possibly defined in another language. Examples of this notation are found in
[Rep93, JRH"99, HVB0O].

A model component is a behavioral description of a system prescribed by a grammar
and is restricted to the static semantics of a language. A model is an instance of a
language.

An (optional) engine component implements the (intended) dynamic semantics of
a language. The semantic execution can be expressed in various ways, e.g., a compu-
tation plotted as a function over time, a list of operations performed by a system, or
as transitions between states.



4 Chapter 1. Introduction

1.2.1 Environments

The model engineering framework consists of at most four environments. These en-
vironments are a specification environment, an analysis environment, an execution
environment, and an optional interchange environment.

Specification Environment

The specification environment allows engineers to create their behavioral specifica-
tions (i.e., models) of a system. Depending on their purpose and the application,
i.e., the domain, different specifications from different formalisms can be used. Typi-
cally, the models are geared towards a particular set of aspects for a domain. Hence,
domain specific languages often facilitate model development.

In our view, the specification environment is solely used to specify models. When-
ever we want to analyze or execute these models, they need to be first transformed to
either the analysis or the execution environment, respectively.

Analysis Environment

The analysis environment allows engineers to analyze the dynamic behavior of a
model. To determine if a model conforms to a set of properties, the model is either
validated or verified. By validation one experimentally tests for a limited set of scenar-
ios that a property holds. In practice, there are two forms, namely (i) simulation and
(ii) testing [CGP99]. Simulation is a validation based on the execution of an analysis
using (abstract) models. Testing is a validation based on the actual realization, e.g.,
the actual software or hardware modules. Verification provides a proof that a desired
property holds for all possible conditions and for all possible scenarios w.r.t. a model.
In practice, there are two forms, namely (i) model checking and (ii) theorem prov-
ing [CGP99, HR04]. Model checking consists of a systematic exhaustive (symbolic)
exploration of the system’s state space while dealing with a modal property. Formal
proving relies on mathematical reasoning yielding a proof that a property holds.

Verification results only hold for the enclosed models. They do not guarantee a cor-
rect implementation. Because models often serve as guidelines for an implementation,
the implementation itself needs to be validated separately.

Execution Environment

The execution environment allows engineers to execute models on a dedicated plat-
form. Executable models are obtained when models are compiled into source or
machine-specific code. A compilation enriches a model with the implementation de-
tails and the inner-workings of a platform’s execution architecture. After the model
has been compiled, it can be executed on the targeted platform.



1.3. Problem Statement 5

Interchange Environment

The interchange environment provides engineers the (operational) re-use of models,
offers inter-operability, or coordinates interaction between environments. An inter-
change environment is often described by a special language that incorporates con-
cepts from different languages, results from agile development, or the attempts from
earlier efforts to connect environments. Ideally, an interchange language is defined as
a super-set language that spans over all of the languages that are used throughout a
development process. Interchange environments often act as a pivot point for which
transformations to and from other environments are created.

An example of a language that is used in the interchange environment is the Com-
positional Interchange Format (CIF) [BRSRO7, BCN1T09], which has a formal and
compositional semantics based on (hybrid) transition systems and allows property-
preserving model-to-model transformations between languages. Another language is
the eXtensible Markup Language (XML) [BPSM*08], a markup language that defines
a set of rules for encoding documents in a format that is both human- and machine-
readable, originally designed for simplicity, generality, and usability over the internet.

1.2.2 Model Engineering Bridges

To share information between environments model-to-model transformations are re-
quired. A model engineering bridge denotes a model-to-model transformation between
two (possibly) different environments. In this thesis we distinguish two kinds of
bridges, namely syntactic bridges and semantic bridges.

A syntactic bridge transforms the (relevant) syntactic notions of one language into
a (set of related) syntactic notions in another language without explicitly considering
the semantics. A syntactic bridge produces syntactically engineered models.

A semantic bridge explicitly considers the semantics when mathematically trans-
forming models. For the latter kind of bridges, we assume that the relationship be-
tween two languages is mathematically defined through the semantics, and could be
automated based on its language definition. A semantic bridge produces semantically
engineered models.

1.3 Problem Statement

To analyze a system, we need to create a model in a formalism that facilitates for-
mal verification. Creating these bridges requires craftsmanship that is guided by the
intuition of experts, or by engineers that require intensive education. Even though
many systems have been formally verified, in both academic and industrial settings,
and flaws are almost always found, e.g., [GPWO03, MP07, vEtHSUO7, HKW11], it is
still possible that discrepancies remain between a specification and a manually de-
rived model. As these transformations are often non-trivial, contain pitfalls, require
abstractions or enrichments, and detailed knowledge on the involved formalisms is



6 Chapter 1. Introduction

necessary, they might introduce gaps and interpretation errors, which can easily stay
undetected [ABPVO08]. This section describes the possible gaps.

1.3.1 Language Implementation Gap

The first gap concerns the preservation of the behavior when implementing a lan-
guage. A domain-specific language (DSL) focuses on a particular problem and tends
to abstract from irrelevant aspects. For executable languages it may abstract from
software implementation details that are added during code generation. Although
the technique is applied in industry and promising results are obtained, it nevertheless
occurs that generated (template) code is incomplete. Hence, the generated models
require post-processing that (i) manually adding vital control information, (ii) wrap-
ping models in “glue code”, to match to interfaces of interacting components, or (iii)
injecting code to cover (non)-functional aspects, e.g., diagnostic tracing.

Domain-specific languages often use notions from existing formalisms, e.g., [Nie04,
ABE10]. Unused parts, parts that do not correspond to desired semantics of a DSL,
or concepts that alter over time due to changing requirements, are often subject to
semantic changes. Hence, tools and engineers might perceive semantics differently.
As the underlying implementation of a language is performed manually, there is no
guarantee that the implementation adheres to the specified semantics.

As different languages cover different (design) aspects, potentially spanning over
different integration levels, they may influence the interoperability between models
and implemented code. All changes made to the models may result in a more time
consuming or more difficult integration effort. Consequently, it affects the develop-
ment and maintainability issues thereafter. So, the lack of integration and interoper-
ability of the underlying languages hinders the use of models as executable contracts
between (multi-disciplinary) domains.

1.3.2 Semantic Transformation Gap

The semantic transformation gap relates to the differences introduced by model-to-
model transformations. While every environment focuses on a different aspect, (e.g.,
correctness in the analysis environment, performance in the execution environment,
flexibility in the specification environment, and interoperability in the interchange en-
vironment) it consequently means that model-to-model transformations change the
focus of a model. Hence, in-depth knowledge on the involved languages and their
subtleties, and a thorough understanding of the underlying methods and tools are re-
quired to perform these transformations. Complementary surveys [CW96, WLBF09]
underline these findings.

Syntactic model-transformations are often handcrafted. Therefore, there is always
a risk that a syntactic engineered bridge contains undetected errors. Tracking these
errors requires at least the same level of expertise as the level required to create a
transformation. Moreover, when an error remains undetected, which influences the
analysis, it may produce incorrect verdicts.



1.4. Syntactically Engineered Models 7

The semantic expressiveness of a language also contributes to the transformation
gap. When models are transformed, it is possible to reason and prove that cer-
tain behavior stays preserved. In practice, providing these proofs is hard and time-
consuming. Hence, they are neglected and the results of an analysis are validated
manually. When model-to-model transformations are performed between informal
and formal languages, one should reckon with the interpretation of the semantics for
the informal language, as it often comes with ambiguities, sparsely applied abstrac-
tions, and ad-hoc transformations.

1.3.3 Cognitive Feedback Gap

The cognitive feedback gap describes the amount of interpretation needed to relate
results from an analysis back to a specification model. The cognitive gap occurs when
information in the model changes, information is added or is abstracted from, dur-
ing the transformation (i.e., a focal point change), or are introduced when engineers
from different disciplines cooperate. To illustrate the gap, assume a syntactic bridge
between the specification and the analysis environment. When we perform the analy-
sis and we observe that a requirement is violated, we need to determine the cause. In
most cases, either the specification or the formalization of the requirement is incor-
rect. However, the cause can also be due to an ill defined transformation or an error
in the implementation of the tools that conduct the analysis.

1.4 Syntactically Engineered Models

The first part of this thesis describes four techniques that engineer formal models by
using syntactic bridges. The techniques describe and illustrate the bridges from dif-
ferent perspectives. By taking smart design decisions, having detailed knowledge on
the involved environments, languages and tools, and relying on the engineer’s experi-
ence, these bridges informally define and (hopefully) preserve the intended semantics
and the relevant properties between environments. The results of the transformations
can be used to verify modal properties.

o the modeling of system descriptions (a bridge from the specification environ-
ment to the analysis environment - Chapter 3),

o the modeling of an existing implementation (a bridge from the execution envi-
ronment to the analysis environment - Chapter 4),

o the modeling of a (formal and hybrid) simulation language (a bridge from the
interchange environment to the analysis environment - Chapter 5), and

o the round-trip that shows how verification results can be presented in a visual
interchange model (a bridge from the analysis environment to the interchange
environment - Chapter 6).



8 Chapter 1. Introduction

1.4.1 Modeling System Descriptions

Modeling a system based on an informal description is typically performed at the
start of system development. The route is often used to prototype a system or as an
exercise to address the limitations of a formalism [DS09, SRG09].

When we construct a model that possesses the set of desired properties, it ensures
that (i) the formalism is suitable for development purposes, and (ii) it increases the
chances to actually deliver the system in mind. By means of a comparative case
study, we examine in Chapter 3 the suitability of a specification language. For this
purpose, we derive formal models from a set of system descriptions. As properties
are gradually added, they impose restrictions to the modeled system. The models are
constructed and verified using the mCRL2 formalism [GMWU06, GMR106, GKM™'08,
Sofb, GMR*09]. Subsequently, we compare the formalism to others for which similar
models have been constructed. The case study indicates that the mCRL2 formalism is
suitable to specify and verify system designs.

Verification should be performed at the beginning of system development. Even
though, it occasionally happens that properties change over time, due to unforeseen
(though essential) behavior, mistakes in requirements, restrictions imposed by tools,
or customer demand. The implementation of a behavioral model (i.e., the imple-
mentation model created in the execution environment) is often written by different
engineers by hand. The analysis of a behavioral model (i.e., the behavioral model de-
duced and used in the analysis environment) is often performed by other engineers.
Since both models are created in different environments by different people, they
have a higher chance to exhibit different behavior. Consequently, the results obtained
during the analysis may not (directly) reflect the actual system’s behavior.

1.4.2 Modeling Implementations

Engineering a model from an implementation is a technique that is practiced for two
reasons. Firstly, for demonstrating that an implementation complies to a safety stan-
dard, e.g., IEC-61508 SIL-4 standard [65A10], or a set of rules and regulations that
prevent hazardous or life-threatening situations [WBRGO08]. Secondly, when system
behavior has become unclear or unpredictable behavior is encountered.

Implementations provide a detailed view on the execution. However directly ver-
ifying any requirements is impossible, because the models are too complex to be
analyzed. Consequently, abstractions are required to capture the essential behavior of
a system and to conduct a meaningful verification.

Chapter 4 presents a case study that derives and analyses a model from software
code. The implementation has been used in an industrial application to control the
components for a printer that manufactures Printed Circuit Boards. Since the imple-
mentation of the actual controller was outsourced, we verified an unrestricted model
for violating requirements that could potentially harm the system. The violating re-
quirements are announced to the outsourcing party, along with the traces that led to
a violation. In this way, they could implement a hazardous-free controller.



1.4. Syntactically Engineered Models 9

Although the technique has been successfully applied, it has a couple of disadvan-
tages. Firstly, it is a labor-intensive task, because it requires a fully implemented
system and models are (almost always) crafted by hand. Secondly, implementations
are organic, i.e., they are always subjected to bug-fixes and extensions that provide
new features. Thirdly, performing the verification at the (near) end of a development
can become costly. Especially when errors are detected that require an iteration in the
development trajectory, that could have been prevented by first verifying the design.

1.4.3 Modeling Language Constructs

Models that are constructed through a denotational mapping relate constructs be-
tween languages via a function. Depending on the richness of a formalism (expressed
by the number of language concepts and the available analytic methods), multiple
languages and/or syntactic engineered bridges are required. When a target language
defines a superset of concepts, w.r.t. the source language, it is possible to define a
single bridge. When a target language defines a subset, often multiple bridges are
required.

Chapter 5 translates the modeling language Chi 2.0 to the mCRL2 language. The
transformation (indirectly) facilitates verification for the (timed) discrete event part
of the Chi 2.0 language. For some examples we show that the translation preserves
the intended behavior, by providing some empirical evidence that the translation is
correct.

Although both formalisms are process algebra like and express similar behavior, the
transformation scheme is complex. It requires detailed knowledge on the involved
languages and formalisms. Especially the (small) semantic deviations contribute to
a complex transformation. Hence it is not possible to provide mappings for all the
constructs. Therefore, this transformation requires human ingenuity to resolve the
semantic incompatibility. Since it is hard to guarantee the behavioral equivalence be-
tween a source and a target formalism by means of a proof, or for reasons of resources,
e.g., time, budget, etc..., they are usually omitted.

1.4.4 Disseminating Analysis Results

During system development it is important that knowledge is shared among all in-
volved engineering disciplines. This also holds for verification results. Since models
from different environments often have different representations, it is highly unlikely
that all of the involved disciplines understand the verification results. Hence, the need
arises for solutions that can easily be understood by all.

Chapter 6 promotes a visualization technique that disseminates verification results.
With the help of physical models that are actually used within industry, the formal
models that describe behavior, and an intermediate model that connects them, we
generate animations, that improve the sharing of information and the cooperation
within multidisciplinary environments.



10 Chapter 1. Introduction

Although that such a solution assists in narrowing the gap between the engineer-
ing disciplines, it requires interpretive steps, that compose, generate and interpret
animations.

1.5 Semantically Engineered Models

The bridges that are presented in the first part of the thesis do not explicitly con-
sider the semantics of a language. Therefore it is possible that unintended behavioral
differences are introduced. The second part of the thesis presents a more rigorous
approach. It presents a technique for engineering models using the semantics of a
language, i.e., the construction of a semantic engineered bridge. Since the bridge is
defined both mathematically and computationally, it allows for an automated trans-
formation between different languages, solely based on its formal definition.

In essence, the technique creates a rewrite system for evaluating the formal seman-
tics of a language, i.e., Structural Operational Semantics (SOS). The bridge trans-
forms SOS deduction rules into computational functions. A model combined with the
computational functions determines the allowed behavior. As the technique exactly
specifies the allowed behavior, it can be used to execute the behavior of a system,
reason about behavioral requirements, or it can be applied when prototyping, devel-
oping and evaluating formal (domain specific) languages. Since the transformation
is specified mathematically, no information is lost or added when transforming mod-
els between the environments. To illustrate the semantic transformation route, we
describe the following four steps:

o the formalization of an informal domain specific language (Chapter 7),
o the specification of a semantic engineered bridge (Chapter 8),
e a case study that uses the semantic engineered bridge (Chapter 9), and

o a reflection on the semantic engineering technique (Chapter 10).

1.5.1 Formalizing a Behavioral Language

The semantic engineered bridge requires a formal specification language. As many of
the available specification languages are still informal, we first show the formalization
of an industrial specification language.

The formalization process influences the entire system development. So, it is crucial
that all considerations and design decisions are explicitly stated. We illustrate that this
is possible and worthwhile for industrial languages.

Chapter 7 describes the formalization of an industrial DSL, called TRECS [Nie04],
which is based on the task-resource paradigm. The language uses UML-like activity
diagrams to express its behavior. The semantics is informally defined and implicitly
implemented in an interpreter. The language is formalized by capturing the essen-
tial syntactic notions in its abstract syntax. The behavior of the abstract syntax is



1.5. Semantically Engineered Models 11

described in SOS. For every syntactic notion we define a set of deduction rules that
specify the intended behavior. The process reveals ambiguities and we illustrate how
they have been resolved by making small corrections to the language.

1.5.2 Creating a Semantic Engineered Bridge

A semantic engineered bridge can be created for almost any language that describes
its semantics in the SOS format. We assume that the language definition is denoted
in a Transition System Specification (TSS) [BG96], the set of deduction rules that
describe the semantics for a language. Subsequently, we transform a TSS into a Linear
Process Specification (LPS).

Chapter 8 provides a detailed description on how to construct models for deduction
rules. In short, a sort represents the signature of the abstract syntax, data equations
capture the deduction rules, and differently labeled actions describe the different
transition relations.

While deduction rules can describe any kind of mathematics, we only specify the
semantic bridge for rules that are in De Simone format [dS85]. For these rules we
prove that the behavior stays preserved for any translated model.

1.5.3 Applying the Semantic Engineered Bridge

To investigate the suitability of the semantic engineered bridge, we apply the bridge
to a formal general purpose language. We define, apply, and subsequently show that
it is possible to conduct a meaningful analysis.

Chapter 9 takes the mCRL2 language as input. Since the semantics of the language
uses deduction rules that are more expressive than the ones described by the De
Simone format, we extend the semantic bridge and feed the semantics of the language
to the mCRL2 model checker tools. Hence, we basically dogfood the language.

By means of a set of selected models we investigate that the intended, the specified
and the implemented semantics correspond. The validation is performed by generat-
ing and comparing state spaces for a variety of models. The exercise improved the
(defined) formal semantics of the language and discovered subtle differences in the
intended, specified and implemented semantics. As the mCRL2 language has a com-
plexity level that is similar to industrial domain specific languages, we advocate that
the exercise can be useful to industry too.

1.5.4 Reflecting on the Semantic Engineered Bridge

Chapter 10 reflects on the semantic engineering approach, by summarizing the lessons
learned. We discuss the encountered difficulties and merits. We also illustrate how
the results of an analysis can be related to the development models. Furthermore we
elaborate on future activities that may be accommodated.



12 Chapter 1. Introduction

1.6 Structure of the Thesis

The thesis is structured as follows. Chapter 2 contains the preliminaries of the thesis.
The preliminaries include the description on Structural Operational Semantics, the
mCRL2 language, Linear Process Specifications and the (restricted) modal u-calculus.

Part I describes syntactic methods for creating formal models, along with a round-
trip to visually present verification results. The content is mainly constructed from
the work performed in the ITEA2 TWINS Project.

Chapter 3 describes the modeling of three buffers, where every model corresponds
to a slightly different system description. The buffers are modeled in the mCRL2
specification language. These models are used to compare the mCRL2 language to
other specification languages. This work has been published in [SRG09].

Chapter 4 describes an abstraction technique for modeling code by hiding from the
values of variables, after which it is possible to verify safety properties. The content
of this chapter originates from [SR09].

Chapter 5 describes the transformation from (a subset of) the (hybrid) specification
language Chi 2.0 to the mCRL2 specification language. We formulate a denotational
relation that transforms the discrete part of the input language.

Chapter 6 presents a technique that visually combines the results from a formal
analysis and physical CAD models. While engineers are often unfamiliar with formal
methods, and transformations often contain ad-hoc abstractions, this method pro-
vides a clear and solid feedback for multi-disciplinary development teams.

Part II presents a semantic method that transforms a model from a language into
a specification language suitable for formal verification. The transformation is per-
formed with the help of the operational semantics of the original language. The
target language that has been selected is the mCRL2 language. The content results
from work that has been conducted during and after the LithoSysSL Project.

Since many (domain specific) languages are informally defined, Chapter 7 describes
the first step of the method, i.e., the formalization of a language. This work has been
published in [SWR*11a].

Chapter 8 describes how a formalized language can be converted into a semantic
bridge. The approach in this chapter originates from [SRW11a, SRW11b].

Chapter 9 takes the mCRL2 specification language and transforms its operational
semantics into an mCRL2 specification. This exercise validates both the semantic
method, as well as the correspondence relation between the defined and implemented
semantics. The work of this chapter is based on [SRGW11, SRWG12].

Chapter 10 reflects on the semantic method, discusses the lessons learned, illus-
trates the encountered problems, and elaborates on the possible benefits.

Chapter 11 concludes by discussing our contributions and makes recommendations
for practice and further research.



Chapter

Preliminaries

2.1 Structural Operational Semantics

Structural Operational Semantics (SOS) defines the possible actions that a piece of
syntax is allowed to perform [Plo04]. SOS is typically represented by a Transition
System Specification (TSS) [Gro93, BG96]. The syntax for which the semantics is
defined, is represented by a signature. A signature fixes the composition operators
and their corresponding arities. We assume a set of variables Vgqg and a set of action
labels Agqg.

Definition 2.1.1 (Signature). A signature Y.qng consists of
e a collection Sgng of sort names represented by S, S,...,S,,

e a collection of function symbols together with their arities. Let f be a function
symbol. Then the arity of a function symbol is denoted by ar(f) and §; x --- X
Sar(s) — S defines the sorts of the function symbol. The domain S; X -+ X Sg,(y)
may be empty.

Definition 2.1.2 (Term). The collection of (open) terms over signature Ygng, denoted
T (%), is the smallest set such that

e avariable x5 € V5. is a term of sort S, where | J Vi,s = Vsos, and
s€Ss0s

o f(ty,...,t,)isatermof sort S, if tq,...,t, are terms, where t; is a term of sort
S; and f € Xgqg is an n-ary function symbol of sort S; X --- x S, — S.

The set of closed terms over signature Xgog, denoted C(Z), is the set of all terms over
Y50g in which no variables occur. Variables that occur in a term p are retrieved by the
function vars : T(%) — 2Ys0s, denoted vars(p). For any variable xg, Agos denotes the
set of allowable values corresponding to the variable x of sort S.

13



14 Chapter 2. Preliminaries

Definition 2.1.3 (Valuation). A valuation o : Vo3 — Agpg is a partial function from
variables of sort S to values of the same sort. We assume that valuations are closed,
i.e., every (defined) variable maps to a value Agyg. For every element from Agyg we
assume there exists a syntactic representation in 7 ().

Definition 2.1.4 (Transition Formula). Let p,p’ € T(X) be terms, let [ € Agqg, and let

.. . l
0,0 : Vgos — Agos, then a transition formula over ¥ is of the form (p,o) — (p’, o).

Definition 2.1.5 (Transition System Specification). A Transition System Specifica-
tion (TSS) [GV92, Gro93, BG96] denotes a set of deduction rules. It is defined by a
tuple (Zg0s, Dsos), where Xgog is a signature and Dgqg is a set of deduction rules. A

deduction rule is of the form Ii where H is a set of transition formulas over X, called
the set of premises, and C is a transition formula, called the conclusion. To derive
the conclusion, and perform an action, all premises need to be satisfied. The formal
definition of a TSS can be found in [GV92].

2.2 The mCRL2 Language

The micro Common Representation Language 2 (mCRL2) is an action based spec-
ification language intended for the description and verification of the behavior of
distributed systems, parallel computer programs and protocols. The language is sup-
ported by a toolset that enables simulation, state-space visualization, behavioral re-
duction techniques and verification of software requirements [GMWU06, GMR ™' 06,
GKM™08, Sofb].

The mCRL2 language originates from the Algebra of Communicating Processes
(ACP) [BK85]. After extending ACP with abstract data types the authors of [GRO1]
defined the uCRL language, supported by the uCRL toolset [BFGT01]. With the help
of this language they modeled and verified a variety of systems. Motivated by prac-
tical experiences and new theoretical insights [GMWUO06], the mCRL2 specification
language emerged as the successor of uCRL. The key contributions of the new lan-
guage include the addition of commonly used abstract data types, behavioral con-
structs to model true concurrency with the help of multi-actions, and the specification
of (real) timed processes.

The language consists of a behavioral specification part and a data specification
part. The behavioral specification part is commonly used to express the modeled
behavior of a system. The data specification part is commonly used to express com-
putations, based on higher-order abstract equational data types. It contains quanti-
fiers, (unbounded) integers, (infinite) sets and bags, structured types, lists and real
numbers. These concepts are set up to be as close as possible to their mathematical
counterparts. This means that the language is very expressive and it is easy to write
down undecidable properties. For the decidable part advanced algorithms have been
devised, such as just-in-time compiling rewriting [Wee07], that provide the tools high
performance rewriting despite the generality of data types.



2.2. The mCRL2 Language 15

This section describes the syntactic elements of the mCRL2 language and the asso-
ciated formal semantics in SOS.

2.2.1 Syntactic Concepts

An mCRL2 specification consists of a data specification and a process specification.

Data Specification

We assume that a set of sorts S"™CR2| a set of constructors C™°R2 and a set of map-
pings M™CRL2 are available.

Definition 2.2.1 (Signature). Let S™*2 be a set of sorts, CE°R'2 a set of function
symbols over S™R!2 called constructors, and M2*? a set of function symbols over
SMCRL2 called mappings. We call the triple Z™CRL2 = (SMCRL2 omCRL2 | A\ (mCRL2Y 5 gig.
nature.

Definition 2.2.2 (Constructor sort). Let Z™CRL2 — (GMCRL2 pmCRL2 A (mCRL2Y he 5
signature. Sort S € S™°RL2 is a constructor sort if there exists a constructor function
declaration f : S; X -++ X S,, — § € C™CRL2,

We assume that a signature is well typed.

Definition 2.2.3 (Well-typed signature). Let XMCRL2 = (SMCRLZ omCRL2 | ) (mCRL2Y) he
a signature. Then signature ©™R2 js well-typed iff:

mCRL2 mCRL2 _
* C3 NM3 =0,
e B is a sort, with exactly the constructors true:B and false:B, and

e Constructor sorts are syntactically non empty. A sort D is defined to be syntacti-
cally non empty iff there is a constructor f:D; X --- X D, — D € C2®2(n > 0)
such that for all 1 <i < n if D; is a constructor sort, D; is also syntactically non
empty, and D # D;.

Definition 2.2.4 (Data expressions). Let T™RL2 = (SMCRLZ CMCRLZ \(TCRL2) be g
signature. Let X2R2 be a set of S-typed variable symbols. Then, we inductively
define typed data expressions (over XY2R'?) as follows:

e every variable symbol x:D € X2R2 of sort D is a data expression of sort D.
- ) mCRL2 mCRL2. ; .
e every function symbol f:D € Cg UM is a data expression of sort D.

e Let p be a data expression of sort D; X --- x D,—D and for 1 <i <nletp,; bea
data expression of sort D;, then p(p4,...,p,) is a data expression of sort D.

e For 1<i<n, if x;: € XFNR2 or x; & (XFR2 Y CRR2 Y MER?) and p is a data
expression of sort D over Y32 U {x;:D;|1<i<n}, then A, ., . . p isa data
expression of sort Dy X --- xD,,—D.

.....



16 Chapter 2. Preliminaries

e For 1<i<n, if x;: € X2N2 or x; & (XFR2 U CRR2 Y MER2) and p is a data
expression of sort B over XT"? U {x;:D;|1<i<n}, then 3, ., .., p pisadata
expression of sort B.

e For 1<i<n, if x;: € XFNR2 or x; & (XFR2 Y CRR2 Y MER?) and p is a data
expression of sort B over Xg“CRLZ U{x;:D;|1<i<n}, then V, .p ... .p p is a data
expression of sort B.

e For 1<i<n, let p; be a data expression of sorts D; over Y32, x;:D, & (C2?u
MBCRI2) "and let p be a data expression of sort D over X2®2 U {x;:D;|1<i<n}
then p whr x; = p,,...,x, = p, end is a data expression of sort D.

Definition 2.2.5 (Data specification). Let ©™CRL2 = (SmCRL2 omCRL2 "\ (mCRI2) ho 5
well-typed signature. Then the tuple D™CRL2 = (nmCRL2 £ is a data specification, in
which E is a set of conditional equations. Every equation in E is a pair (Y™CRL2
p1 = p,). Here X™R2 js a set of variable declarations and c:B, p;:D and p,:D are
data expressions, where D € S™CRL2,

, €=

Process Specification

s
We assume that a set of action labels A™CRL2 is available. We use A™R2 to denote a
vector of action labels.

Definition 2.2.6 (Action declaration). Let Z™CRL2 = (SMCRL2 omCRL2 A 4mCRL2Y he 5
signature, let A™CR2 be a set of action labels, and for 1<i<n let D; € S™®2 and let
a € A™RL2 then an action declaration is an expressions of the form a:D; X -+ X D,,.

An action a with data expressions dy, ..., d,, denoted E), is written as a(?). Ac-
tions may be declared without any sorts, denoting actions without any data parame-
ters. These actions are written as a.

All actions that are specified inside a process specification (Definition 2.2.11) are
declared by an action declaration. We assume that all actions that occur in a process
expression (Definition 2.2.10) are declared.

Definition 2.2.7 (Syntactic multi-action). Let XMCRI2 = (SmCRL2 omCRL2 | ) ymCRL2Y) {e
a signature and let A™RL2 be a set of action labels. A syntactic multi-action represents
a collection of actions that are specified to occur at the same time instant. Syntactic
multi-actions have the following BNF grammar:

an=TI a(?) Lala,

—

The terminal T represents an empty multi-action. The terminal a( d ) represents
- —

an action, where a € A™R2 denotes an action label and d : D a vector of data

=
expressions such that D; € S®™R2 for each D; € D. The non-terminal a represents
a syntactic multi-action. The syntactic multi-action a|a’ consists of the actions from
both the syntactic multi-actions a and o’'.



2.2. The mCRL2 Language 17

Definition 2.2.8 (Action declaration). Let Z™CRL2 — (GMCRL2 omCRL2 | p 4mCRL2Y he 5
signature. An action declaration is an expression of the form a : D; X -+ x D,, where
n>0 and all are sorts D; are taken from S™CRL2,

Definition 2.2.9 (Process expression). Let ZMCRL2 — (GmMCRL2 omCRL2 * A mCRL2) he
a signature, such that the tuple D™R2 = (£mCRL2 1) {5 a data specification. Process
expressions are expressions with the following syntax:

p::=5|a|p+p|p-p|c—>p|c—>p<>p|Zp|p(t\t>>p|p<<p\

v:D
plipipllpiplp 1 Te(P) 1 Vy(p)1 3(p) 1 pr(P) 1 7,(p) 1 Ty(p)
X(vy=dy,...,v,=d,)
The process terms that are colored black belong to the untimed fragment of the
mCRL2 language. If we consider the untimed fragment of the mCRL2 language, we
only consider these process terms.

In the above BNF, p denotes a process term, a is a syntactic multi-action, c € B is a
Boolean data-expression, v, vy, ..., Vv, € XY™R2 (n>0) are variables, D € S™RL2 js a
sort, t € R=? is a positive Real data-expression, C C A™CRLZ x ... x AMCRL2 _, AmCRL2
a set of communications, V C A™CRL2 x ... x AMCRL2 4 ot of multi-action labels, B €
AMCRL2 1 AMCRL2 9nd U € A™CRE2 are sets of action labels, R € AMCRL2 _, AmCRL2 jg
a set of renamings, and d,...,d, are data expressions.

For processes, p + q denotes the non-deterministic choice, p - ¢ denotes the sequen-
tial composition, c—p denotes the conditional if-then execution, c—pop denotes the
conditional if-then-else execution, Y. p denotes the non-deterministic choice over the

v:D

domain of D by selecting a value for variable v, p<t denotes that process p has to be
executed at time t, t > p denotes the auxiliary initialization operator saying that pro-
cess p must start after time t, p < p describes the part of the left process p that can
happen before the right process p must perform an action, p || ¢ denotes the parallel
composition, p || ¢ denotes the left merge composition and p|q denotes the synchro-
nized composition. The process expression V,(p) allows only the multi-actions from
the set A of multi-action labels occurring in process p. Jz(p) blocks all actions in
process p for which the corresponding action labels occur in the set of action labels
B. T'¢(p) applies the communications described by C to process p. 7;(p) hides all
actions in process p for which the corresponding action labels occur in set of action
labels I. T (p) pre-hides all actions in process p for which the corresponding action
labels occur in set of action labels U. X is a recursion variable, X (v;=d;, ..., v,=d,)
is a process reference to a process equation of the form X(v;:Dy,...,v,:D,) = p, i.e.,
the process X(v,=d;,...,v,=d,) that behaves as p where the occurrences of v, ..., v,
are substituted with d;,...,d,. Alternatively, if we assume that all substitutions are
performed for the corresponding process parameters X (v;=d;, ..., v,=d,) it can also
be expressed as X(d;,...,d,).

Definition 2.2.10 (Process equation). Let ™CR2 = (§MCRL2 omCRL2 | \ fmCRL2) he 5
signature. A process equation is an expression of the form X(v,:D4,...,v,:D,) =p, p
is a process expression, and for (1 <i < n), v; are variables of sort D; from S™R2,



18 Chapter 2. Preliminaries

Definition 2.2.11 (Process specification). A process specification is a five tuple PS =
(D™CRL2 AD, PE, p, X™RL2) where

e D™CRLZ j5 3 data specification,

e AD is an action declaration,

e PE is a set of process equations,

e p is a process expression, and

o XMCRL2 j5 3 set of global variables.

For reasons of simplicity, we assume that all process specifications and their underly-
ing components are well-typed as described in [KR11].

2.2.2 Semantic Concepts

Definition 2.2.12 (Applicative D™R2_structure). Let D™CRL2 = (omCRL2 £ be a
data specification. Then the collection of nonempty sets {Mp|D € Sg“CRLz} is an ap-
plicative D™CRL2_structure iff:

o DPCRI2 j5 3 set with two elements, denoted by true and false, for which true #
false holds.

e D € S™RL2 and D is not a function symbol, then M;, is a nonempty set.

¢ D=D; x---x D, — D', then M), is the set of all functions from Mp X --- x
MDn _>MD/.

Definition 2.2.13 (Valuation). Let o:X™R2 — | J _ spenz Mp, then o is a valuation
if o(v) € M), holds for all v:XTR2, We write o' [v; — w;]1<;<, (or o[V — W]) fora
valuation o with for 1 <1i < n the function updates [v; — w;], that maps all variables
according to o, except for the variables v; (1 <i < n). These variables are mapped to
the corresponding values of w;.

Definition 2.2.14 (Semantic interpretation). Let ZmCRL2 = (§mCRLZ omCRL2 | | ymCRL2)
be a signature, let D™RM2 = (2MCRL2 £) be a data specification and let o be a data
valuation. The semantic interpretation function {[-]}° on a data expression is defined
through:

e {[v]}? = o(v) for every variable v € X°R1> (D € SMCRI2),

[
o {{f1}% ={[f ]} for every function symbol f € CZ®2 U M2®2 and {[f ]} € M),.
e {{p(p1,---, P )7 ={lpB}° P 1}7,.... {{P]}")

[

e {{A,.p,,. x:0,P]}° = f where function f:Mp X ---x M, — D satisfies

f(dy,...,dy) = {[plelr=diisi=n for all d;: M.



2.2. The mCRL2 Language 19

® {[Vy .0, x:p, P}’ =trueiff for all d; € M}, it holds that {[p]yoximdilizizn = true.

,,,,,

true.
o {{p whr x,=py,...,x,=p, end]}” = {[p}} LIz,

Definition 2.2.15 (D™®2.model interpretation). Let D™CRL2 = (nmCRL2 £ be g
data specification, let o be a data valuation and let {Mp|DeS™R2} be a DMCRL2.

model where M, is the domain of sort D. The interpretation of a D™R2.model is
defined through {[-}:

o for every equation c—p,;=p, € Eg it holds that if {{c]}* = true then {{p,]}° =
{{p,1}¢ for every valuation o.

o {[true]}’ = true and {[false]}” = false for every valuation o.

e If a basic sort D is a constructor sort (i.e., there is a constructor f € CE‘CRLZ of
sort D; x --- x D, — D), then every element d € M, is a constructor element. A
constructor element is inductively defined by:

— Anelement d € M, is a constructor element, if D is a constructor sort and a
constructor function f € Cg’CRLZ of sort D; X -+ X D, — D exists such that
d ={f}}(eq,...,e,) where for each 1 <i < n, e; is either a constructor
element of sort D;, or

— sort D; is not a constructor sort.
Definition 2.2.16 (Semantic multi-action). Let D™CRL2 = (£mCRL2 £ he a data
specification, {{-J}° an interpretation, E a set of data equations, a € A™®? and

wy:Mp,,...,w,: Mp are values. Let the interpretation of any syntactic multi-action
[-1° on a, B be inductively defined for any data-valuation o by:

o [7]° =m.
o [a(wy, ..., w)]” = a(fwi B, .., Tw, 39D,
o [alf] = [a]°I[B]°-
A semantic action that has no data parameters, i.e., a(), may be written as a.

Definition 2.2.17 (Semantic multi-action equivalence class). Let a, 3 be semantic
multi-actions, then the semantic multi-action equivalence relation is defined as the
smallest equivalence relation ~ that satisfies:

alt~a
alf~pla
(alB)ly~al(Bly)



20 Chapter 2. Preliminaries

The equivalence class with respect to ~ of a multi-action a is denoted by a ~ subscript:
a.={f::p~a}

Furthermore, we define a function, denoted (+)., that merges separate equivalence
classes into a new equivalence class. Let a € A™R2 and let wy, ..., w, denote values,
then the function is defined as:

(T ) =Tn
(alwy,...,wp) ) =a(wy,...,wy)o

(av | B~ =(alB).

The semantics of the processes are defined using inference rules. These rules extract
information from semantic multi-action equivalence classes.

Definition 2.2.18 (Functions on semantic multi-action equivalence classes).

e all is the set of all action labels that occurs in the semantic multi-action equiv-
alence class a... The function is inductively defined as:
-tl=9
- a(wyq,...,w)! =1{a
{3

- all =alupl

e a. denotes the semantic multi-action equivalence class a. from which all data

parameters are removed. The function inductively defined as:

- To=Ta

- alwq,...,w).=a.
~ (@l p)=(a. | B)-

e Let R be a set of renamings. Then the function Re () denotes the renaming on
a semantic multi-action equivalence class. Here the action labels are renamed
according to the renamings of R. The function is inductively defined as:

—Re(7 . )=1.

_ [ b(wy,...,w,). ifa—beR forsomeb
- Re(a(wy,...,w,).) = { a(wy,...,w,). ifa—b¢gRforallb

- Re((alf).)=(Re(a.) [Re(B.))~

e 0;(a.) hides the actions in a semantic multi-action equivalence class a, for
which the corresponding labels occur in I. The function is inductively defined
as:

- 0i(t)=1.



2.2. The mCRL2 Language 21

T if ael
- Ql(a(wl""’wn)’“):{ alwy,...,w,). if a&l

- 6;((alp).) = (6;(a.) | 6;(B.))~

e ny(a.) prehides the actions in a semantic multi-action equivalence class a.,
for which the corresponding labels occur in U. Prehiding is accomplished by
removing all data parameters and relabeling the action label to int. The function
is inductively defined as:

- nylt) =170
int. if aeU
- nU(a(Wla---:Wn)~)— { a(Wl;---,Wn)~ if (1¢U

- ny((alB)) =(nyla) | ny(BI))~

e Communication is defined using y.. Let ¢; = cill . ICim", then we define the com-
munication function C = {¢; —c{,...,c, — ¢ }. The set of synchronizing actions
are represented by cy,...,c, € ATR2 x ... x AMCRL2 and the communication
results are represent by c/,...,c/ € AMCRL2 - The specification assumes that all
action labels of a domain of a single communication function are pairwise dis-
joint, i.e.,

VI,JEdom(C)I #J= f@(I’J)
where:
foll,J)  =true
folx>xs,J) =x &J A fy(xs,J)

Communication takes place over a semantic multi-action equivalence class, and
only applies it to those actions for which the arguments have the same semantic
. . — — 1 m; r—>
logic equivalent values. Let w : Mp, let ¢;(W)=c;(w) | ... | ¢;"(w), let
a.. C B. be the inclusion of a. in B., and let a_\fS. be the removal of the
semantic actions of 8., from a.. We specify the communication y.(a..) as:

/(W) | yela (W) ). if 33 (= c)eC
velal) = Ac(W).Ea.
a. otherwise

The function defines the communication recursively. Intuitively, if there exists
a set of actions labels (obtained after the data elimination of a semantic multi-
action equivalence class) that occurs in the domain of communication function,
it is replaced by the corresponding action label from the image with the ap-
propriate data values, and the communication function is again applied to the
remainder of multi-action equivalence class. The communication returns the in-
put, when no instances are found. Observe that all communication functions are
orthogonal, because the synchronization domains of a communication function
C are all pairwise disjoint. Hence, the order in which the functions are applied
does not affect the outcome of the communication function C.



22 Chapter 2. Preliminaries

2.2.3 mCRL2’s Structural Operational Semantics

Given a data specification and a process expression, we express the semantics of the
process expression through a transition system. The way in which a process expres-
sion relates to a transition system is described via deduction rules. The rules that
relate to the timed mCRL2 fragment are shown in gray.

Definition 2.2.19 (Semantics of a process). Let PS = (D™R2 AD, PE, p, X™CRL2)
be a process specification. Let {Mp|DeS™R2} be a D™R2.model where My, is the
domain of sort D, {[-]}° a semantic-interpretation and ¢ a data valuation. We define
the semantics for a process specification PS given A™R2 and o as the initial data
valuation, by the transition system A = (S, Act, —,~,s50, T):

e The states S contain all pairs (p’, o) for process expressions p’ and valuations
o’. There is one special termination state, denoted by the v predicate.

o A label denotes a semantic multi-action equivalence class in Act.

e The transitions are inductively defined by the operational rules in Tables 2.1,
2.2,2.3,2.4, 2.5, 2.6 and 2.7. These rules describe the semantics of the mCRL2
language. The transition relation is denoted by (p’, o) LN (p”,0"),(p’,0) N
€8 XAct X R xS. Note that some (parts) of the deduction rules are colored
gray. The gray colored deduction rules belong to the timed fragment of the
mCRL2 language. If we consider the untimed fragment we abstract from the
gray colored parts.

e The idle relation expresses that a state can idle up to and including time t € R=°,
denoted by p ~, in the deduction rules.

e The initial state s, corresponds to (p, gy).

e T C S is the set of terminating states.

For reasons of completeness we specify all of mCRL2’s deduction rules. The un-
timed deduction rules are explicitly used in Chapter 9 when modeling the semantics
of the mCRL2 language. Implicitly, the entire set of rules is considered when we take
design decisions, specify (timed) models, or provide modeling constructs in all other
chapters.

2.3 Linear Process Specifications

A Linear Process Specification (LPS) is a symbolic representation for capturing (possi-
bly infinite) Labeled Transition Systems (LTS). Informally, an LPS consists of a signa-
ture, a collection of variable declarations, a collection of data equations, a collection
of action declarations, a linear process equation, and an initialization. A (full) formal
definition of an LPS and its components is found in [GMR"06].



2.3. Linear Process Specifications

23

(Ma) [a]]J
(a,0) — v/

(Ma’) (a,0)~,

D Zra[ - w—
(Delta ) 55y,

BN v _m, ;o .
(AL =Ly 2 P9 Y D
(p+q,0)— v (p+q,0) = (p',0") (p+q,0)~,
_m, v SN A .
Al —L D=y @9V 650 i) L)
(p+q,0)— v (p+q,0) = (q,0") (p+q,0)~,
(p,o) = v (p,0) — (p',0") (p, o)~

(Seq;) (Seqf)m

2
(p-q,0) = (t>q,0) (p-q,0)— (p'q,0")

{{b]}°=true
(p,0) =

{{b]}°=true,
(p,0) = .(p/,0")

{{b]}°=true,

(p,0)~,

(Condl)—(bap,a) =, (Condz)(b_)p’o) = o) (Condl)i(bap, LS
{[b]}"zntlrue, {[b]}r‘n’:true, {{b}*=true,
e e ey R e
{{b]}*=false, {{b]}*=false, {[b]}>=false,
(Condy) (9.0) = v (Cond,,) (9.0) = (g, 0") - (Cond") € (g.0)~)

(b—pog,0) - v (b—pogq,0) - (q',0") h—pogq, o)~

Table 2.1 SOS deduction rules for the basic operators

An LPS is a restricted mCRL2 specification. That is, the process specification is
defined through a single process equation that represents the behavior of the mCRL2
specification. An explanation that is analogue to the relation between an mCRL2 spec-
ification and an LPS can be found in [Use02], which describes the relation between an
UCRL specification and an LPS. The signature, variables, data equations and action
declarations of the LPS respectively correspond to their counterparts in the mCRL2
language.

Definition 2.3.1 (Linear Process Equation). A linear process equation (LPE) is a
process of the following form

D 2 cild,e)—a;(d, e)t;(d,e)X(gi(d,e))

i€l e;:E;

+ 2 2 ¢i(d,e))—ag;(d, e;)t;(d, e;)

JEJ €jiE;

X(d:D)

where i € I and j € J are meta-level variables denoting the two finite index sets, and



24

Chapter 2. Preliminaries

(Sum;)

weM),
(p,olv—wl) -5 v

Xpo)—= v
v:D

(Sum,)

weM),
(plv— V1,0V »w])— (p',0")

(Z]]Jp, o) = (p/,0")

wWeMp, (p,olv —w])~,

(ZP;G) 7y

v:D

(Sum")

where V' is a fresh variable of sort D, i.e., v/ & dom(c)

Table 2.2 SOS deduction rules for the sum operator

Uilifl] )—,”\/

m

o) — e v

(Timeg)%

(pu,0) — e v

Time') ——————
(Mme) o, 07~

(p,0) —5, v
(u>p,0) —,

(P,U)M:

. f/
(Init; )7(u>>p, )~

[u]”<t

,O L ul? /: o’
(Time) (p.9) _[u] (o)

(P(U7 O-) 74)\‘1@” (p/7 O-/)

(p, o), t<[u]?

(p,o) =5, (p',0")
(u>p,0) =5, (p,0")

(Init}) [ul® <t

-t/ o
(Init,, )(u>>p,o)mr t<[u]

Table 2.3 SOS deduction rules for the time and the initialization operator

e [; and E; are data sorts over which the variables e; and e; range.

e ¢;: D x E;—B and c; : D X E;—B are Boolean functions. Hence, c;(d, e;) and
cj(d, e]») are terms of sort B (denoting the set of Boolean values) that serve as a
Boolean guard to allow actions.

e a,(d, ;) is a multi-action a!(f;!(d,e))| - |a; (£ (d,e;)), where f*(d,e;) (for

1 < k < n;) specifies the data parameters for the labeled action a

k

i

* a5;(d,e;) is either & or a multi-action a}(fjl(d,ej))l |a;j(fjnj(d,ej)), where
fjk(d, e;) (for 1 <k < n;) gives the parameters of action name a}‘.

L] ti:D

X E;—R and t;: D X E;

E.—R respectively are the time stamp functions of

multi-actions a;(d, e;) and a;;(d, ¢;).



2.4. Modal u-Calculus 25

b l) 1\/ 3 L /> !
Par,) (p 0271 (Pary) (p cr)m [(/p a’) ,
(pllg,0) — (t>q,0) (pllg,0) — (p'llt>q,0")
_m, v m ’o
(Par3) (q’ 0-2,1 t (Par4) (q’ O')m_’ ((q , O )
(pllg,0) — (t>p,0) (pllg,0) — (t>pliq’,0")
ELINVE LINIVE ELIVE % (q,0’
(Pars)(p’ O') Vo ((mc‘l,:)(j) > (Paré)(p’ (T) t ’((n?‘;i') — r(q , O )
(P”q’O') - r‘/ (P”q’o') I r(q/’o-/)
(p,o) — (p,0"), (p,o) — .(p',0"),
(Par) (g,0) — v (Pary) (g,0) — (q’,0")
7 In 8

In

(mln)~ , (m|n)~ ’ ,
(P”q’O') - t(p/:o-) (P”q,o') - r(p ||q/,O'U0'//)

(p,0)~, (g,0)~,
(qu,O')’\/[

(Par")

Table 2.4 SOS deduction rules for the parallel operator

e g, : D x E;—D denotes the next state function. Hence g;(d, e;) is a term of sort
D that denotes the next state.

2.4 Modal u-Calculus

A behavioral requirement is a functional aspect of a behavioral specification. These are
formulated positively (e.g., the system must perform an action a) or are formulated
negatively (e.g., the system may never perform an action a). To define requirements
for mCRL2 specifications, we use a logic that is based on [HM80], namely the modal
u-calculus [EC80, Koz83]. The modal u-calculus that the mCRL2 language uses is an
extension that supports data, regular expressions and time.

Modal u-calculus formulas are verified against a behavioral model as described by
an mCRL2 specification. The requirements that are specified within this thesis use a
restricted fragment of the modal u-calculus. The restricted fragment is described by
the following grammar:

o= a(?)lamlawrue
pi= alp-pip”
¢ = falseitrueimp1p=>¢ 1o AP 1[plP1{p)p 1V, pd

Here, a represents a set of multi-actions, p represents a sequences of multi-actions,
and ¢ represents a property.



26 Chapter 2. Preliminaries

(p,0) = v (p,o) = (p’,0")
— (Lmerge,) = - -
(pllg,0) — (t >q,0) (pllg,0) — (p'llt >q,07")

(Lmerge;)

(p,0)~, (q,0) ~,

(Lmerge")

(pllg,0)~
(p,0) >V, (q,0) —> v (p,0) = (p',0"), (q,0) — v
(Sync,) =N (Sync,) e,
(plg,0) — vV (plg,0) — (p',0")
(p,o) =V, (p,o) = (p',0"),
e n /’0_/ e n /’ O_//
(Sync,) (q,0) — .(q',0") (Sync,) (q,0) — .(q',0")
3 (m|n)~, ) 4 (mln)~ Al o~ "
(plg,0) — (q’,0") (plg,0) — (P'llg’,0'uc”)
(p,0)~, (q,0) ~,
t
(S lg,0) ~,
(p,0) ==V, (q,0) ~, (p,o) —, (p',0"), (q,0) ~,

(Before;) (Before,)

(p<q,0) —>, v (p<q,0) —, (p,0")

(p,0)~, (q,0) ~,
(p<q,0)~,

(Before")

Table 2.5 SOS deduction rules for the auxiliary parallel operators

An action labeled a with a vector data parameters d is denoted as a(?). The
absence of an multi-action a corresponds to @. A multi-action constructed from two
multi-actions is denoted by a|a. An arbitrary multi-action is denoted by true. The
concatenation of two action sequences is described by the notation p - p. To describe
the iteration of an action sequence, i.e., the reflexive transitive closure of an action
sequence, we use p*.

The property true holds in every state of a model and false if the property holds
for no model. The property ¢ = 1 holds if the property ¢ and the property v hold.
The property ¢ A 4 states that both ¢ and 1y must hold. The property [p]¢ states
the property that ¢ holds in all states that can be reached by a sequence described
by p. The property {p)¢ describes that ¢ holds in some state that can be reached
by a sequence from p. A more elaborate description of the modal u-calculus and its
semantics can be found in [Bra92, GM99].

To verify a modal u-calculus formula, one can first transform an mCRL2 specifi-
cation into its linear case, i.e., into an LPS. Then the LPS, together with a modal
u-calculus formula can be encoded into a Parameterised Boolean Equation System
(PBES) [GWO05a, OW10]. The solution of the PBES then reflects the solution of the



2.4. Modal u-Calculus 27

mA(V Uit} £0, mA(Vu{th) £0,
(p,0) = v (p,0) = ,(p',0") o (p,o)~,
1l _— 1l 1 —_—
W) G onor v MG o ey
mbNB=0, mbNB=0,
(p,0) — v (p,0) — (p',0") o (p,0)~,
lock,) ————— lock lock') ——~———
Bt G v B G0 5. Goney O am e
(p,0) = v (p,0) — ,(p',0") (p, o)~
(Reny) ———————~— en,) e (Ren')—r<—<"—
" on), ) v  on), ) (oap), 0" (pa(p), o)~
(p,0) = v (p,0) — ,(p',0") (p, o)~
(Comm;) ——————— (Comm,) - (Commr)ﬁ
o), 0) < v .0 (), o) (TCelp), o)~
. (p,0) — v . (p,0) — .(p',0") e (pyo)
(Hide;) —————-~—  (Hide,) — (Hide )’77/\/3
o) 1 v @) M (n .00 (=1(p), o)~
(p,0) —> v (p,0) = (p/,0") (p, o)~
(Pre;) — re,) o (Pre" ) eme s
Y™ v e, (1), o) (Cu(P), o)~

Table 2.6 SOS deduction rules for the auxiliary operators

(Defl)(qyo'[ V—)'—>_{E d ]}U]nz—> R4 (Defz)(q[ v o— ];)O.[ii —{ i]}a]) _m, I(q/’o_/)
K(V=d),o) =/ X(V=d),0) (¢,0")
(Deft)(q,(T[LHEd ]}U])’\/l

X(V =d),0)~,

—_ - . -
where X(v:D)=q€PE and v’ are fresh variables of sort D

S
with respect to o, i.e., v & dom(o)

Table 2.7 SOS deduction rules for recursion

model-checking problem. A way in which PBESs are solved is described and illus-
trated in [GWO5b, PWW11]. The encoding can be performed fully automatically for
the first-order modal u-calculus and infinite-state models.



28

Chapter 2. Preliminaries



Part 1

Syntactically Engineered
Models

29






Chapter

Modeling System Descriptions

3.1 Introduction

Creating a system that meets the behavioral requirements that have been agreed upon
before development is a challenging task. To predict that a system complies, engineers
can create formal models that are subjected to validation and verification techniques.
As every specification language has its own characteristics, it is very important to
select a suitable language to model the system’s behavior. This chapter explores the
modeling of system behavior based on a set of informal descriptions of a concurrent
system. It describes an instance of a bridge between the specification environment
and the analysis environment from Figure 1.1.

There are different ways to specify the behavior of a system. Many formal speci-
fication languages seem suitable for describing the system’s behavior, when they are
applied in case studies or toy examples. In many cases, these systems are specially
selected or tailored to assess certain features in a language. Unfortunately, when ac-
tual systems are modeled, it often turns out that a specification language is unable to
express all of the envisioned behavior, because the semantics is not vigorous enough
to express the complex behavioral patterns. In these cases, engineers are required
to deviate from the system’s behavior, have to apply abstractions such that the inex-
pressible behavior is removed, need to select a different specification language, or can
simply not verify all desired properties.

To guide (modeling) engineers in selecting a suitable language, the authors of
[DS09] compare the four specification languages TLA+ [Lam02], Bluespec [HA00],
Statecharts [Har87], and ACP [BK84] in a selected case study. They compare the
languages w.r.t. the following three criteria:

1. the amount of local reasoning (as opposed to global and temporal) that is re-
quired by the engineer to specify behavior,

31



32 Chapter 3. Modeling System Descriptions

2. the adaptability that is required to make variations in design intent, and
3. the ability of a language to capture the intended design.

To evaluate the different criteria, they specify a switch that internally routes pack-
ets between buffers. The routing is described by a set of rules that (i) specify priority
among packets and (ii) allow for a simultaneous packet transfer when it complies to
certain criteria. As these rules turn out to be complementary, they illustrate contra-
dictory concerns which emphasize the possible weaknesses in the different languages.
They conclude that each of the specification languages performs poorly in at least two
of these criteria.

In extension to the case study presented in [DS09], this chapter evaluates the
mCRL2 language [GMR"06] on the same criteria. Thereby we show that the mCRL2
specification language is better suited than the other specification languages, with re-
spect to the presented case study. In addition, we also verify a couple of requirements
with the help of the mCRL2 toolset, to validate that the intended behavior is actually
modeled.

The models are constructed in a relatively straightforward way from the informal
description. It turns out that the required multi-party communication is captured
by the advanced communication mechanisms of the mCRL2 language. Although the
mCRL2 language has no direct notions to specify priority, it is possible to express the
different priority types for the cases at hand.

This chapter is structured as follows. The description of the switches and the ways
in which they are modeled are explained in Chapters 3.2, 3.3 and 3.4. Chapter 3.5
elaborates on the verified requirements. Chapter 3.6 compares our work to that of
others. Chapter 3.7 describes our conclusions and future work.

3.2 Specification of the Simplified 2x2 Switch

The original specification of the 2x2 switch is first mentioned in [Blu05]. The case
study that is discussed in this chapter, describes the original specification and two
variations. These specifications are referred to as the “Original Switch”, the “Simpli-
fied Switch”, and the “Modified Switch”, respectively. In the specification we follow
the informal description from [DS09] as closely as possible. This means that we
introduce a single process for each of the four buffers. By means of the advanced
communication mechanisms offered in the mCRL2 language, we describe their non-
trivial interaction. In this and in the following two sections, we discuss the modeling
of the different specifications and explain how we have resolved the posed challenges.

The Simplified Switch consists of two input FIFO buffers and two output FIFO
buffers. All buffers have a unique identifier, w.r.t. the type of buffer. That is, the
identifier of an input or output buffer corresponds to either the numerical values 0
or 1. Furthermore we assume that all buffers have the same capacity. So, we assign
to all of them the same (finite amount of) capacity for storing packets. Figure 3.1(a)
illustrates the Simplified Switch.



3.2. Specification of the Simplified 2x 2 Switch 33

r—-- " """ -"=-"~"-"“"¥“"¥“"“"“=""¥"=""¥""¥"/-¥¥/m/===/——=-—=-= ]

I Inputy Outputy 1

! 1 Counter
— I

! 1

! 1

! 1

! 1

|
— TIT}>

I Inputy Outputy :

___________________________ d

(a) A 2x2 switch (b) A packet counter

Figure 3.1 A 2x2 switch and a counter

Every packet consists of 32 bits. Packets enter the system via the input buffers and
depart the system via the output buffers. Packets are transferred from an input buffer
to one of the output buffers based on the first bit of a packet: When a first bit is 0, it
is routed to the output buffer with identity 0. Otherwise, the packet is routed to the
output buffer with identity 1.

The packets may only be transferred when the relevant output buffer is not full.
A buffer operates per clock cycle and performs at most one operation, namely the
receive a packet, the send a packet, or do nothing. Furthermore, we require maximal
throughput, i.e., a packet is transferred if it has the ability to do so. When packets
from different input buffers want to transfer to the same output buffer, the transfer of
the packet from input buffer O gets priority over the transfer of the packet from input
buffer 1.

3.2.1 Bits and Packets

The data type of bits consists of two different values. In an mCRL2 specification, this
is modeled as:

sort  Bit = struct gero | one;

In the case study packets consist of 32 bits. This implies that a single packet is rep-
resented by 232 different configurations. The mCRL2 language allows the description
of such a data type without any problems. A specification that models a packet is
represented by a structured sort that composes the 32 bits by:

sort  Packet = struct packet(b, by, ..., by : Bit);

From a modeling point of view, we do not object to such a representation or see
any difficulty to write it down in an mCRL2 specification. Unfortunately, for a for-
mal analysis with tools that generate explicit state spaces for verification, this has an



34 Chapter 3. Modeling System Descriptions

apparent drawback. The specification above gives rise to 232 different potential con-
tents for each position in each of the considered buffers. This number is usually too
big to be handled by current state-of-the-art model-checking tools. For that reason we
introduce an appropriate abstraction.

From the description of the Simplified Switch, we deduce that only the first bit of
a packet is relevant. According to the first bit, packets are routed to output buffer 0
if the first bit of the packet is 0. In all other cases the packets are routed to output
buffer 1. Hence, we abstract from the irrelevant bits of a packet and only model the
first bit. Consequently, the structure of a packet is redefined as:

sort  Packet = struct packet(b; : Bit);

Next we introduce a function that routes packets to their proper destinations. So,
we define a mapping dest that expresses the relation between the data of a packet and
the destination output buffer.

map  dest : Packet — N;
eqn  dest(packet(zero)) = 0;
dest(packet(one)) = 1;

3.2.2 Capacity of the Buffers

The system consists of four buffers, for which each buffer is modeled as a list of
packets. Each buffer has the same capacity cap. It is assumed to be at least 1. To
specify the size of the buffers in the specifications, without referring to an explicitly
defined value we introduce a constant that models the size of the buffers.

map cap:NT;

By means of an equation we assign a specific value to this mapping. The restriction
is only added to limit the size of the generated state space during the analysis. When
desired, the capacity for all the buffers can be changed in one place.

eqn cap = 3;

3.2.3 Information Exchange between Processes

To observe that packets enter and leave the 2x2 switch, two actions with data pa-
rameters are introduced. One action adds a packet to an input buffer (enter). The
other action removes a packet from an output buffer (leave). Both actions carry two
data parameters. The first data parameter refers to the identity of an input buffer
(for enter-actions) or an output buffer (in case of leave-actions). The second data
parameter represents the actual (abstracted) data from a packet.

act enter : N X Packet;
leave : N X Packet;



3.2. Specification of the Simplified 2x 2 Switch 35

Sending a packet from an input buffer to an output buffer is described by the send
action. Similarly, the receipt of a packet by an output buffer is described by the action
recv. To synchronize actions, the mCRL2 language provides synchronous communi-
cation between processes, when all the data parameters in the synchronizing actions
have the same value. To reflect a successful synchronization of a send and a recvaction,
we use the action comm.

The actions send, recv and comm are modeled with three data parameters. The first
parameter denotes the identity of the input buffer that sends a packet. The second
parameter denotes the identity of the output buffer that receives a packet. The third
parameter denotes the data packet that is transferred between the buffers. The first
and second parameter provide handles to observe the routing of packets, i.e., they
are used to express and verify requirements in Chapter 3.5. The last data parameter
is required to transfer and observe the data flow between the buffers. Note that the
second parameter is a cosmetic addition that could have been derived from the data
of a packet.

act send :N X N X Packet;
recv :N X N X Packet;
comm : N x N x Packet;

The packet exchange between an input buffer and an output buffer depends on the
content of the other input buffer. In the mCRL2 language it is possible to use multi-
party communication to establish the involvement of another process. This means
that we require actions that reveal information about a third party in the communi-
cation. We introduce the actions grant and free for this purpose. Both grant(i,o,p)
and free(i, 0, p) denote that input buffer i is granted permission to send a packet p
to output buffer o. The first action establishes priority among packets. The second
action enables in the simultaneous packet transfer. A more detailed explanation is
provided later on in this section.

act grant : N x N x Packet;
free :N x N X Packet;

3.2.4 Output Buffers with Capacity cap

In the mCRL2 language, a FIFO buffer Output with capacity cap is modeled by the
following process specification:

proc  Output(i : N, c : List(Packet)) =

#c<cap — Y. >. recv(s,i,p)- Output(i,p > c)
s:N p:Packet

+ c¢#%[] - leave(i,rhead(c)) - Output(i,rtail(c));

The first line specifies the name of the process and declares the associated process
parameters. The buffer process has two parameters. The first process parameter rep-
resents the identity of an output buffer. The second process parameter captures the



36 Chapter 3. Modeling System Descriptions

contents of the buffer as a list of packets. As already described, a buffer receives arbi-
trary packets as long as the buffer is not yet full (#c denotes the number of elements
in the list ¢). With this guard we model the first summand. We specify that a received
packet is appended to the buffer. Appending a packet p to a buffer contents c is de-
noted by p > c. The second summand describes the sending from, and the removal of
the first packet in a buffer. Therefore we ensure that the buffer is not empty (c % [])
before we perform send action (leave) of the first packet (rhead(c)) and remove the
packet from the buffer (rtail(c)). By modeling a buffer like this, the specification of
the output buffer does not rely on the acceptance of packets with a specific first bit,
i.e., it accepts packets regardless of their content. The output buffer performs at most
one action at a time.

3.2.5 Input Buffers with Capacity cap

The main challenges of this modeling exercise are (i) to deal appropriately with the
priority of input buffer 0 over input buffer 1 in case both buffers want to transfer
a packet to the same destination, and (ii) to deal with the required simultaneous
packet transfer when both buffers need to transfer packets to different destinations.
In this section we gradually shape the mCRL2 specification by first specifying the input
buffers, and then defining the interaction between the different processes.

We model the behavior of an input buffer analogously to that of an output buffer:

proc  Input(i : N, c : List(Packet)) =
#c<cap — Y. enter(i,p)-Input(i,p » c)
p:Packet

+ c¢#%[] — send(i,dest(rhead(c)),rhead(c)) - Input(i,rtail(c));

Next, we setup the basic communication between input and output buffers. We first
specify that the four buffers run in parallel. Furthermore, we specify that a successful
synchronization of send and recv actions, result in comm actions. This is expressed
by the subscript parameter send | recv — comm in the communication operator I'. We
only allow successful communications. Therefore we encapsulate all send and recv
actions that do not result in a successful synchronization. In this way, the insertion
and the removal of a packet can be performed simultaneously by different buffers,
while among the remaining buffers packets transfer are enabled. By combining the
instantiated process definitions with the communication and encapsulation operators,
we obtain the following initialization:

init a{send,recv} (r{sendlrecv—womm}(
Input(0, [1) |l Input(1, [1) || Output(0, [1) || Output(1, [1)));

To acquire the simultaneous packet transfer and prioritized packet transfer, the
specification is adapted in two ways. The first step models the prioritized packet
transfer when packets route to the same destination. The second step models the
required simultaneous packet transfer to different output buffers.



3.2. Specification of the Simplified 2x 2 Switch 37

Prioritized packet transfer When packets are transferred to the same output buffer,
the input buffer with the lowest identifier has priority over the other sending input
buffer. The way in which we model a prioritized packet transfer is as follows. The
input buffer signals the transfers that are allowed for execution by the other input
buffer by means of the grant-action. If a buffer is empty it grants permission for any
transfer in the other process of the input buffer. If the buffer is not empty it only
grants permission to packet transfers that originate from input buffers that have a
lower identity.

proc Input(i : N, c : List(Packet)) =
#c<cap — . enter(i,p) - Input(i,p » c)
p:Packet
+ c¢#%[] — send(i,dest(rhead(c)),rhead(c)) - Input(i,rtail(c));

+ c~[] - Y Y grant(nm,p)-Input(i,c)
n,m:N p:Packet

+ c#[] — Dl n<i— grant(n,dest(rhead(c)),rhead(c)) - Input(i,c)
n:N

To ensure that grant-actions synchronize with corresponding send- and recv-actions,
a second communication function is added:

Init a{send,recv,,g'rant} (F{sendlrecv—momm} (F{send\recvlgrant—rcomm} (

Input(0, [1) [| Input(1, [1) || Output(0, [1) || Output(1, [1))));

By nesting the communications we ensure that the innermost communication has
the highest priority. Because the communication is applied first to multi-action send |
recv | grant, instead of multi-action send | recv, we know that the priority is either
granted by (i) a buffer having a higher identifier that wants to send a packet to the
same output buffer or (ii) the other input buffer is empty. Because send | recv only
communicates when both (i) and (ii) do not apply, we know that packets resulting
from the second communication are routed to different destinations.

Maximal communication To enforce that packets are transferred simultaneously,
we introduce an announcement. That is, if a packet is routed to a destination, it
announces to the other input buffer that a simultaneous transfer is enabled for packets
routed to another destination. The announcement is modeled by means of the free-
action.



38 Chapter 3. Modeling System Descriptions

proc  Input(i : N, c : List(Packet)) =
#c<cap — Y. enter(i,p)-Input(i,p » c)

p:Packet

+ c®[] =X > nziAdest(p)# dest(rhead(c)) —

n:N p:Packet
send(i, dest(rhead(c)), rhead(c)) | free(n, dest(p), p)
-Input(i, rtail(c))
+ c¢#%[] — send(i,dest(rhead(c)),rhead(c)) - Input(i,rtail(c))
+ c~[] — > . grant(n,m,p)-Input(i,c)

n,m:N p:Packet

c#[] — >.n<i-— grant(n,dest(rhead(c)),rhead(c)) - Input(i,c);
n:N

By changing the communication function to {send | recv | free — comm} we only al-
low packet transfers when the other input buffer grants permission and that a transfer
to different destinations is performed simultaneously. This way simultaneous packet
transfers are achieved whenever possible. All possible communications are now per-
mitted by either a grant- or a free-action.

nit o {send,recv,grant free} (

Iﬂ{sendlrecv |free—comm} (F{send\recvlgrant—rcomm} (

Input(0, [1) || Input(1, [1) || Output(0, [1) || Output(1, [1))));

The order in which the communications are applied is now of no importance. Spec-
ifying the two communications as single one is not allowed, since the left-hand sides
of the communication patterns share action labels, which might lead to a non-unique
solution. For this reason we distribute the communication functions over the two
separate communications. To provide (partial) evidence that the order is unimpor-
tant, we have used the mCRL2 toolset. Here we generate the respective LTSs for
the buffers of capacity 1, 2 and 3, and show that the corresponding state spaces are
strongly bisimilar (even isomorphic). The tools that have been used are:

1. mcrl22lps turns an mCRL2 specification as an LPS.
2. Ips2lts exhaustively explores an LPS and stores the exploration result in an LTS.

3. ltscompare determines whether two LTSs are related by some equivalence or
preorder. In these examples we have used the strong bisimilarity equivalence
relation.

3.3 Specification of the Original 2x2 Switch

The Original Switch is an extension of the Simplified Switch. The Original switch
contains an additional counter, that counts interesting packets that are transferred
between input and output buffers. A packet is considered interesting if its second,
third, and fourth bit are all 0. The counter is restricted, such that the value can only



3.3. Specification of the Original 2x 2 Switch 39

be incremented once every clock cycle. So when both input buffers are capable of
transferring interesting packets, priority is given to the transfer from input buffer 0
and the transfer from input buffer 1 is delayed. Hence, we now may only transfer
packets simultaneously, if either one of them is not interesting. Otherwise a process
needs to either take or grant priority like in the Simplified Switch specification. Fig-
ure 3.1(b) illustrates the counter. Figure 3.1 depicts both the Simplified Switch and
the Modified Switch.

This section adapts the model of the Simplified Switch to a model that corresponds
to the design intent of the Original Switch. Thereto, we extend a part of the data
specification and adapt the behaviors of the buffer processes slightly.

3.3.1 Packets

The fact that the second, third and fourth bit of a packet have become relevant for
the behavior implies that we need to reconsider our definition of the data type that
represents a packet. We represent a packet as four bits (i.e., the relevant ones) in
a way similar to the current definition. Instead, and more abstractly, we decide to
model packets as before but with an additional Boolean parameter that indicates if a
packet is interesting (true) or not (false).

sort  Packet = struct packet(b; : Bit, int : B);

By extending the structured sort, we need to update the destination function for
routing packets as well. As the second, third, and fourth bit have no effect on the
routed destination, the adaptation is straightforward.

map  dest : Packet — N;

var b :B;

eqn dest(packet(zero, b)) = 0;
dest(packet(one, b)) = 1;

3.3.2 The Act of Counting

There are several ways to model the act of counting interesting packets. One way is
to introduce an action data parameter that reflects the amount of interesting packets
that have been transferred. Another way is to introduce an action that indicates that
such a packet is transferred. We have chosen the second solution, since it creates a
finite LTS if we generate the explicit transitions. Thus, the counting of interesting
packets is reflected by performing the action inc without any data parameters.

act inc;

Another decision that needs to be made is which entity performs the counting.
One solution is to introduce a separate process. Another option is to extend the
functionality for either the input or the output buffers. We choose to extend the



40 Chapter 3. Modeling System Descriptions

functionality of the output buffers, since the modifications are performed in a local
processes opposed to creating a process that acts as a governing controller. Note, that
implementing the other solution poses no real problems for the mCRL2 language.

To accommodate this behavior, the first summand of the output buffer from the
Simplified Switch is split into two cases, one for receiving and counting interesting
packets and one for receiving non-interesting packets. To decide if a packet is inter-
esting, the projection function int is used. The projection function for a specific field
of a structured sort is specified in the sort declaration. For the sort Packet we use the
projection functions b, and int for obtaining the values of the first and second field,
respectively.

proc  Output(i : N, ¢ : List(Packet)) =
#c<cap—». . ( int(p) — recv(s,i,p) |inc- Output(i,p > c)
s:iNp:Packet 4+ —int(p) — recv(s,i,p) - Output(i,p > c))
+ c#[] — leave(i,rhead(c)) - Output(i, rtail(c));

3.3.3 Adapting the Input Buffer

The Original Switch poses an additional restriction on the communication between
the input and output buffer. We only transfer packets simultaneously if they have
different destinations and at most one packet is interesting. This is expressed in the
second summand. When both input buffers contain interesting packets and these
packets need to be routed to different destinations, priority is granted to any input
buffer with a lower identity. This is described by the fifth summand below. Further-
more we must grant priority to both interesting and non-interesting packets when
local packets are non-interesting. For that reason we adapt the last summand.

proc  Input(i : N, c : List(Packet)) =
#c<cap — Y. enter(i,p)-Input(i,p > c)
p:Packet
+c#[] = Y dest(p)# dest(rhead(c)) A (—int(p) V —int(rhead(c)))
p:Packet
— > 'n#i — send(i,dest(rhead(c)), rhead(c)) | free(n, dest(p), p)
n:N - Input(i, rtail(c))
+c®[] — send(i,dest(rhead(c)),rhead(c)) - Input(i, rtail(c))
+c~[] = > D grant(n,m,p)-Input(i,c)
n,m:N p:Packet
+c# [N int(rhead(c)) — Y. dest(p)~ dest(rhead(c)) Vv int(p)
p:Packet
— >'n <i— grant(n,dest(p), p) - Input(i, c)

n:N
+ ¢ % []1 A —int(rhead(c)) — Y. by(p) = by(rhead(c))
p:Packet
— Y 'n<i — grant(n,dest(rhead(c)), p)
n:N - Input(i,c);



3.4. Specification of the Modified 2x 2 Switch 41

3.4 Specification of the Modified 2x2 Switch

The modified 2x2 switch is derived from the original 2x2 switch. The modified ver-
sion alters the way in which the priority is handled for colliding packets that are both
interesting but have different routing destinations. The modifications are described
by two predicates, namely “both packet transfers have the same destination” (C1) and
“both packet transfers are interesting” (C2). If either one of these predicates holds,
priority is assigned to a packet transfer that originates from input buffer 0. When C1
holds the first input buffer (input buffer 0) has priority over the second input buffer
(input buffer 1). However if C1 does not hold and C2 holds, priority is assigned to a
packet transfer that originates from the second input buffer.

To incorporate these predicates, we only have to alter the model of the input
buffers. For the relevant cases, priority is granted to the input buffer with a higher
identity. The relevant cases only affect the penultimate summand of the input buffer
of the specification from the Original Switch. Hence, we take this summand and split
it into two separate summands that respectively model the behavior of the predicates
C1 and C2:

proc  Input(i:N,c : List(Packet)) =
#c<cap — Y. enter(i,p)-Input(i,p > c)
p:Packet
+ c#[] = Y. dest(p)# dest(rhead(c)) A (mint(p) V —int(rhead(c)))
p:Packet

— > n#%i— send(i,dest(rhead(c)),rhead(c)) | free(n,dest(p), p)
N

. }lr:lput(i,rtail(c))
+ ¢ % [] — send(i,dest(rhead(c)), rhead(c)) - Input(i, rtail(c))

+ cx[] = > > grant(n,m,p)-Input(i,c)
n,m:N p:Packet

+ c % [] Aint(rhead(c)) — Y. dest(p) ~ dest(rhead(c))

p:Packet
— Y'n <i— grant(n,dest(p),p) - Input(i,c)

+ ¢ & [] ANint(rhead(c)) — ZHJ:N dest(p) # dest(rhead(c)) A int(p)

p:Packet

— > n>1i— grant(n,dest(p), p) - Input(i, c)
+ ¢ % [] Aint(rhead(c)) — 3 by(p) ~ by (rhead(c))

p:Packet
— > 'n<i — grant(n,dest(rhead(c)), p)
N - Input(i, c);

3.5 Properties of the Models

In [DS09], the authors presented their models without any form of formal verifica-
tion. According to their descriptions of the models written in the Statechart formal-
ism, the authors had to conclude that their specifications for the Original Switch did



42 Chapter 3. Modeling System Descriptions

not meet the design intent. To illustrate, their model contained a flaw when both
buffers had interesting head packets and one of the buffers was full while the other
was not. In that case, one packet should be delayed while the other head packet was
routed. This however was not covered.

To prevent making errors similar to [DS09], and to convince readers that our speci-
fications capture the correct design intent, we formulate a couple of requirements and
verify that the provided models satisfy them. These requirements relate to deadlock
analysis (Chapter 3.5.1), overflowing buffers (Chapter 3.5.2), packet collision (Chap-
ter 3.5.3) and maximal progress (Chapter 3.5.4). The requirements are expressed in
modal u-calculus formulae (Chapter 2.4). The formulas are verified with the help of
the mCRL2 toolset. The results are discussed in Chapter 3.5.5.

3.5.1 Deadlock Detection

Deadlock is a specific condition that brings the system into a halt, from which it cannot
execute any behavior for any future. Deadlock can be caused by various reasons,
among others due to circular resource dependencies or when all concurrent processes
cannot fulfill their preconditions to execute any action.

We claim that all of the presented models are free from deadlock. Deadlock freedom
is expressed by the following modal u-calculus formula:

[true*]{true)true (€D)

Informally, the above formula states that it must hold that for all possible paths it is
possible to perform a next action.

3.5.2 Absence of Overflowing Buffers

We have used the standard mCRL2 container sort for the construction of lists to model
the content of a buffer. Though, as the lengths of these lists are not fixed or bounded
from above, the use in combination with the constant cap should guarantee that
the buffers cannot overflow. To verify that the buffers indeed stay between these
bounds we extend the model. Therefore we add the alternative summands to the
input buffers:

#c > cap — overflow - Input(i, c)
and add the summands to the output buffers:
#c > cap — overflow - Output(i, c)

The extension has no impact on the routing of packets, because performing such
an action does not affect the state of a model. The action is a witness when the
model resides in an illegal state. To verify that the situation never occurs we state the



3.5. Properties of the Models 43

following modal formula:

[true” - overflow]false 2)
A [true” - overflow | overflow]false
A [true” - overflow | overflow | overflow]false
A [true* - overflow | overflow | overflow | overflow]false

The formula states that there is no reachable state in the model from which we can
perform either one overflow up until at most four overflows simultaneously. We re-
quire the four alternatives, since the four buffers can potentially all overflow simul-
taneously. Furthermore we abstract from all other actions besides overflow, since the
specified multi-actions in the modal formula must exactly match the transitions per-
formed by the model. The abstraction is defined by the following model:

init T {enter,leave,comm} (a{send,recv,grant,free} (

Iﬂ{sendlrecv\grant—womm} 1—‘{send|recv[free—>comm}

Input(0, []) || Input(1, [1) || Output(0, [1) || Output(1, [1)))));
This model is used to verify modal formula (2).

3.5.3 Absence of Colliding Packets

The property that no simultaneous packet transfers are possible to the same output
buffer is specified by the following modal u-calculus formula:

vp,q:Packetvi,j,k:N [frue*-(comm(i:j,l)) | Comm(k’j: Q))lfalse 3

The modal formula states that there exists no reachable state from which we can
perform two packet transfers two the same output buffer.

This formula must be checked on the model after abstraction from all other actions
besides the comm action. We perform the abstraction to prevent the specification of
all the combinations of enter and leave actions that potential coincide. This means
that for the Simplified Switch we use the following model:

Init T {enter,leave} ( a{send,recv,grantfree} (

1—|{sendlrecv\grantacomm} l—‘{sendIr(zcv[)‘reeﬂcomm} (

Input(0, [1) [l Input(1, [1) || Output(0, [1) || Outpu(1, [1)))));

In a similar way we define these abstractions for the Original and Modified Switch.

It is not allowed to send two interesting packets simultaneously. Hence we specify
the formula: “For all reachable states it must not be possible to simultaneously trans-
fer two packets, if both packets are interesting.” So the following modal u-calculus
formula is constructed and subsequently verified:

Vo q:packet Vi j ke (int(p) Aint(q)) = [true™.(comm(i, j, p) | comm(k,1,q))]false  (4)

Again we need to abstract from all actions except the comm action, since the per-
formed multi-actions must exactly match the prescribed multi-actions in the modal
formula. Note that Requirement 3 is relevant to all of the specifications mentioned in
this chapter. Requirement 4 is only relevant to the latter two models.



44

Chapter 3. Modeling System Descriptions

Requirement Simplified Original Modified
1 v/, 3.550s v/, 5m03.863s | v, 5m16.921s
2 Vv, 3.729s v/, 7m35.686s | v, 7m35.202s
3 v, 3.778s V', 4m44.647s | v, 4m49.101s
4 - v/, 5m29.906s | v/, 5m39.844s
5 v/, 3.301s Vv, 4m22.232s | v, 4m33.786s

Table 3.1 Verification results for five modal properties

3.5.4 Maximal Progress

A property we would like to verify is maximal progress. In the context of this case
study, the property is phrased as: “It is impossible to transfer a single packet from an
input buffer to an output buffer in case a simultaneous packet transfer is possible.” A
modal u-calculus formula that captures this (provided that it is checked on the model
after abstraction of all the actions except the comm action) is the following:

vp,q:PacketVi,j:N ([true*]((comm(i, deSt(P), P) | Comm(.j’ deSt(q): Q))U”ue (5)
= ([comm(i, dest(p), p)1false A [comm(j,dest(q), q)]1false)))

Note that modeling maximal progress, as done in Requirement 5, does not enforce
that internal packet transfers take priority over external packet transfers.

3.5.5 Verification Results

The requirements have been checked for all the (relevant) specifications. All of the
buffers in the specifications have the buffer capacity of size 3. This capacity has been
chosen because it still allows for a reasonably fast analysis. The analysis has been con-
ducted with the mCRL2 toolset (Release 2010, January), on an x86-64 GNU/Linux,
running kernel 2.6.31.12, with an Intel® Core™ 2 Duo Mobile Processor T9600, and
4GB of RAM.

The results of the formal analysis are captured by Table 3.1. Requirements that
hold, w.r.t. a particular specification are marked with a “v””. The (user) time it took
to perform the different verification runs are indicated as well. Requirements that are
irrelevant for a specific model are marked with a “-”. It shows that for all of the models
all relevant formulas hold. All analyses have been performed without any attempts to
reduce the verification timings with the help of state space reduction techniques.

3.6 Comparison to Other Specification Languages

This case study originates from the work described in [DS09]. There, the authors dis-
cuss the same case study for the specification languages: TLA+, Bluespec, Statecharts
and ACP This section describes the comparison of the mCRL2 language to the other



3.6. Comparison to Other Specification Languages 45

languages. We focus on the same three aspects as the authors of [DS09], namely the
locality of reasoning (Chapter 3.6.1), the adaptability of the language (Chapter 3.6.2)
and maximal throughput (Chapter 3.6.3). Furthermore we extend the scope by taking
verification into account (Chapter 3.6.4).

Before explaining the comparison, we provide a brief description for each of the
four languages. Firstly, TLA+ (the Temporal Logic of Actions) [Lam02] is a com-
plete specification language that uses logic for the specification and reasoning about
concurrent and reactive systems. It is designed for writing specifications consisting
of non-temporal mathematics with temporal logic and tries to capture a complete
system in a single formula. Secondly, Bluespec [HAOO] is a guarded command lan-
guage, based on an operation-centric description, where the behavior of a system is
described as a collection of atomic operations in the form of rules. These rules are
defined by a predicate condition and the effect on the state of the system. During exe-
cution several rules are concurrently executed in a clock cycle, thereby performing its
execution. Thirdly, we consider Statecharts, which are an extension of conventional
state-transition diagrams extended with three concepts. These concepts are hierarchy,
concurrency and communication [Har87]. The graphical and hierarchical presenta-
tion enables engineers to adapt to the required level of detail for a system. Finally,
the comparison covers the Algebra of Communicating Processes (ACP) [BK84]. ACP
is an algebra for specifying and manipulating the behavior of models. It facilitates the
behavioral description for non-deterministic choices, sequential operations, parallel
composition, deadlock and communication.

3.6.1 Locality of Reasoning

Every system that is built from components, has a localized per component view that
specifies its individual behavior. By means of some form of communication they ex-
change information. Hence, the authors of [DS09] perceive that local reasoning, the
way that expresses local behavior, is a realistic (and subjective) attribute of a speci-
fication language. Within this case study we ‘measure’ the locality of reasoning from
the way in which priorities are assigned to the routing of packets.

To reduce the amount of global reasoning w.r.t. the communication, we have gener-
alized from the specific implementations of the input buffers. This allows us to reason
on a local level about priorities. If we compare our models to those given in ACE we
see that by modeling priority as permissions, we abstract from the contents of the
buffers such that they become invisible to other processes. In the given ACP models,
the buffers are directly inspected by the other processes. This requires a more spatial
reasoning in ACP to derive priority.

Within the TLA+ language, the priority of a packet transfer is dealt with on a local
level. So w.r.t. assigning priority to executing actions, the mCRL2 language and the
TLA+ language are comparable. We do note that the input buffers, as well as the
output buffers are grouped in the TLA+ language. This enables for TLA+ actions
to directly observe the buffer of another process at a local level. When comparing
this method to the one specified in our models, we believe that it is possible in the



46 Chapter 3. Modeling System Descriptions

mCRL2 language to express the same behavior. However it would require an addi-
tional (global) process that mimics the behavior and controls the transfer. Hence,
this would lead to a design that is more spatial, since we need to model the intended
semantics explicitly, which are covered by the implemented semantics of the TLA+
language.

The Bluespec specification defines rules that implicitly deal with mutually exclusive
access to shared resources. When multiple rules access a same resource, access is
given to the rule defined first in the priority hierarchy. By applying this technique,
they ensure priority among packet transfers. Note that priority rules are defined on
a spatial level. Therefore, the reasoning is more spatial than the one used in mCRL2
language.

Within Statecharts all behavior of the buffers is locally specified. However global
temporal reasoning is required to establish the priority among packet transfers. A
simultaneous transfer requires a global spatial reasoning over at least four individual
Statecharts i.e., the different buffers.

3.6.2 Adaptability

The authors in [DS09] only explain the TLA+ language for the simple switch. Though
they claim that TLA+ relates to Bluespec, they do not show the models for the orig-
inal and modified switch. For that reason, the adaptability of the TLA+ language is
unclear, since we are no experts in it. This does not permit us to judge whether the
mCRL2 language performs better or worse in terms of adaptability.

A similar reasoning holds for Statecharts. The authors describe in a fairly easy way
how to model a simple switch from the original switch. However, in the subsequent
discussion they show that the presented model of the original switch is incorrect and
requires a more complicated model to capture the design intent. Since the corrected,
and more complicated models are not given, it is not fair to make comparisons.

For modeling the modified switch in the Bluespec specification language, the au-
thors require an entire redesign of the original switch, such that all priorities are
defined by separated rules. This leads to almost a duplication of the model. As we
compare the same extension for our modified switch in the mCRL2 language, we only
have to split a summand and alter a guard, which are rather small modifications.

ACP serves well in terms of adaptability for this case study. As mCRL2 falls in the
same category as ACB this also holds for mCRL2. Therefore in terms of adaptability,
mCRL2 and ACP are similar.

Furthermore, we have set up the processes of the buffers in such a way that they
could be reused in a more general specification, e.g., an N X M specification. To do
so, we are required to add extra parallel process references in the initialization, and
add extra rules to the data equations for routing packets. Within the current models
we allow that only one packet is sent simultaneously per clock cycle. By adding more
processes, this bound does not change. To increase the throughput, e.g., allowing
more message transfers per clock cycle, we need to add summands that grant this
communication. We argue that these modifications could be done at a local level. As



3.6. Comparison to Other Specification Languages 47

the intended semantics for the internal communication of an N x M specification are
not clearly defined, we cannot provide the specifications in detail.

3.6.3 Maximal Throughput

Within the specification maximal throughput is achieved by executing multiple actions
in a single clock cycle. Therefore, this comparison narrows down the scope to the
behavior of simultaneous actions.

It is not possible to describe the simultaneous transfer of packets in the TLA+ lan-
guage and ACP. Therefore an engineer is required to apply a spatial reasoning to verify
that packets are indeed simultaneously transferred. As we compare the formalism to
the mCRL2 formalism, we see that within the mCRL2 language, it is possible to define
multi-actions. We believe that multi-actions are a more suitable notion to specify the
throughput behavior as it better relates to the concept of simultaneous packet trans-
fer. Therefore it is not necessary for an engineer to reason about multiple transitions
that represent a simultaneous transfer.

For Bluespec specifications, a greedy run-time scheduler tries to acquire maximal
throughput. It should be noted that in some cases a maximal throughput cannot be
obtained, even though all conflict-free rules are selected. To minimize latency, the
scheduler may choose a maximal set of actions that are executed in every (hardware)
clock cycle. Therefore it is possible that this set violates the maximal throughput
requirement [SS08]. As exploration in the mCRL2 toolset is performed exhaustively,
and latency is no issue, maximal throughput is guaranteed, by means of synchronizing
actions and guards. Furthermore, although not specified here, we believe that it
possible to use the mCRL2 time operator to enforce throughput in different ways,
e.g., by enforcing the execution of actions at predefined timestamps.

Regarding Statecharts, the authors of [DS09] do not provide a suitable description
in their paper, as they specified a wrong model. Therefore a comparison for maximal
throughput, renders useless as the throughput analysis on the Statechart specifica-
tions are omitted. Note that this does not mean that it is impossible to give a correct
model using Statecharts.

3.6.4 Verification

The authors of [DS09] are unable to convince themselves that the specifications they
give are correct w.r.t. the design intent. As the remark essentially holds for all specifi-
cations, it already shows the first pitfalls in concurrent system design.

In line with the authors of [DS09], we agree that global reasoning is required (i.e.,
over the entire model) to verify system requirements. This however is a difficult task.
As the description of the models is fairly simple, their explicit behavior is not. In
Figure 3.2* we have taken the opportunity to show, that even for a small system like

*The numbers for the model of the modified switch are omitted as they are the same for the original
model.



48 Chapter 3. Modeling System Descriptions

2x2 Simple Switch - States —
2x2 Simple Switch - Transitions -8 -
2x2 Original Switch - States
2x2 Original Switch - Transitions o
le+10 F \

L & i
le+09 pa E
le+08 = ‘ e =
I A ]
le+07 o _
5 le+06 .
g [ ]
g L i
Z 100000 = E
10000 £ -
1000 = -
100 ¢ -
10 L \ \ \ \ \ ]

1 2 3 4 5

Buffers' capacity size

Figure 3.2 Complexity of the mCRL2 specifications expressed in the num-
ber of states and transitions for the simplified and original switch
models

the simplified switch, we already specified a system for which the behavior cannot
be overlooked by human reasoning’. For a buffer capacity of three elements, we
generate a state-space of 3600 states with 41137 transitions.” Nevertheless, with the
automated methods of the mCRL2 toolset is possible to verify interesting properties
on modeled systems.

TThese numbers are obtained, without applying any reduction techniques. We are aware that these
numbers could be reduced. The number of states and transitions are given on a logarithmic scale.

*Note that multi-actions that contain precisely the same actions are only taken into account once. Oth-
erwise, the numbers of transitions would have been much larger.



3.7. Conclusions 49

3.7 Conclusions

This chapter shows with the help of a case-study that the mCRL2 language and its
toolset are suitable to model and subsequently analyze system descriptions in which
multi-party communications are combined with priority-based communications. We
have tried to apply local reasoning as much as possible, by generalizing the behavior
of the buffers by type. Thereby we preserve both the possibility to transfer priori-
tized as well as simultaneous packets. Furthermore, we have shown that the mCRL2
formalism is capable to verify some behavioral properties. This increases confidence
that the models represent the design intents. From the modeled system descriptions,
we may conclude that the mCRL2 formalism is at least comparable to the formalisms
used in [DS09], and is in some cases even more suitable to specify complex system
designs.

Note that the comparisons are based on subjective grounds. For a fair comparison,
one should study the possible language constructs for each of the formalisms and
point out the differences. This requires an expert over the involved formalisms or
a cooperation among experts. Since the case study is centered around a specific
specification, for which models are created according to the level of the expertise of
the engineers, the outcome of the comparison is subjective. As we consider ourselves
experts, when it comes to the mCRL2 specifications, and are familiar with ACP and
Statecharts, we are confident about the claims made between these formalisms.

We have shown that it is possible to capture relative performance requirements,
without explicitly stating time. Since the mCRL2 languages falls into the category of
timed process algebras [BM02], it allows engineers to also specify real-time behavior.
Nevertheless, we have chosen not to do so for several reasons. Firstly, we would like
to have a fair comparison between the untimed formalisms. Secondly, timed require-
ments tend to be more complex in general, and require challenging manipulations
on the mCRL2 specifications before one can verify requirements. Nevertheless, we
believe that the case study that is considered in this chapter can be formulated in a
timed setting, or serve as a subject of study for reduction and analysis techniques for
timed systems.



50

Chapter 3. Modeling System Descriptions



4

Chapter

Modeling Implementations

4.1 Introduction

The behavior of complex systems is controlled and steered by controllers. These con-
trollers distribute tasks for execution, facilitate communication, and act as a watchdog
over the behavior executed by different components. While systems tend to get more
complex, in both the number of components as well as the corresponding behavioral
execution, the safety governed by the controller becomes more vital. To govern the
system’s behavior, the number of lines of code for the software controller grows as
well. To ensure that shipped systems are fault-free tests are performed. Unfortu-
nately, the absence of errors is not guaranteed by only executing tests.

To increase the level of confidence on the executed behavior, formal methods can
be used. This chapter derives a formal model from code. By observing the code we
model the behavior that is implemented rather than the behavior that is intended or
desired. Hence, we apply a method that is commonly proposed by industry, namely
constructing a model from an existing implementation. The route describes an in-
stance of a bridge between the execution environment and the analysis environment
from Figure 1.1.

Deriving a model from source code is a challenging task. Source code contains
many implementation details that are relevant for execution, however irrelevant for
what should be analyzed. Besides, if the code for any realistic application would be
directly translated into a behavioral model, it should result in a specification that is
far too complex to verify any requirement. Therefore, as the requirements are (often)
stated at a more abstract level, we need to perform an abstraction such that the
behavior and the requirements are described at the same level.

This chapter shows a method that has been applied to analyze functional require-
ments in an industrial setting. The requirements are stated in terms of the commu-
nication between processes. Moreover, all of the interesting requirements are safety

51



52 Chapter 4. Modeling Implementations

requirements [Lam77]. Therefore we apply two abstractions, namely (i) we abstract
from all internal actions, and (ii) we abstract from all data (i.e., all values of variables
and all assignments). By performing the abstraction mentioned in (i), we create a
setting where conditions cannot be evaluated accurately. As a result we perform (ii),
where we replace all conditions by non-deterministic choices. This creates an over-
approximation of the system’s behavior, since the model is less restrictive, with respect
to the actual implementation. In turn, this preserves a simulation relation [GG89].
Note that the abstraction affects the verification results. This means that when a safety
property holds in the over-approximation, it must hold for the real system. On the
contrary, when a safety property does not hold for the over-approximation, it may still
hold for the real system. To determine whether a safety property is indeed violated
by the system, it requires the actual judgment of an engineer.

A direct transformation of the actual code into mCRL2 specifications is possible,
however it renders any exhaustive verification techniques useless. Because the im-
plementation details introduce such a tremendous amount of information, it leads
to models that dictate behavior that exceed the resource limits of the current state-
of-the-art analysis techniques. Therefore we need to abstract from them. With the
help of a case study, we assess the feasibility of such an approach. Hence we take a
controller that is actually used in a prototype printer. The functionality is specified by
tasks which facilitate a structured way of executing the code that drives the compo-
nents of the system. We assume that the source code for the controller is written in
a Simplified Concurrency Programming Language (SCPL, Chapter 4.3). SCPL in itself
is an abstract representation from the actual source code, that expresses the concur-
rent behavior found in the imperative program, while preserving its characteristic
language constructs. To verify safety requirements, we transform a model written in
SCPL to an mCRL2 model that in turn is verified using the mCRL2 toolset. To demon-
strate the practical value of the method, the transformation from a SCPL model to an
mCRL2 model has been performed by hand.

This chapter is structured as follows. Chapter 4.2 provides a background on the
modeled system. Chapter 4.3 introduces the SCPL language. Chapter 4.4 relates
the architecture of the system to the SCPL language. In Chapter 4.5 we describe
the abstraction technique that transforms a model written in the SCPL language to
an mCRL2 model. The verified safety properties and their results are discussed in
Chapter 4.6. Related work and conclusions are respectively discussed in Chapter 4.7
and Chapter 4.8.

4.2 System Description

The source code that has been used for this case study originates from an industrial
system, called “Lunaris” [Roo07]. Lunaris is an Etch Resist Printer for manufacturing
Printed Circuit Boards (PCBs). In current PCB production processes, the substrate is
laminated with a photo resist and uses a lithographic process to create the desired
photo mask on substrates. With the development of Lunaris, it is possible to skip the



4.3. Simplified Concurrency Programming Language 53

expensive task of creating a mask. By directly printing the resist in a desired pattern,
it is possible to create customized and individual PCBs at lower costs.

The prototype printer has been developed and extensively tested for over one year.
The system has many physical components, but we limit ourselves to the (behavioral)
requirements at the level of the (software) controller. At the controller level, Lunaris
consists of 245 multi-threaded implemented tasks (running in parallel). The imple-
mentation is written in the C# language [AW02]. The tasks specify behavior that
includes printing, moving physical components, logging and error handling. In total
170.000 lines of code are implemented to specify the controller’s behavior. The code
is distributed over 120 classes in 40 files. Note that we do not model the control flow
of the controller. As a result, the controller is free to execute any behavior it wants.
The actual behavior of the controller is programmed by an outsourced party.

In this chapter the requirements are derived from the system code. The code con-
tains a special section that states the requirements in terms of the actual implemen-
tation. These requirements are run-timed checked, for which they have specified two
kinds of safety requirements. The first set of requirements raises a warning whenever
they are violated. The second set of requirements brings the system to an immediate
halt whenever they are violated. These rules are specified in a separate monitor pro-
cess, thereby acting as a watchdog over the executed code. The verification results are
used to inform the external party, the ones responsible for programming the control
flow of the controller, on the behavior that may not be executed®.

4.3 Simplified Concurrency Programming Language

To illustrate the approach we introduce the Simplified Concurrency Programming Lan-

guage (SCPL). The SCPL is a programming language deduced from modern imperative

software programming languages. The language enables users to specify parallel pro-

grams, because it has notions to express concurrency, but hides concepts that facilitate

object oriented software development (e.g., definition of classes, creation of objects,

...) or memory management (allocation of variables, pointer dereferences, ...).
The grammar of SCPL is described by the following BNF:

(program) ;= (process) (program) | (process)
(process) = proc C = (statement) return
(statement) ::= callN |x:=e |(statement);(statement) |

if b then (statement) else (statement) fi |
while b do (statement) od | do (statement) od |
suspend | resume N

Every process consists of a unique identifier, i.e., the process identifier, and a body:
a process with process identifier C and body of statements S is denoted by proc C =

*This chapter only describes the publicly available parts for the models and code. Detailed information
on both the code and corresponding models are made available under a non-disclosure agreement.



54 Chapter 4. Modeling Implementations

S return. The analysis assumes that a program consists of at least one process and
that the process that is initially active corresponds to the process labeled with the
identifier init. The body of a process consists of statements that denote calls to
other processes call N (where N is a non-empty set of process identifiers), multi-
assignments X := e, sequential compositions S;S’, the conditional execution of state-
ments if b then S else S’ fi, guarded repetitions while b do S od, unguarded repe-
titions do S od; and the statements suspend and resume N, respectively denoting
the pause of a process and the continuation of a non-empty set of processes. As in
many imperative programming languages, we assume that the constructs are defined
by their intended informal semantics.

The corresponding formal semantics of the syntax is omitted. The second part
of the thesis describes a method that derives a formal model with the help of the
operational semantics. Therefore, one could argue that we could have taken this
case, provide its formal semantics and compare the alternative route. As we take a
more comprehensively case study, namely the semantics of the mCRL2 language, we
feel that showing the route for SCPL is redundant.

4.4 Relating the Implementation to SCPL

The code of the controller hides low-level implementation details by a proprietary
framework. The framework groups these implementation statements and represents
them by tasks.

Tasks express different activities that need to be performed by the system. They are
used to operate hardware, log information, perform error handling, delay execution,
ignore errors, etc. To control the system a task may execute its implementation, select
a task for execution if a guard holds, or start the concurrent execution of several other
tasks. To accomplish the communication between the tasks, the tasks execute their
behavior via a master-slave protocol. That is:

e A task is a master if the task executes other tasks.
e A task is a slave if the task is executed by another task.

Note, that tasks that are slaves can be masters for other tasks. While different tasks are
executed concurrently, their underlying statements are interleaved during execution.
The system executes only one statement at a time. Moreover, it is not possible to run a
task that is already running. It is considered to be illegal behavior, if a task is running,
and another task wants to start the running task.

To signal other tasks for execution, tasks communicate over non-lossy channels.
The communication consists of four different messages:

Start A master wants to start a task of a slave.

Done A slave indicates that a task has been successfully terminated and returns the
control back to its master.



4.4. Relating the Implementation to SCPL 55

Resume A master wants to resume a task of a slave.
Suspend A slave suspends the current process and notifies its master.
While we are only interested in safety properties, we assume the following:

1. Tasks that are exclusively used for logging and error-handling local to compo-
nents are considered to be irrelevant.

2. The system prescribes “good weather” behavior. “Good weather” behavior as-
sumes that the components behave without any faults. This means that a print-
head is not broken, the system prints when it is supposed to, communication
channels are non-lossy, etc.

3. The protocols that facilitate communication are handled correctly by the frame-
work and the embedded software is implemented according to the specification.
By this assumption we do not have to specify and verify the software that pro-
vides the communication and the software on the embedded systems.

4. Time is not modeled explicitly. The behavioral correctness of the controller
should not be affected by the required amount of time to perform a task. This
decisions prohibits the verification of performance properties.

5. In the initial state of the implementation, the system is turned off and all com-
ponents are positioned such that they reside in their initial position.

After applying these simplifications, we obtain 236 tasks, that are executed concur-
rently. While studying the behavior of these tasks, we see that their behavior can be
categorized into two types, namely execute tasks and switch tasks.

4.4.1 Execute Tasks

An execute task is a task that is executed once, e.g., moving the print head device to
a given position. When started, an execute task automatically completes after a finite
amount of processing time.

The semantics of an execute task is depicted by a hierarchical state machine, as
illustrated in Figure 4.1. A sub-task is indicated by a rectangle. A single lined box
indicates that a sub task consists of a single state. A double lined boxes indicates that
a sub task is a compound state. The behavior that is executed in the compound state,
is dictated by the state machines that are included within.

An execute task has two stages, namely Idle and Executing. A task is idle when
no statements need to be executed. A task is executing when it needs to execute
statements. If a task finishes the execution of all statements it returns to the idle
state, i.e., it successfully terminates.

The behavior of an execute task with identifier C is mapped to an SCPL process of
the form:

proc C = “Executing” return



56 Chapter 4. Modeling Implementations

i Start/-
Rl /Done

Figure 4.1 State diagram for an Execute Task

4.4.2 Switch Tasks

A switch task is a task that whenever started, needs to be stopped explicitly. Switch
tasks are often used to enable hardware components, e.g., to enable controllers when
the system reaches a certain run-level.

The semantics of a switch task is depicted as a hierarchical state machine, which
is illustrated by Figure 4.2. A switch task has four stages, namely Idle, Executing,,
Executing, or Enabled. The first two stages are similar to the ones of the execute task.
A process is Enabled (a.k.a. temporarily idle), when the process suspends itself after
executing some statements, although some statements are left for execution at a later
moment in time. We assume that only Enabled tasks can be suspended. This means
that when a task is Idle, it cannot be resumed or started by a resume.

Resume /-

-/Done -/Suspend

A 4

Executing Enabled

Figure 4.2 State diagram for a Switch Task

The behavior of a switch task carrying the identifier C is mapped to an SCPL process
of the form:

proc C = “Executing;”; suspend; Executing,” return



4.5. Transformation Scheme 57

4.5 Transformation Scheme

The transformation scheme describes a transformation function that takes a program
written in the SCPL language and produces an mCRL2 specification. The transforma-
tion function is described by function A. The resulting mCRL2 specification consists
of an initial process and a set of mCRL2 process equations.

The transformation function does not cover the required sort declarations, the re-
quired action declaration, nor the communication among processes. Although they
are required by the mCRL2 specification, we specify them separately a priori.

So, we define sort Pj, that models all process identifiers. Then for each process with
identifier C in the SCPL program, including the init variable, we specify a constructor
cons C : P;,. Moreover, we introduce for every C a recursion variable X in the mCRL2
specification.

For the transformation we require (and define) the following actions:

e Start, : P, denotes the request to start process C € Pp;

e Start, : Pp denotes the notification of the request for starting the process C € P,
(invoked by another process);

e Done; : Py denotes the successful termination of process C € Pp;
e Done, : P, denotes notification of termination for a run of process C € Pp;

e Suspend, : P;, denotes the suspend of process C € Py, activated by task C itself. If
a process decides to suspend its execution, it sends the calling process a suspend
signal. This allows the calling process to continue;

e Resume, : P;, denotes the notification of the request to resume the process C €
Pp;

e Resume; : P, denotes the request to resume the suspended process C € Pj,.

We introduce the actions Start, Done, Suspend, Resume : Pp, that denote the resulting
communicating actions for the corresponding send/receive requests. Assuming that
the name of the initial process is indicated by init, we define the transformation func-
tion A as:

. . k
A(py,...,pr) = (O (Tp(Tg(Start,(init) - Done,(init) || (”CGPDXC))))’ Ui:l'A;(i (p))
where
o k denotes the number of processes and p; denotes process i (1 <i < k);

e Bl = {Start,, Start,,Done,, Done,, Resume,, Resume,, Suspend, } expresses the set
of blocking actions, i.e., the actions that may not occur in isolation;

e B={Start, | Start, — Start, Done | Done, — Done} denotes the set of primitive
communications, i.e., the actions that need to communicate;



58 Chapter 4. Modeling Implementations

e E = {Suspend, | Done, — Suspend, Resume, | Resume, — Resume} specifies the
set of additional communications, i.e., the second set of actions that needs to
communicate;

”je , X; describes the processes that are running in parallel, that is recursively
defined as:

Hje(/) Xj=1, ”jeJU{k} Xj =X | (H;g\{k} Xi) ;

o the sets y; denote the sets of recursion variables that are used in the transfor-
mation result for the construct “while b do (statement) od” and the construct
“do (statement) od”. These process identifiers are pairwise disjoint and are
disjoint from the set of recursion variables for the process definitions.

e A’ denotes the transformation function for processes defined in Chapter 4.5.1.

The encapsulation operator dg; and communication operators I', 'y are applied to
the parallel composition to model the communication between processes and to block
individual non-successful communications. We specify the communication operators
I'; and 'y such that we guarantee a unique solution, i.e., it is impossible to obtain
two results given any input of actions. It is not used to specify any priority.

Every process that is defined in the SCPL specification is associated with at least
one mCRL2 process equation by means of the transformation function A’ namely
X corresponds to the translated process p labeled with identifier C. The other vari-
ables y; (also included in P})) are introduced to capture repetitions in the body of a
process. To ensure that the introduced recursion variables differ from other recursion
variables, the transformation function is parameterised with y;, which are free to be
used recursion variables and are chosen sufficiently large.

We assume that the initialization process init is called once from outside the system.

4.5.1 Processes

Processes decompose the system’s functionality into smaller manageable parts. Every
process carries out a specific task. The behavior of a process is often implemented by
a function, subroutine, procedure or some functional behavior. The behavior of an in-
dividual process is defined by statements placed in some order. Let proc C =S return
denote the implementation of a process, where C defines the process identifier and S
defines the statements placed in some order.

To model the SCPL process as an mCRL2 specification, we apply function A;{ to
the implementation. Here y denotes the set of available recursion variables. The
mCRL2 process equation that is provided has two summands. The first summand
reflects the start, the normal execution and the termination of a task. The second
summand models the behavior that is associated to resuming an idle task. Hence, no
statements are executed. The transformation function uses the identifier C to indicate



4.5. Transformation Scheme 59

the translated process. The identifier is used by other processes to execute the tasks,
i.e., to become enabled.
The transformation function for process identifier C and statement S is given by:

X = ~t.-D <X
Al (proc C =Sreturn)={ ¢ = Start,(C)- L, Done,(C)- Xc }UES

+ Resume,.(C)-Doney,(C)- X,

where (t,, E,) = A;)C(S ) and A;/,c are the transformation functions for statements
(Chapter 4.5.2).

4.5.2 Statements

This subsection discusses the transformation of statements performed by the function
A’; c- All occurrences of p and q denote (process) statements. All occurrences of b
are Boolean (B) expressions.

Interface Calls An interface call contains a non-empty set of process identifiers. If a
set contains one element, it behaves as a call to a single process. If a set contains more
elements, it behaves as a call to multiple processes. A call simultaneously enables the
start of the processes referred to by the set of identifiers N. These processes are then
executed concurrently. Processes can only be started by an interface call when they
are in the idle stage. If a call is addressed to a busy process or a temporarily idle
process, the call is postponed until the process becomes idle. This implies that all
processes need to be idle to conduct an interface call to multiple processes.
An interface call statement is translated by:

A;”C(callN) = (()neNStarts(n)) . ({neNDoner(n)) ,0)

where | a(n) is inductively defined as:

nenN
|ne@ a(n) =1, {neNU{k} a(n) = a(k) | |n€N\{k} a(n).

Since no additional process equations are introduced, the right element of the tuple
is empty.

We assume that all calls are made to idle processes. Therefore postponing a call con-
flicts with the assumption. This type of behavior is considered illegal (Chapter 4.4).
To assert that no illegal behavior is eliminated, we verify that it is not possible that a
finish and a start of a task are subsequently executed. This requirement is verified in
Chapter 4.6.3.

Assignments The multi-assignment statement X := e defines the (atomic) value
updates for the variables x, ..., x, with the values of e,,...,e,. Because we already
decided to abstract from all data, the values, variables and corresponding assignments
become irrelevant. So we transform a multi-assignment by:

A;”C(x i=e)=(r1,0)



60 Chapter 4. Modeling Implementations

where the assignment is transformed into an internal non-observable action T. More-
over, no additional process equations are introduced.

Sequential Composition The sequential execution of statements is described via
the sequential composition operator. It is evident that the sequential order in which
the statements of a task are executed stays preserved. Since the mCRL2 language
knows a similar construction, the transformation for the operator is (almost) straight-
forward

A;’C(sl 5 32) = (ts1 : tsszsl U Esz)

where

d (tslaEsl) = Ag,c(sl): and

° (tsz:Esz) = Zz,’c(sz)

Here ¢ and v are sets of recursion variables such that ¢ N1 =0 and ¢ Uy C y. These
sets need to be chosen large enough to allow for the subsequent transformations to
provide enough fresh recursion variables for transforming both the statements s; and
Sy. This means that for every recursion in the subsequent transformation there must
be a least one unique recursion variable available.

Conditional Composition The outcome of an evaluation of a conditional compo-
sition operator depends on the values of variables. As we have chosen to abstract
from the values of variables, it is impossible to determine the outcome of a condition.
Therefore, we assume that the condition evaluates to either true or false. This implies
that the conditional composition operator behaves as a non-deterministic choice.

As a result, we translate all conditional composition operators to non-deterministic
choices by:

A7 ((if b then s, elsess, fi) = (t;, + ¢, E, UE,)

where

b (tsl:Esl) = Ag’c(sl); and

d (tSZ’ESZ) = ,/Ll/,,c(s2)

Here ¢ and v are sets of recursion variables such that ¢ Ny =0 and ¢p Uy C y.
Analogue to ¢ and v of the sequential composition, these sets need to be chosen large
enough to allow for the subsequent transformations to have enough fresh recursion
variables available.

Recursion Recursions are used to execute a set of statements that need to be carried
out several times in succession. Recursions are either used for computational purposes
(for which they are finite) or for dictating the control flow (being possibly infinite).



4.5. Transformation Scheme 61

Recursions are modeled by means of recursion variables. When a control recursion
is finite, it has a condition which determines when to abort the recursion. Under the
assumption of fairness and the decision to abstract from all data, we assume that these
kind of recursions terminate. We do not know when they terminate. So we model the
conditional choice as a non-deterministic choice (as is the case for conditionals). For
unguarded recursion there is no reason to introduce a non-deterministic choice.

The reason for explicitly having unguarded recursion in SCPL is that virtually all
systems have parts that need to run continuously during execution. In these circum-
stances it must not be possible to abort the recursion.

Consequently, we provide two transformation functions. The first transformation
is defined for the unguarded recursion. The second transformation is defined for the
guarded recursion.

A;’)C(do p od)
A;C”C(while b do p od)

(Y, {Y=t,-Y}UE,)
(Y, {Y=t,-Y+7T}UE,)

Here Y denotes a recursion variable taken from y, and t, and E, are defined as

(tp, Ep) = ;’ \(r} c(p). Note that an additional 7 is required to end a guarded recur-
sion.

Processes Suspension When processes are concurrently executed, it is often de-
sired to temporarily suspend a process. An example could be that the process has to
wait for another process to complete a certain task. For this reason the SCPL language
facilitates a statement to that self-pauses an executing process. We assume that if a
process performs a self-pause, it is eventually resumed. This choice is reflected in
the transformation by modeling the self-pause and the resume by two sequentially
executed actions.

A’/ -(suspend) = (Suspend,(C) - Resume,(C),0).

Process Continuation Processes that have performed a self-pause stay temporarily
idle, until another process signals the process to continue. The solution offered by
the SCPL language, enables the continuation of a suspended process by means of a
resume action.

Like interface calls, multiple processes are (concurrently) resumed by a single re-
sume. We assume that a process that performs the signaling transfers the control
to the resuming processes. The control stays with these processes until all of the
resumed processes either terminate successfully and/or become temporarily idle.

The resume statement is translated as follows:

A’;’C(resume N)= ((|n€N Resumes(n)) . ({neN Doner(n)) ,(Z)) .



62 Chapter 4. Modeling Implementations

4.5.3 Transformation by Example

To illustrate the transformation we consider a system that has two concurrent pro-
cesses init and P. Process P consist of two parts, separated by a suspend. init calls
P and waits until P finishes the first part. Then process P finishes the first part, pro-
cess init continues by resuming the execution of the second part of process P. The
execution in the SCPL language is reflected by Algorithm 1:

Algorithm 1 A code snippet from the SCPL language
1: proc init =
2 call P;

3 resume P
4: return

5:
6

7

8

suspend,
9: b :=false
10: return

After applying the transformation we obtain the following mCRL2 specification:

proc X, = Start,.(init) - Start,(P) - Done,(P) - Resume,(P)
-Done,(P) - Doneg(init) - X;;,
+ Resume,(init) - Done(init) - X;pit;

proc Xp = Start,(P)- 7 - Suspend,(P) - Resume,.(P) - T - Done,(P) - Xp
+ Resume,(P) - Done,(P) - Xp;

init I (g (Tp(Start,(init) - Done, (init) || Xini [| Xp)));

The corresponding LTS is depicted in Figure 4.3.

4.6 Verification

This section discusses the verified safety requirements. The requirements have all
been stated as assertions in the code of the system’s architecture. Because verification
is performed on the mCRL2 model, we need to state the requirements in terms of the
mCRL2 model, rather than the SCPL language. Thus the actions that are used in the
modal formulas, are obtained from the translated mCRL2 specification.

Safety rules have been formulated in the system’s architecture to ensure correct
behavior. A safety rule is a condition that may not be violated by the execution of
the system. Lunaris specifies two kinds of safety requirements. The requirements



4.6. Verification 63

Start(init) Start(P) T
»>(O—»(O)——»

O—»
Suspend(P)

Resume(P)

O Done(init) Done(P) T

Figure 4.3 LTS for an SCPL specification

mentioned in Chapter 4.6.1 and Chapter 4.6.2 have all been derived from the speci-
fied requirements in the implementation. The soundness of the model is discussed in
Chapter 4.6.3. Chapter 4.6.4 describes the verification details.

4.6.1 Warnings

The first set of requirements consists of eight rules. If an implemented requirement
is violated during execution, the controller only emits a warning, but continues the
system’s execution.

The first class of safety requirements are templates of the form: The “Switch Task
(ST)" must be running if the “Execute Task (ET)" is executed. These properties are
decomposed into the following modal formulas:

e An execute task ET may not be started before a switch task ST is “Enabled:”

[(—Suspend(ST))* - Start(ET)]false
A [true* - Start(ST) - (—Suspend(ST))* - Start(ET)]false

e An execute task ET may not be stopped after the switch task ST is being stopped:

[true” - Start(ET) - (mDone(ET))"* - Resume(ST)]false
A [true* - Start(ET) - (—Done(ET))"* - Done(ST)]false

The analysis shows that three of the eight safety rules are superfluous, i.e., a warning
cannot arise in any of the behavior executed by the system.

4.6.2 Critical Errors

The second class of rules consists of 30 safety properties which only allow the ex-
ecution of a task (T), if some precondition is met. These tasks, e.g., involve the



64 Chapter 4. Modeling Implementations

movement of the printhead calibration system or shuttle. Since they physically oper-
ate in each others workspaces, it is possible that the system incurs physical damage
if these safety properties are violated. To prevent damage, the system halts when a
precondition fails.

To verify the second class of requirements, temporal logic formulas of the following
forms have been constructed (S, T, and U are actions):

[true” - S - (=T)" - Ulfalse

Informally the modal formula states, that there exists no reachable state from which it
is possible to execute action S, followed by action U, such that all actions in between
action S and U are all non T labeled actions.

All of the formulas have been checked and some requirements were violated in
the model. Since the verification has been performed with a controller that is in no
way restricted, the violating requirements had to be manually inspected, i.e., taking
the restrictive behavior into account and simulate the code in a software in the loop
environment, to rule out any false violations. It turned out that four requirements
were potentially violating. As the actual implementation was performed by an exter-
nal team of programmers, the illegal sequences have been communicated to prevent
critical errors from happening.

4.6.3 Soundness of the Model

The translation of the system’s code to an mCRL2 specification has been performed
by hand. To ensure that all of the relevant code is translated, the translation has
been performed in (small) incremental steps. By adding code, that is subsequently
translated and added to the model, we could check the completeness by means of a
deadlock analysis'. By performing the analysis we could see that any incomplete parts
led to deadlocking states because of unsuccessful communications. By adding the
missing behavior of the corresponding processes, and the introduction of successful
communications, we were able to create a deadlock free model. This implies that (i)
all used interfaces between the components are implemented in the code and (ii) we
have modeled all the behavior that is executed by the controller.

Recall that for the abstraction we assume that no two same tasks could be executed
simultaneously. Although it was assumed by engineers, there was no evidence that
this assumption was valid. The behavior of a tasks is modeled by a single mCRL2
process and all processes are initially specified in a parallel composition. This implies
that no two tasks, which carrying the same identifier, can be executed simultaneously.
So, if a request to start a task would be sent to an already running task, the mCRL2
model would stall and postpone the request until the running task would have fin-
ished. Hence we would see the termination of a task, immediately followed by the
start of a task. Therefore we verify the requirement that no two instances of a task car-
rying the same identifier are executed sequentially. If we find such a witness, it could

TThe absence of deadlock is checked with the following modal formula: [true*]{true)true



4.7. Related work 65

imply that a task had been stalled for execution. Therefore the following requirement
has been specified and verified:

[true*] (V. [Done(i) - Start(i)] false)

where T denotes the set of identifiers for all switch and execute tasks. The verification
revealed several witnesses that could all be traced to tasks that were sequentially
executed in the code. While no other instances were found, it confirmed that no two
same tasks could be executed simultaneously.

The engineers presumed that it would be possible to immediately resume a switch
task, after it got suspended. This behavior would imply a faulty Enabled stage, since
no behavior had been executed that could alter the internal state of the system. To
eradicate the suspicion, we formulated and verified the following formula,

[true*] (V. [Suspend(i) - Resume(i)] false)

where S denotes the set of identifiers of all switch tasks. We performed the verification
and did not find any witnesses. Therefore we could safely assume that no faulty
Enabled stages were present.

4.6.4 Verification Details

The state space that coincides with the verification consists of 76256 unique states and
253145 transitions for the 236 tasks. The rather low amount of states results from
the serialization and the dependencies between task. To verify the temporal formulas
we needed to linearize the mCRL2 model into an LPS. For all the requirements, this
linearisation step has been executed just once. This took approximately 53 minutes
on a computer with an Intel® Pentium® D Processor 930 and 2 Gb RAM running
Linux. The subsequent verification of a single requirement took less than 15 minutes.
This includes the transformation of an LPS and a modal formula to a PBES, and the
subsequent solving of the PBES.

4.7 Related work

To determine whether a system is free from programming bugs, inconsistencies, run-
time errors, or contains non-portable constructs, various tools like LINT [Dar88,
Joh78], POLYSPACE [Inc], and QA-C++ [PRQ] act as an extension to standard de-
buggers. When it comes to the verification of dynamic properties (deadlocks, unde-
sired behavior) tools like Java PathFinder [Sofc] or StEAM [LMEQ4] are used. These
tools use a virtual machine in which models are translated to byte code. Afterwards
they are executed to verify properties. Unfortunately, the size of the code is related
to the underlying state space that needs to be explored. This means that if the size
of the code becomes larger, it becomes harder, or even impossible to verify dynamic
properties. As stated by Java PathFinder:



66 Chapter 4. Modeling Implementations

“While software model checking in theory sounds like a safe and robust
verification method, reality shows that it does not scale well.”

To verify industrial systems, abstraction techniques are inevitable. One can argue
that the work presented in this chapter is an implementation of the theory of ab-
stract interpretation. In abstract interpretation [NNH99], abstract values are chosen
for variables. Behavioral models obtained via this approach depend on the (initial)
values of data variables. Consequently, it requires manipulation of the data variables.
For relatively small systems, this method is fruitful. However larger systems may still
face a state space explosion, due to the number of parallel processes combined with
the number of possible abstract data values. To verify larger systems, either more
coarse grained abstraction techniques are required (such as described in this chap-
ter) or state space reduction techniques need to be applied (e.g., symmetry reduc-
tion, bi-simulation reduction, etc.). Since almost every task specifies unique behavior,
we could not benefit greatly from symmetry reduction. This technique is found in
[LNO3, BDHO1]. The application of bi-simulation reduction techniques requires the
generation of the full underlying state space.

Related work can also be found in the Bandera tool set [CDH"00]. The Bandera
tool set translates Java source code to a model, which verifies properties using model
checking techniques. The Bandera toolset, only accepts closed code. For this reason
the system needs to be fully implemented before it can be verified. With the help
of extensions it is possible to verify open systems (e.g., an environment generator
for Bandera [TDP03]), but it still requires a full and correct implementation of a
source code unit. Since our method abstracts from variables we can deal with partly
implemented units and code skeletons.

The author of [Kof07] presents a way for checking component behavior compati-
bility, written in behavior protocols and checked with the Spin model checker after-
wards. Using LTL formulas, they manage to verify properties on a well documented
system of 20 components. In our case study we tackled a bigger system running 230
concurrent processes, and performed a successful verification with a different tool set.
Next to that the semantics of our components differs: we cope with processes that are
suspended and need to be resumed afterwards, while the components mentioned in
[Kof07] do not facilitate such a mechanism.

Work presented in [Hol01] describes a method that directly derives a Promela spec-
ification from C code. This technique creates for every command a corresponding ac-
tion in a Promela specification. In [Web07] another approach is taken with Promela.
Here experiments are conducted with a virtual machine based approach for state
space generation. By evaluating the byte-code language, they provide a way to ef-
ficiently execute operational semantics for modeling and programming languages.
Undoubtedly, these techniques perform well on small toy examples for examining
specific code constructs. However when changing the scope from specific code con-
structs to the control flow for examining larger concurrent systems, more rigorous
techniques are required. In that sense, the method described in this paper can be
viewed as an extension to their techniques.



4.8. Conclusions 67

Notice that our work also shares resemblance with SLAM by Ball et al. [BRO1].
One of the SLAM approaches is based on refining the abstractions (to rule out spuri-
ous counter-examples), and turns software implementations into Boolean programs
[BROO]. The basic idea is to leave out data initially, and include it when needed later
on. Data that is included in the refinement applies to variables that are used in con-
ditions. With the help of a theorem prover and additional iterations for refinement
the SLAM method tries to determine if it can solve the equations, thereby terminating
the recursion. In rare cases, it is possible that the theorem prover used by SLAM can-
not solve the equations, which leads to a non-terminating algorithm. Consequently,
verifying safety requirements become impossible.

Counterexample-Guided Abstraction Refinement (CEGAR) (see [CGJ103]) is an
automatic iterative abstraction-refinement methodology for which a datapath abstrac-
tion results in an approximation of the original design, i.e., if the approximation turns
out to be too coarse, the approximation is automatically refined up to a point for
which it either generates a counter example or disprove it. While this technique is
adaptive, our method is not. Therefore our approach can be seen as an instance of a
first time right for CEGAR.

D-Finder [BBNS09] presents a compositional method for checking invariant prop-
erties. The basis of the method is an algorithm that by iterations computes invariants
for components until they are strong enough to imply a global invariant that needs to
be checked. In contrast to our method, where an over-approximation of the model is
obtained, D-finder over-approximates the local properties of the component.

Another approach related to ours, can be found in VeriSoft [God97]. Their ap-
proach consists of a systematic exploration of a state space by executing arbitrary
code written in any language. They guarantee complete state space coverage up to
some depth, hence a partial state space exploration. Consequently, this only guaran-
tees safety properties up to a certain depth/bound and not for the entire system.

A last piece of related work can be found in program slicing [Wei81]. This tech-
nique selects parts of the source code that are of interest to the values of specific vari-
ables. Our approach takes this to the extreme by abstracting from all the variables
and focusing on calls between interfaces. Perhaps the technique of program slicing
could also have been made instrumental in abstracting from less relevant aspects of
the model such as the logging of events.

4.8 Conclusions

This chapter shows how safety properties are verified for complex systems. With the
help of an intermediate programming language, we have proposed a procedure that
transforms code into an mCRL2 model, thereby preserving a simulation relation. The
accompanied case study demonstrates that such an approach is applicable to verify
safety requirements in an industrial setting.

Similar methods are used in combination with other implementation languages (C,
C++, C#, Pascal, Delphi, Java ...) and verification languages. Mentionable, they



68 Chapter 4. Modeling Implementations

have similar constructs for describing behavior such as synchronized communication,
sorts to encode different processes and non-determinism.

Although it is possible to verify safety requirements, it still requires an engineer
to validate the results on the actual model. If data would have been included, we
would not have to perform these steps by hand. For small models it might be possible
to include these relevant conditions. However, including them in industrial systems
renders any verification run useless. Hence, compromises have to be made.

The proposed method, that is illustrated here, is not beneficial for requirements
other than the safety ones. Since we reason over an over-approximation it could be
that a liveness property holds for the model, but it does not hold for the implemented
system. To verify them, the model needs to be enriched with the elementary required
data. However, enriching the model is again a labor intensive task.

The process of creating an ad-hoc formal model in a similar way is labor inten-
sive, because an engineer needs to apply a suitable abstraction, often performs the
transformation by hand, and needs to inspect the validity of the transformed model
by conducting tests. This makes the task challenging and also in a sense somewhat
unpredictable. A wrong abstraction could lead to a model for which the verification
becomes impossible (e.g., state space explosion) or too trivial (e.g., all the require-
ments appear to hold). This means that automating this route, i.e., the transforma-
tion of code to a formal model, is difficult to perform without the help of an engineer.
The derivation and the implementation of the entire model took approximately three
months.

Furthermore, we would like to address that the model has been extracted from
the code of a stable software branch, where no further development was performed.
Therefore we did not have to take the synchronization of the models with updated
code into account. If one would apply this process during development, one should
consider this challenge as well.

Based on the amount of related work that is presented here, and can be found in
literature the methods that try to create formal models from code are versatile. For
all of the techniques we see that either only small models can be formally checked if
no, or hardly any, abstractions are applied. To model and verify larger and more com-
plex system more rigorous abstraction and ad-hoc techniques are required. In turn,
these methods require more ingenuity and are harder to implement in an automated
translation. Hence, they are less suitable to be applied in an industrial setting.



Chapter

Modeling Specification Languages

5.1 Introduction

A successful system development requires the cooperation of different disciplines.
Traditionally, every discipline is concerned with a separate development trajectory,
for which the various disciplines use their own methods, techniques and tools to
construct their behavioral models. As the different developments are often performed
in isolation and are merged near the end of the development trajectories, it can result
in difficulties during system integration.

To overcome these problems, attempts have been made do define a single language
that spans over different disciplines to facilitate a multidisciplinary modeling envi-
ronment. Such a language enables the study of different aspects in isolation, while
maintaining the consistency for a global model. A language that tries to achieve this
is the Chi 2.0 language [BHR108]. This language along with its tools, is a formalism
suitable to model and simulate hybrid systems. A hybrid system combines discrete
events with continuous behavior. The language integrates concepts from dynamics,
control theory and computer science. The language has evolved from the work of
(Hybrid) y [BMR'06], for which the roots are found in CSP [Hoa78] and hybrid
automata [Hen96].

The Chi 2.0 language targets the study of performance parameters (e.g., through-
put, cycle time, system occupation) for hybrid systems by means of simulation tech-
niques. Though, the semantics is formally defined and is supported by tooling, it does
not offer any means to verify behavioral properties. To resolve this limitation, we
explore an ad-hoc method for deriving formal behavioral models: defining a denota-
tional relation that allows for a compositional transformation of Chi 2.0 specifications
into mCRL2 specifications. This chapter describes an instance of a bridge between the
interchange environment and the analysis environment from Figure 1.1.

Because the Chi 2.0 language is a hybrid language, it incorporates aspects that are

69



70 Chapter 5. Modeling Specification Languages

hard or even impossible to translate. Hence, we only translate those Chi 2.0 notions
that comply to a specific format. We first describe the design decisions for the input
format as well as the informal rationale to overcome the discrepancies between the
languages. These descriptions are guided by the operational semantics of the Chi 2.0
language [BHR'08], and the operational semantics of the mCRL2 language, including
its timed fragment (Chapter 2.2.3). Although the discrete parts of the languages are
considered to be relatively close to each other, we see that the transformation is non-
trivial due to the differences between the languages and by restrictions imposed by
the tools.

The outline of this chapter is as follows. In Chapter 5.2 we introduce the Chi 2.0
language, describe the syntax and semantics of the Chi 2.0 language, and provide the
design decisions that we respect during the transformation. Chapter 5.3 provides the
compositional transformation scheme per syntactic Chi 2.0 notion. In Chapter 5.4
we state additional considerations that allow for more models to be translated. Chap-
ter 5.5 validates the transformation by evaluating four translated models. Chapter 5.6
describes related work. Chapter 5.7 concludes this chapter.

5.2 Syntax and Semantics of the Chi 2.0 language

The Chi 2.0 language is a hybrid modeling formalism that integrates concepts from
dynamics and control theory with concepts of process algebra and hybrid automata.
The language consists of five important language concepts. The first concept concerns
the different variable classes. Variables are either discrete, continuous or algebraic.
The second concept is the strong time determinism, combined with delayable guards.
The third concept is the use of urgent and non-urgent actions. The fourth concept
denotes the algebraic (ordinary differential) equations. The last concept specifies the
different interaction mechanisms between concurrent processes by one of the following
three methods. The first interaction method provides a handshake synchronization,
that allows for the synchronous communication between discrete event processes.
The second interaction method facilitates the sharing of variables between concurrent
hybrid processes. The third interaction method specifies the synchronization through
shared action labels, i.e., a synchronizing action is only executed when for all of
the alphabets of the concurrent processes in which the action-labels occur, all of the
relating actions are simultaneously enabled.

The discrete part of the language allows notions to specify complex system be-
havior. It provides process definitions and process references, which enable process
re-use, encapsulation and hierarchical composition of processes. The language also
offers process terms for scoping, local variables, local channels, recursion and channel
hiding.



5.2. Syntax and Semantics of the Chi 2.0 language 71

5.2.1 Syntactic and Semantic Differences

The Chi 2.0 language and the mCRL2 language have been developed for different
engineering disciplines. Therefore not all notations of the Chi 2.0 language are de-
notable in the mCRL2 language. This section, provides the important syntactic and
semantic differences between the languages. It also states the design decisions to re-
solve differences between the languages. Some decisions require non-trivial modeling
decisions. The implementations of these decisions are provided in Chapter 5.3.

Kind of Languages

The unrestricted Chi 2.0 language allows the specification of hybrid processes. The
LTSs that correspond to the semantics are expressed by three transition relations,
namely action transitions, continuous flow transitions and consistency transitions.
The semantics that corresponds to the behavior of an mCRL2 specification is de-
scribed by a timed-LTS, relating the behavior of discrete events to transitions at a
certain moment in time. The progression of time is represented by an idle relation
(Chapter 2.2.3). Based on these observations there are three difficulties for which we
provide design decisions:

Decision 5.1: When translating a Chi 2.0 specification, we only consider its timed
discrete event behavior. The tools that currently accompany the mCRL2 language
do not facilitate any means to solve differential equations. Solving these equations
requires complex (symbolic) transformations to calculate their exact solutions. As it
is not guaranteed that exact solutions are present, and approximations are imprecise,
we ignore the differential equations as they can render the outcome of a verification
possibly doubtful. Therefore, we restrict the continuous model variables to only the
special variable time.

Algebraic model variables can be interpreted as variables that are defined through
a function. Since we eliminate continuous variables, the algebraic variables can be
substituted by their corresponding functions. For the translation we assume that they
are. Hence, the set of algebraic variables is presumed empty. a1

Decision 5.2: The Chi 2.0 language can specify consistent and inconsistent behavior.
A consistent process may allow the progress of time, perform an action or deadlock.
An inconsistent process is prohibited from doing so. Consistency in the Chi 2.0 lan-
guage is specified through e.g., invariants. The mCRL2 language has no notion for
expressing inconsistency. Hence, we assume that all Chi 2.0 processes are consistent.
Therefore we do not allow any process terms that introduce inconsistent behavior.

Decision 5.3: The semantics of the Chi 2.0 language has different transition relations.
To model the behavior in the mCRL2 language we map the transition relation to the
timed transition relation. The continuous behavior of the Chi 2.0 language is mapped
to the idle relation in the mCRL2 language. a1



72 Chapter 5. Modeling Specification Languages

Model Variables

The Chi 2.0 language has model variables and assignments. The mCRL2 language
has no concept of model variables and assignments to those, since the language is
stateless. Based on this observation we take the following design decision:

Decision 5.4: To capture model variables, we introduce a memory process in the
mCRL2 specification that facilitates the (global) variable management. For obtain-
ing and altering the values of variables (e.g., as a consequence of an assignment), the
concepts are modeled by enforcing a value exchange for only the relevant model vari-
ables between the memory process and the translated process. For every variable we
introduce a separate set of actions that exchange values between the memory process
and the translated specification. a

Action Labels

The action transition of a Chi 2.0 process shows the (restricted) quadruple “o,l,W,c””.
The mCRL2 language can only perform multi-actions.

Decision 5.5: To capture the quadruple in the translated mCRL2 specification, we in-
troduce for each of the quadruple elements a separate representation. The individual
representations are merged into a single mCRL2 multi-action. a

Decision 5.6: We presume that for every action that is specified in a Chi 2.0 specifica-
tion, we have a corresponding action declared in an mCRL2 specification. J

Parallel Composition

The parallel composition of the Chi 2.0 language differs from the parallel composition
of the mCRL2 language. The Chi 2.0 language strictly interleaves the actions from the
concurrent processes. Corresponding send and receive actions are the only synchro-
nizing actions. In the mCRL2 language actions are interleaved differently, i.e., the
strict interleaving is extended with the synchronized execution of actions. The effect
is described by a multi-action, where multiple actions are performed simultaneously.

Example 5.1(Concurrent execution). This example specifies the Chi 2.0 process
a || b and the mCRL2 process a’ || b’. Figure 5.1(a) depicts the actions that can be
executed by the Chi 2.0 process. Figure 5.1(b) depicts the actions that can be executed
by the mCRL2 process. By allowing the synchronized execution of actions, we see that
Figure 5.1(b) depicts an additional transition that is not shown in Figure 5.1(a). A

Decision 5.7: The additional multi-actions that occur during the execution of an
mCRL2 process, pose additional actions that cannot be performed by a Chi 2.0 spec-
ification. Hence, if we translate a Chi 2.0 parallel composition by an mCRL2 parallel
composition, we need to restrict the translated process by the allow operator. In this



5.2. Syntax and Semantics of the Chi 2.0 language 73

(a) The Chi 2.0 process a || b (b) The mCRL2 process a’ || b’

way we exactly specify the allowed actions of the interleaving process. a1

If we interpret an internal Chi 2.0 action (7) as an mCRL2 internal action (1), it
is possible that a Chi 2.0 internal action is performed simultaneously with another
action in the translated process. Any mCRL2 multi-action that is extended with an
internal action 7 resides in the same multi-action equivalence class.

Decision 5.8: To prevent such behavior, all 7 actions of a Chi 2.0 specification are
represented in the translated mCRL2 process by the action 7,. The action 7, is then
hidden at the outermost level. 4

Different Models of Time

Time is treated differently by both languages. It differs in two aspects. Firstly, time
in the Chi 2.0 language is relative, meaning that the passage of time is measured
from a previous action. Time within the mCRL2 language is absolute, meaning that
all timings refer to a (single) global clock [BB97]. Secondly, the Chi 2.0 language
allows the sequential composition of two (or more) actions at the same moment in
time, while preserving their mutual order. Compared to the semantics of the mCRL2
language, the processes here behave differently,. mCRL2 actions are (i) forced to
happen either simultaneously at the same moment in time thereby losing their mutual
order, or (ii) need to be performed at different time instances, thereby preserving
their mutual order. Based on these observations, we take the following three design
decisions:

Decision 5.9: Since the mCRL2 language is stateless, we introduce an extra mCRL2
process that stores the cumulative time value, i.e., it stores the time value that has
elapsed since the start of a model. J

Decision 5.10: The time inconsistency is bridged by defining a time domain with mi-
cro steps in the mCRL2 language. The new time value consists of a real number rep-
resenting the absolute time value, and a counter denoting the n" action performed at
a certain moment in time. a



74 Chapter 5. Modeling Specification Languages

Decision 5.11: For both formalisms it is possible to model deadlocks at a certain mo-
ment in time. Decision 5.9 states that the time value is stored in a separate process.
If we represent a deadlock by simply modeling a 6 in the mCRL2 specification, we
are unable to retrieve the current time value. The functionality is required when we
model the time can progress operator (See Chapter 5.3.6). So, we always exchange
the time value of the time process with the translated process to retrieve its current
time value.

Alternative Composition

The alternative composition of the Chi 2.0 language behaves strongly time determin-
istic [BRO4]. The alternative composition of the mCRL2 language behaves weakly
time deterministic. In a strong time deterministic formalism it is not possible that
time may determine any choice. In a weak time deterministic formalism time may
progress, thereby disabling choices. The difference between the languages is illus-
trated in the following example.

Example 5.2(Weak and Strong Time Determinism). If we have the choice to per-

form an action a at time 3 and an action b at time 5, we can only perform the action

a at time 3 in a strong time deterministic setting. If the same choice is proposed in a

weak time deterministic setting, both alternatives are considered. A
To overcome the difference we take the following design decision:

Decision 5.12: The Chi 2.0 alternative composition ([]) is modeled by the mCRL2
alternative composition (+). As the mCRL2 operator allows more behavior, we con-
strain the deterministic choice, by introducing a special function A7 that calculates
the ultimate delay for the process terms on both sides of an alternative composition
operator. The function takes the lowest time upper-bound for which both alternatives
can delay. The outcome of the function denotes a time value and is added as a con-
straint that denotes the maximal time under which the mCRL2 choice is performed.
Thus the strong deterministic choice is mimicked in a weak time deterministic set-

ting. a

Scopes

The syntax of the Chi 2.0 language defines local variables, local recursion scopes, local
actions, and local communications. The mCRL2 language is stateless, so it has no
(local) model variables. Furthermore, recursion and action declarations are defined
globally. Local communication within the mCRL2 language is performed by applying
the communication operator to a process. The scopes are modeled by taking separate
design decisions for each of them.

Decision 5.13: We assume that all model variables have unique names. In a Chi 2.0
process it is possible to define local model variables. These variables can be accessible



5.2. Syntax and Semantics of the Chi 2.0 language 75

at a local level but are hidden for the surrounding processes. To avoid that variables
are bound to multiple values, the semantics of the Chi 2.0 language states that during
the execution of a local variable scope, the local variables are replaced by freshly cho-
sen variables. When we assume that all local variables have globally unique names,
then we do not have to substitute them by freshly chosen ones.

The mCRL2 language has no notion of local variables. Because we assume that all
local variables definitions are globally unique, we encapsulate in the mCRL2 model
the non-successful value exchanges based on their variable names thereby preventing
that they are accessed by surrounding processes. Furthermore we hide the values
of the local variables, as they are not visible at the outermost level. Because non-
successful value exchanges are blocked, always the most inner-most local variables
are exchanged. The functionality is required when variable scopes are nested in re-
cursion scopes.

The uniquification of the Chi 2.0 model variables is a syntactic pre-processing step
on the Chi 2.0 specification. a

Decision 5.14: We assume that all recursion scope variables have unique names. The
Chi 2.0 language defines recursion scopes locally. To avoid that they are defined
multiple times, the semantics of the Chi 2.0 language states that during the execution
of a recursion scope, the locally introduced modes are replaced by freshly chosen
ones.

In the mCRL2 language, the recursive processes are globally defined. We assume
that all definitions of local modes are globally unique in the Chi 2.0 specification. So,
it is not required to substitute them by freshly chosen ones. This also implies that
all recursion scopes can be directly translated into process definitions in the mCRL2
language. Hence, we introduce for every recursion mapping in the recursion scope a
separate mCRL2 process equation.

The uniquification of the Chi 2.0 modes is a syntactic pre-processing step on the
Chi 2.0 specification. a1

Decision 5.15: We assume that all action declarations have globally unique names.
The Chi 2.0 language defines actions locally. That means that these actions are avail-
able inside the scope, but are inaccessible (hidden) outside. We have assumed that all
Chi 2.0 actions are modeled by mCRL2 actions (Decision 5.6). The action declarations
for these mCRL2 actions are globally defined. While all locally declared Chi 2.0 ac-
tions are globally unique, there is no need to substitute them. Under this assumption
we model the local actions by corresponding mCRL2 actions.

To model the abstractions on the local actions, we rename these actions to 7,,
thereby taking Decision 5.8 into account.

The uniquification of the Chi 2.0 local action labels is a syntactic pre-processing
step on the Chi 2.0 specification. 2

Decision 5.16: We assume that all channels have globally unique names. Like local
action scopes, channels are defined locally. The successful communications are hidden
outside the scope and non-successful communications are blocked. Communication



76 Chapter 5. Modeling Specification Languages

labels are defined locally. They are replaced by freshly chosen communication labels
during execution.

The communication actions are modeled by mCRL2 actions. So, the mCRL2 actions
need to be declared globally. As we have seen with local action labels, we assume that
every locally introduced Chi 2.0 communication label is also globally unique. This
assumption asserts that no substitutions are required. Hence, the actions that locally
describe the communication can be declared globally and are therefore unique.

Outside the scope, the successful communication actions are hidden, the non-
successful communication actions are blocked. To hide the actions we take Deci-
sion 5.8 into account. The blocking is modeled by the mCRL2 encapsulation operator.

The uniquification of the Chi 2.0 communication labels is a syntactic pre-processing
step on the Chi 2.0 specification. a

Simplification

To restrict the complexity of the transformation, we apply simplifications to the some
of the Chi 2.0 concepts. This results in the following design decisions.

Decision 5.17: The syntax of the Chi 2.0 language allows a vector of arbitrary, but
finite length to communicate values over channels. We assume that communications
only communicate a single value. a

Decision 5.18: An urgency mapping in a Chi 2.0 specification dictates whether actions
and successful communications are performed urgent or non-urgent. We assume that
actions are can be both.

We assume that channels are non-urgent, because of the following reason. Suc-
cessful communications originate from communicating channel ends. Times at which
the actions occur are independently determined and guards can only reason on data
(therefore not over actions). If we assume that a communication is urgent, then it is
difficult to compute the first moment in time at which a successful communication is
performed. If process terms are encoded into data expressions, it would be possible
to do so, however it would complicate the transformation dramatically.

In Chapter 5.4.4 we present and motive an alternative solution that partly resolves
the urgency for channels. The solution performs a slight (but acceptable) change to
the semantics of the Chi 2.0 language in order to deal with urgency.

-

Decision 5.19: A valuation in the Chi 2.0 language relates variables to values, which
may be undefined, i.e., L. For presentation purposes, we assume that when a variable
occurs in the valuation it always corresponds to a concrete value. This assumption
ensures that variable to value mappings are never undefined. a

5.2.2 Syntax

This section presents the restricted syntax and semantics of the Chi 2.0 language. A
full description of the language is provided in [BHR'08].



5.2. Syntax and Semantics of the Chi 2.0 language 77

Notions

The set of all values is denoted by A. The set of all variables is denoted by V), which
includes the reserved variable time. ¥ =) — A denotes the set of all variable val-
uations. A variable valuation is a partial function from variables to values, which
captures the values of variables at a certain moment in time.

The set of basic action labels is £;,.. Provided that H denotes the set of com-
munication channels, then the set of all communication labels £, is defined by
{h!cs,h?cs | h € H,cs € A}. The set of all action labels £, excluding 7, is defined as
L= Leomm Y Lpasics assuming Ly, N Leomm = 0. The set of action labels £,, including
the internal action 7, is specified as £, = £ U {t}. The set of all urgency mappings
for action labels and communication labels, including 7, is denoted by the partial
function Uy, = (Lpasic U {T} UH) — B.

The sort 7 =R denotes the set of all time points. The variable time expresses the
amount of time that has progressed since a Chi 2.0 process has started.

The set of recursion variables (modes) is denoted by M. The sort P,,. defines the
set of the process terms. Sort R = M — P, denotes the recursion mappings as a
partial function from recursion variables to process terms.

The dynamic variable mapping D =V — {disc, cont} denotes the set of all dynamic
type mappings, i.e., partial functions from variables to the dynamic types {disc, cont}.
Here, disc denotes the dynamic type for discrete variables and cont denotes the dy-
namic type for continuous variables. Let D € D be a dynamic variable mapping then
D is defined as:

time € dom(D) = (D(time) = cont)
{ V. edom(d)\ftime} (P(v) = disc)

Dyisc and D, denote the sets of discrete and continuous variables respectively, i.e.,
defined as D, = {x € dom(D) | D(x) = t} for t € {disc, cont}.

Abstract Syntax

The relevant (abstract) syntax for the Chi 2.0 language is given by the following
grammar:

Piom 1= tcpuiu—a:W:riu—hle:W:riu—h?x:W:riX
Pproc H= Patom I Pproc;Pproc I Pproc I] Pproc I Pproc ” Pproc I aH(Pproc) |
I[RR o Pproc :“l |[A UA b Pproc :”l ||:H UH = Pproc :”' ”:VD’O' = Pproc :“

Atomic terms P, defines the atomic terms, where u is a predicate over model
variables, a is an action label from the set of basic action labels L. or the internal
action 7 (a € Ly, U {7}). The set of variables that are allowed to change their values
during execution is indicated by W. The update predicate r expresses the way in
which the values of the model variables change. A channel name is denoted by h, e is
an expression, and x is a model variable. Finally, X is a recursion variable from M.



78 Chapter 5. Modeling Specification Languages

Predicates are arbitrary Boolean expressions containing model variables. Update
predicates are arbitrary expressions containing —-super-scripted and ordinary occur-
rences of model variables. For example, the predicate x + y = x~ + y~ describes that
the sum of the values of x and y remains the same to the sum of x™ and y~.

The time can progress process term tcp u restricts the progress of time. It specifies
local urgency, by allowing delays as long as predicate u is satisfied.

The atomic process term u — a : W : r is called a guarded action. Here, u describes
a condition on the model variables for which the action a is allowed to occur. The set
W describes the model variables that are allowed to be updated by the execution of
a. The variable r describes the update predicate.

The atomic process terms u — hle: W :r and u — h? x : W : r denote respectively
the guarded send and the guarded receive process term. The intuitive meaning of
u—h'e: W :r is that the value of expression e is sent over channel h provided
that predicate u holds. The model variables from the set W are allowed to change
according to the update predicate r. The meaning of u — h? x : W : r is that, providing
that predicate u holds, a value is received via channel h and the value is stored in
model variable x. Furthermore, the model variables from set W U {x} are allowed to
change according to the update predicate r.

Process terms The process terms are defined by P,... The sequential composition
is denoted by Pyyc;Pproc- The (non-deterministic) choice between alternatives is rep-
resented by Ppyoc | Pproc- The parallel composition is defined by Py || Pyroe- Channel
encapsulation is shown in 8y, (P,,.), where H denotes a set of channels that are en-
capsulated (blocked). By means of the recursion scope operator |[g R :: Py, ]|, local
recursion definitions are introduced in a Chi 2.0 process, where R € R denotes a re-
cursion mapping. With the help of an action scope operator |[5 Uy :: Py, ]I, Where
U, € Uy, dom(U,) € L, denotes the urgency mapping for action labels, local actions
are visible within the scope, but are hidden outside the scope operator. The process
|[11 Ug :: Pyroc ]| describes local channels, with Uy € Uy, dom(Uy) € H, as the urgency
mapping for channels. Communication actions on local channels are hidden outside
the scope operator. The process |[y D, 0 :: Py, ]| defines a variable scope and defines
local variables, where D € D specifies a dynamic type mapping, and o a valuation.

Omitted Abstract Syntax

The remainder of this section describes the omitted concepts from the grammar and
their rationales.

Equations and Invariants Equations and invariants describe the evolution of con-
tinuous and algebraic variables over time. Because of Decision 5.1 the syntax for
equations and the syntax for invariants have become irrelevant, and are omitted.



5.2. Syntax and Semantics of the Chi 2.0 language 79

Concrete Syntax The concrete syntactical notations (i.e., abbreviations) that are
offered by the Chi 2.0 language are not included in the transformation. The abbre-
viations provide a comfortable syntax to express e.g., deadlock, multi-assignments
and inconsistency. The comfortable syntax is denotationally defined by the abstract
notions that are covered in the translation. Furthermore, we chose not to transform
the guarded communication update (h!?x:=e : W : r), since the abbreviation only
eliminates communicating channels in a parallel composition.

Model Inconsistency Decision 5.2 states that a Chi 2.0 process cannot get into an
inconsistent state by algebraic or continuous variables. The only place that can intro-
duce an inconsistent state is the initialization operator. Hence, we omit the initializa-
tion operator from the set of translatable concepts.

Synchronizing Actions The behavior of synchronizing actions cannot be mimicked
by an mCRL2 specification. The synchronizing actions in a Chi 2.0 specification al-
low the synchronous execution of all actions that carry the same label. The syn-
chronization can potentially range over infinitely many actions. Therefore it is not
possible to capture the intended behavior with the help of an mCRL2’s allow or an
mCRL2’s encapsulation operator. Hence, we assume that (i) all action labels are non-
synchronizing, and (ii) a Chi 2.0 specification does not contain an action synchroniza-
tion operator.

5.2.3 Semantics

The semantics is described through SOS, provided with a context of environment
variables. Here, we present the context restricted to the relevant parts. The non-
restricted deduction rules are found in [BHRT08]. These non-restricted rules are
omitted here, but have inspired us to define the transformation. We only sketch
the associated behavior and translate that into corresponding mCRL2 notions. The
relation between the semantics of the languages is explained in Appendix A.1.

The semantics of the restricted Chi 2.0 language, associates a Chi 2.0 process
(p,0,E) to an LTS that describes action transitions and continuous behavior. Be-
cause of Decision 5.2 we do not consider the consistency transitions. Here, p € Py,
denotes a process term, o denotes a valuation, and E denotes an environment. The
environment E is in itself a quadruple (D, U,J,R), where D € D describes a dynamic
type mapping, U € U, defines an urgency mapping, J € V denotes the set of jumping
variables, and R € R denotes the recursions scopes. We define £ = D x U, x 2¥ x R.

Decision 5.1 restricts the semantics in a similar way as the work of [BMR*05].
There, the authors restrict the hybrid y language [BMR"06] to a timed setting. The
(reduced) relations that we consider after the restriction are:

o (Terminating) Action transitions

o C (P X TXE)X(EX Ly X 2V X B) X (Pyroe UV X T X E)



80 Chapter 5. Modeling Specification Languages

. . . .. o,lL,W,o’ .
The intuition of a (termination) action transition {p,o,E) — (p’,0’,E’) is

that a process (p, o, E) executes a discrete action [ € £, with visible valuations
o and ¢’ and W represents the set of externally visible discrete variables that
are allowed to change (jump) during an action transition, and transforms into
the process (p’, o', E’). Here, o’ and E’ respectively denote the valuation and
environment of the process term p’ after the discrete action [ is executed. If p’
equals v/, then the action transition describes a terminating action transition.

e Continuous behavior

S (Poroe X B X E) X (Tp X X (T = valyy,)?) X (Pproe X T x £) where the
set of all action/channel valuations are defined by val,, = (L. U {7} UH) —
B which describes a mapping from action labels and channels to a Boolean
value, representing the value of a guard associated to the action label or chan-
nel. The restricted continuous behavior only models the progression of time

(p,0,E) 00 (0G00) (p’,0’,E’). During the time transition the valuation of the
visible variables remain constant, which is specified by o. At the end-point ¢,
the process results in (p’,o’, E’). The triple (6,, 6,, 0,) represents three trajec-
tories that describe the guards during the delay (s € [0, t]) for the associated
action and channel labels. The first trajectory 6, represents the guard trajec-
tory for the non-synchronizing action labels and the communicated channels.
The second trajectory 6, and third trajectory 0, respectively represent the guard
trajectories for the non-communicated send action and receive action channels.

5.3 Translation Scheme

The relevant syntactic notions are transformed from the Chi 2.0 language to the
mCRL2 language. We first introduce the time sort with micro steps. Then we re-
late the transition relations between the different formalisms. Hereafter we describe
how the urgency mappings are modeled in the mCRL2 specification. Subsequently,
we provide the translation function, that includes the translation functions for the
model variables, the environment variables and the accumulated time. The details of
the translation for the atomic terms and the different process terms, are found in the
concluding part of this section.

Interpretation

The transformation uses an interpretation function [[-]], which takes a syntactic no-
tion from the Chi 2.0 language and expresses the syntactic counterpart notion in the
mCRL2 language. The interpretation function expresses obvious interpretations, e.g.,
if S is a sort in a Chi 2.0 specification then [[S]] expresses the mCRL2 representation
of that sort. Likewise, if v is a variable in a Chi 2.0 specification, then [[v]] expresses
the mCRL2 representation of that variable.



5.3. Translation Scheme 81

5.3.1 Time with Micro Steps

Based on Decision 5.10 we model a time domain with micro steps, expressed by
the mCRL2 structured sort Timey. The sort Timey consists of a tuple, where the
first element represents the time value and the second element represents a counter,
counting the n action for that specific time value. The type of the first element is R
(reals) and the type of the second element is N (natural numbers). We assume that
the time value is non-negative.

sort  Timey = struct timey(Tyme * R, Teounter © N);

5.3.2 Ultimate Delay Function

Decision 5.12 requires a function that computes the ultimate delay. The function is
represented by AT : Py X A xR — R that requires three arguments. Let p, ¥, t be
these arguments. The ultimate delay function computes the maximal amount of time
for which a process p € Py, i.e., the first argument, may delay its execution. The
second argument V specifies a vector with the current values of all the discrete model
variables. The values for model variables that are irrelevant may be set to arbitrary

values. The third argument denotes the current time value t.

5.3.3 Relating Transition Relations

Decision 5.5 relates a Chi 2.0 action (o,1, W, c’) to an mCRL2 multi-action. The
quadruple is related to a multi-action in the following form:

o the valuation o is associated to the set of actions comgl‘;_ﬂl : A, such that for every

variable v € Dy, an action comr[r[lgﬂ1 is used with the value of that variable in the
i i i (v

Valgatlon as a data parameter, i.e., thg action commem([[a(v)]]) represents that

variable v has value o(v). For every discrete variable v that syntactically occurs

in the Chi 2.0 specification we assume that the mCRL2 specification contains

the following set of action declarations:
act comr[r[l‘;]]]], ... ,comr[g‘é}r]l] T A

e The argument time from valuation ¢’, i.e., o(time) is modeled by the action
COMyime * Timeyy. Note that if t € Timey;, then the mCRL2 data expression 7. (t)
corresponds to the Chi 2.0 value for time.

e the Chi 2.0 action label | € Act;,;, is modeled by an mCRL2 action [. For every
action label [ that syntactically occurs in the Chi 2.0 specification we assume an
action declaration:

act l;



82 Chapter 5. Modeling Specification Languages

If we write [[a]] and a is Chi 2.0 action, then it is translated to the mCRL2
action a. An internal Chi 2.0, i.e., [[7]] is translated by a 7, labeled mCRL2
action. Hence we introduce:

act Tys
For every communication channel h that syntactically occurs in the Chi 2.0 spec-
ification we assume that the following actions are declared:

act send[[h]] N I”ECV[[h]], comm [[h] : A;

e As it is not allowed to directly define data as mCRL2 actions, we introduce the
action diff that captures the set of changing variables in the action parame-
ter. This implicitly assumes that the mCRL2 specification contains the following
action declaration:

act diff : Set([[VID);

where sort [[V]] specifies the set of all interpreted Chi 2.0 variables. Com-
munications where the same sets of variables are allowed to change on both
the sending and the receiving side are modeled by single diff-action in a multi-
action. Communications where different sets of variables are allowed to change
on the sending and the receiving side are modeled by two diff-actions in the
multi-action.

e Analogue to modeling o, the valuation o is associated to the set of actions
comr[flg, : A, such that for every variable v € dom(c”) \ {time} an action comglzg,
is used with the updated value of that variable in the valuation as a data pa-
rameter, i.e., the action comr[flzg,([[a’(v)]]) represents that variable v has the

updated value o(v). For every variable v that syntactically occurs in the Chi 2.0

specification we assume that the mCRL2 specification contains the following set

of action declarations:

1R2Y) vl . AL

act com> 5 ..., com_- " A
mem’ mem’

e The argument time from valuation ¢, i.e., o’/(time), is modeled by the action
COMyiper = Timey.

e We furthermore assume that all action declarations are mutually disjoint.

5.3.4 Global Urgency Mapping

Decision 5.15 and Decision 5.16 assume that all actions and communications are
globally unique. Hence we define a global mapping in the mCRL2 specification that
specifies for an action its corresponding urgency. Let U, be an urgency mapping



5.3. Translation Scheme 83

that defines all the urgency mappings for the locally and globally defined actions and
communications in a Chi 2.0 specification. If U; = {a; — b4,...,a, — b,}, we model
the urgency mapping in the mCRL2 specification as:

map Ug: [[£]] - B;
eqn Ug(a;) = by;

Us(a,) = by;

Note that all actions that appear in a Chi 2.0 specification occur exactly once in
the urgency mappings. We assume that the sort [[£,]] in the above mCRL2 specifica-
tion, is the counterpart representation for £, that denotes the occurring labels in the
Chi 2.0 specification. Resulting from Decision 5.18 we assume that all channels are
non-urgent:

VhenUs([[h?]]) = false A Ug([[h!]]) = false

5.3.5 Translating a Specification

Let {p,o,(D,U,J,R)) be a Chi 2.0 model that consists of a process term p, an ini-
tial (global) valuation o and an environment (D, U,J,R). Then with the help of
function Fipj : Pproe X T X & = Prycpio We compute the transformation for the model
(p,o0,(D,U,J,R)) where P, g, denotes the resulting mCRL2 model.

The translation consists of the concatenation of four (partial) mCRL2 specifications,
obtained by different functions. The first function Fyjem : 2¥ — Ppcrio models the
memory process that is associated to the set of discrete variables derived from the
initial valuation o. The second function Fy : 2¥ x Uy, x 2¥ X R — Py cri models the
provided environment variables Dy;s., U,J and R. The third function Fie : Prcria
models the value for the variable time. The fourth function F : P, X 2V x 2V —
Prcri2 models process term p € Py,.. The implementations are provided later in

this section. Process references to the translated process F (p, Dgisc,J ), the global
Mem([[Dgige
mCRL2

Time

m .
and the accumulated time process X (¢,

memory management process X
are composed in parallel.

The communication function C,, describes the value exchanges between the trans-
lated process and the (updated) global variables, and the translated process and the
(updated) accumulated time value. The communication function C, describes the
communication between the translated Chi 2.0 channels. The set of allowed ac-
tions A; models Decision 5.5, thereby blocking the modeled deadlocks, non-successful
value exchanges for model variables and non-synchronizing channel communications.

The set H); abstracts from the 7, labeled actions.



84 Chapter 5. Modeling Specification Languages

]:init ((P, g, (D, U:J:R)>) =
}—Mem (Ddisc)

]:E (Ddisc’ U’J’R)

1 Frime

M D
. xMemWPaieeD( [ (D gio )T
Init THM vAT FCMUCC ngﬁz(tlmeH(O: 0)) ”

F (p,Dgisc>J)

where

° an\fégg%“m([[U(Ddisc)]]) is the process references of the mCRL2 process equa-

tion corresponding to the memory process for the variables belonging to D 4.,
initialized by their corresponding values.

. Xrﬁé”ﬁz(timeH(O, 0)) is the instantiated mCRL2 process by the value timey (0, 0).
The process parameter specifies the amount of (hybrid) time that has elapsed.

e F (p,Dgisc,J) provides an mCRL2 specification for process p given Dy, and J.
The arguments Dy;,. and J restrict the changing variables at the atomic action
level that are observed in a diff-action.

o Cy = {setr[r[lgﬂ1 | getr[r[lz - comr[r[lzg,setr[nem |get[[v — comr[fleyl,,setnme | getime —
COMimes €tiime’ | S€timer — COMmer = V € Dd,sc} deﬁnes (i) the successful value
exchange between the translated process and the memory process and (ii) the
successful time exchange between the translated process and the time process.

o Cc = {sendyy | recv(y — commy,y - h € H} defines the communication between
the translated Chi 2.0 channels.

[ ) ATI{
U

(Com[ ¢! | Com[[ - )lcomtime | COMyime/ | a | dlﬁc ae ‘Cbasic U {T }}
[[V]]

mem’

[[V]]
[ ]]

V€D isc

(com[g] | com )lcomtlme | coMyimes | commypy | diff> he?—l}

VEDdisc

comll ‘;_] | com [coMyime | cOMyimer | commypyyy | diff < h € ’H}

VEDdisc

com[ "] m leomy o | leomyme | comyme | 7, | diﬁcz}

VEDdisc
denotes the allowed actions. Here, diff? is diff | diff, and |i ; Pi 1s inductively
defined by:
o Pi =1, |ieIU{k} Pi =P | )ie[\{k} pi-

The multi-actions that are allowed to happen are defined by A;. The first subset
specifies the set of multi-actions that result from a (hidden) guarded action



5.3. Translation Scheme 85

update. The second and third subset specify the set of multi-actions that result
from a successful communication. The fourth subset specifies the set of multi-
actions that result from a hidden successful communication.

e H), = {1,} hides internal actions.

The remainder of this chapter uses the expression X géiRLz as the shorthand expres-
sion for F (p, Dgisc,J ).

Model Variables

Every syntactic occurrence of a variable scope (including the global variable scope) is
modeled as a separate memory process. Due to Decision 5.4, we introduce for each
element from the set of model variables V a separate process equation of the form

Xn}\fé’gi[zwm The process stores the values in the process parameters ¥ : A in some

arbitrary but fixed order such that every v € ¥ is related to v € V. Because all of the

local variables are unique, the variables act as an identifier in the process label.

To exchange the values of variables v € V between the process Xﬂé’;i[z[v]]) and the

rihciRLz we use the actions setr[r[l‘éﬂ,getg‘ég, : A. The action
v

setl"] provides the value for variable v from the process X The action get_ -,

mem mCRL2"
retrieves the updated value for variable v from the process X% Values are ex-
(vl

mCRL2*
. . . . . . v
changed if the actions synchronize with respectively the actions get.;; orset .,

(v

mem’*

translated Chi 2.0 process X

and

result in the actions comggg}1 and com
5.1.

The value exchanges are depicted in Figure

vewelmen | 8eliim = comp

»

Mem([[V]]) Chi
X mCRL2 XmCRLZ

>

v [vIl v
veW’getmem’ | Setmem’ - Commem’

Mem([[VI])

mcriz  and

Figure 5.1 Information exchange between a memory process X

Chi
a translated process X ‘¢ o

The variables for which the values need to be exchanged are not known in advance.
Hence we must allow all subset variable exchanges. So, we specify W CV that implies
that all combinations of subset variables for the com,,., actions at the memory process
are considered, and W’ C V that implies that all combinations of subset variables for
the com,,. actions at the memory process are considered. The value exchanges for
the current values from the memory process to the translated process are restricted



86 Chapter 5. Modeling Specification Languages

to the required variables. This set is indicated by W. The value exchanges of the up-
dated values from the translated process to the memory process are restricted to those
variables for which the values have possibly been changed. This set is indicated by
W’. The variables that are not required are not exchanged. Because all values of the

model variables need to be visible, we add them separately by V,ev\wcomr[nerl] )
Wz
and | ¢y C0Mpery (Xipy)-

With the help of the translation function Fy., and the aforementioned considera-
tions, we construct the partial mCRL2 specification:

]:Mem (V) -

proc Xﬁfggﬁz[vm(f (A) =

2 2 A ,f[[w'ﬂ“‘?[[w'ﬂ —

WW'CV §.x \ wevV\w

‘vewsetn[ag(x[[v] )| |v eV\Wcomr[rE]éry (Xvy) XMV ).

(w'Tl CRL2
|w€W’getmem (d[ mem’ (X [W/]]) m

where €, denotes an element of € that is associated to variable n. If multiple pro-
cess access the memory process simultaneously, they mutually have to agree on the
selected values. This contract is separately enforced by the communication operator
described in Chapter 5.3.7.

Accumulated Time

Decision 5.9 introduces the mCRL2 process X Tlg;‘fu that stores the accumulated time
value. The time value t for the process X;‘gR‘?LZ is initially set to timey(0,0). If some
time passes between two subsequent actions, this is modeled by increasing the value
of 7. (t) and the value of 7T .- (t) is reset to 0. When two actions are subsequently
executed without any progression of time, we only increment the value of 7T ;- (t)-

Time values between the translated process and the time process are exchanged
with the help of actions set;ye, getime> Zetime aNd Setyy. Here, the action setp.,
from XI¢ ., and the action get,, from the translated process X CCRL2 retrieves the
current absolute time value and offers it to the translated process term. The action
setme: from XM and the action get,. from X;Ucnrsz retrieves the updated time
value from the translated process term and stores it in process X Tlgpfu Figure 5.2
depicts exchange of time values.

A retrieve and an update of time are performed by a single multi-actions, i.e.,
Setume(t) represents the absolute time value at which the last action has been per-

formed and get,;,.,(t") represents the absolute time value at which the current action



5.3. Translation Scheme 87

settime | gettime — COMyime g

>

Time Chi
XmCRLZ(t) XmCRL2

)
8eliime | Selijmes — COMyjme/

Time

Figure 5.2 Information exchange between a time process X T2

Chi
translated process X ¢ o

, and a

is performed. Hence we model F,. by the following mCRL2 specification:

]:time =
map pred_ : Timey X Timey — B;
var t,t’: Timey;
eqn pred<(t, t/) = (t/ ~ timeH(ﬂ:time(t): chounter(t) + 1))
\ (ﬂtime(t/) > ntime(t) A T[counter(t/) ~ O);

proc XIme (t;:Timey)= Y, pred_(t,t') — setynme(t) | getyme (') - X1 (¢');

t’:timey

Environment Variables

The transformation of the environment variables is performed by evaluating the func-
tion Fg, using the environment (Dyiec, U,J,R). As Dy;sc and J are required later, the
values are passed on to the subsequent translation functions. Because U C U, holds,
it is modeled when we model U,. The only environment variable we model is R. Let
R={m; — py,...,m, — p,} be the process equations that are added to the Chi 2.0
process, then we model for every mapping an mCRL2 process equation:

‘FE (Ddisc: U;J:R) =
proc [[ml]] =F (pl’DdiSc’J);

proc [[mn]] = ]:(medisc’J);

5.3.6 Atomic Terms

This section describes for each of the atomic Chi 2.0 terms the corresponding mCRL2
notions and their associated ultimate delay functions.

Time Can Progress

The time can progress operator tcp u has a predicate u that allows the passage of time
as long as the predicate u stays satisfied, and specifies local urgency. The predicate



88 Chapter 5. Modeling Specification Languages

becomes false at the end point of the delay. To mimic the behavior in the mCRL2
specification we introduce a process that may increase its time value as long as u
holds.

The semantics for the operator specifies no action transitions. However, to ex-
change a time value we require that an action is performed. To model this phe-
nomenon, we construct a multi-action that contains a deadlock action delta, thereby
taking Decision 5.11 into account. We first exchange the values with the time and the
memory process, after which we encapsulate the deadlock action delta on the outer-
most level. Thus we obtain the point in time to which the deadlock occurs, without
performing a visible action.

The amount of time that tcp u can delay is determined by the predicate u. The
variable ¥ : A specifies a chosen vector of values for all discrete model variables. To
assert that the vector corresponds to the values of the memory process we synchro-
nize (i.e., retrieve and update) the values for only the relevant values for the model
variables w.r.t. tcp u. For variables that are irrelevant to the execution of tcp u, we
select arbitrary values. The variables that are relevant are retrieved by the function
vars : Pyroe — 2V, that returns the set of variables that are used in a Chi 2.0 process
term. The current time value is exchanged by the value t. The points in time where
a deadlock occurs are specified via t’. The maximal amount of time that the process
can delay is computed by the ultimate delay function AT*(tcp u, 7. (t), V) € R. By

time
combining the information, we transform the process term as:

F (tep u, Varsp,J) =
Z Z (ntime(t/) - ntime(t) = A?:r%: (th u, ntime(t): ‘7’ ))

7:A t,t":Timey

- ( zevars(tep u) (getr[r[é]i(v[[z]])) | getiime(t) | delta | setiime: (t') ) <t/

The ultimate delay function AT computes the point in time value t” : R, starting
from the current time t : R for which all time values up to (including) t” satisfy
predicate u for the ordered set of variables V' : A:

Al(tepu, t,V) = max{t” €R[t St/ At' < t" AXy g simer ([[uID(V, t)}
Here, the lambda abstraction binds the variables in mCRL2 to the syntactic interpreta-
tion of predicate u. Because lambda abstractions are first class citizens in the mCRL2
language, they can be directly used in an mCRL2 specification.

Guarded Action Update

The guarded action update is translated by F (u — a: W : r,Varsp,J). The guarded
action update u — a : W : r requires (i) the guard u to be satisfied w.r.t. the current
values of the model variables, (ii) a new valuation of the model variables should
satisfy the update predicate r w.r.t. the old and new valuation, and (iii) the set of
model variables for which the values may be changed are provided through J U W



5.3. Translation Scheme 89

restricted by Varsp. The guarded action update u — a : W : r allows arbitrary time
transitions for non-urgent actions, i.e., U(a) is false. For actions that are urgent, i.e.,
U(a) is true, it only allows the time transition t for which predicate u holds. For all
time transitions prior to t predicate u must not hold.

To model (i) and (ii) we first exchange the variables with the memory processes.
To retrieve the values for the relevant model variables we use z € vars(u = a : W : r).
Action getr[[[fe]r]rl and action setr[l[feﬂi, respectively receive and send the variables for the
model variable z. We retrieve the current time value t : Timey with the action get;,.
and set the updated time t’ : Timey; with action set,;,.. The set of changing variables
(iii) is represented by the mCRL2 action diff ((([[J U W]]) nVarsp) U {time}).

To perform the action at time t’, both predicate u and predicate r have to hold.
To evaluate both we use lambda abstractions. Predicate u reasons on the values of
the relevant model variables v, the time value t at which the last action has been
performed, and possible moment in time t’ at which the current action is performed.
To evaluate predicate u, we construct the lambda abstraction A,,.q .zxr—s([u]]) in
which the mCRL2 interpretation of u acts as the body. When the action a is performed
predicate u has to hold, i.e., modeled by ;.5 time' & time: Rpredu:KXR_,B(predu(\?’,time’)).
When action a is urgent, we strengthen the condition by demanding that the predicate
holds for no time value smaller than the one selected. When the action is non-urgent,
then only the predicate u has to hold. This discussion is expressed by*:

if(Ug([[al]), Vg (time < ¢ A t” < time’ = =(pred, (V,t"))) , true)

Predicate r is modeled in a similar way as predicate u, except for the urgency restric-
tion. So, we construct a lambda abstraction, for which the body is the interpretation
of r, taking the values of the variables before the action, the variables after the action
and the time value at which the predicate r has to hold. We translate the guarded
action update as:

Flu—a:W:rVarspy,J) =

ZZZ

VA WA szeH

wiA
[ vAtlme ‘R, time:R,pred, AXRH]B(pred (V time ))/\

if(Uc([[al), Vg (tlme <t”" At” <time' = —pred,(V,t")) , true)
(V 7-Etlme(t) Tftlme(t) redu:AxRHHB([[u]]))

VKW A time’:R,pred, A><A><R—>IB(pred (V w time/))
(V W Tctlme(t) A‘pred AXAXR%B([[’”]]))
zevars(u —a:W:r) getmem(v[[z ]) | gettlme(t) |

- [La]] | diff ([[((J uW)NVarsp) U {time}]D | | <t/

il
)xGJUW setm)e(m (W[ ]) | settlme (t )

Note that the set actions set[[x]],, x € JUW is not restricted to ((J UW) N Varsp) U
{time}, like the data parameter shown in action diff. The restriction is not applied,

*The notation forces the mCRL2 rewriter to evaluate U ([[a]]) prior to the universal quantifier.



90 Chapter 5. Modeling Specification Languages

because set[[ ]], can exchange values with local memory processes. If we would re-
strict x to the discrete variables, i.e., x € (J UW) N Varsp, it would prevent the value
exchange with a local memory processes (Chapter 5.3.7).

The ultimate delay function A7™ for u — a : W : r consists of two cases. When an
action is urgent, we need to find the first moment in time, that satisfies predicate u.

When an action is non-urgent there is no time bound. Hence, the function returns co.

AT (u—a:W:rt, V)=
f(Ug([lalD),
min{t” : R | 457 time;r ([[WID(V, )

AVeg (ESEAY <t =2 A5 5 timer (WD, 1))}, 00)

Guarded Communication Actions

A guarded send term u — h!e : W : r denotes the send of the expression e via channel
h. A guarded receive update term u — h? x : W : r denotes the receipt of a value via
channel h, and stores it into variable x. The process terms are executed when both
the guard u and the update predicate r are satisfied.

Because the guarded communication actions share similarities with the guarded
action update, their translations are almost identical. Instead of action a, we here
require the actions sendp,; and recvy, to respectively denote the translated actions
for the send term (h!) and the receive term (h?) for the channels h € H. Because of
Decision 5.18 we assume that all communication channels (and also communication
channel ends) are non-urgent. Therefore we do not model the urgency restriction.
The guarded send communication is translated as:

]-'(u—>h'e W :rVarsp,J) =

2

AL, TlmeH

w:
[ vAtlme R,time:R,pred, AxR—»]E(pred (V time ))

K

=

(V ntlme(t) Tctlme(t) )'predu‘Ax]Ra]B%([[u]D)

- o /
VXW/ K time':R,pred, Axixros@red,(V,w,time’))

(V w ﬂ:tlme(t) )"pred AXAXRﬁB([[r]]))

zevars(u —hle:W: r)getl:l[wlzl(v[ ]) | gettlme(t)

| Send[[h ]((A’X:A,tlme:]R [[e]])(v, ntime(t )))
| diff ([L((W uJ)NVarsp) U {time}]])

| |erquet1[1E§£’(w[[X]]) | setime (')

ctl



5.3. Translation Scheme 91

The guarded receive communication is translated as:

Fu—h?x:W:nVarsp,J) =
IO
F:A WA ¢t :Timey
- /
A‘\’/':f\,time':]R,time:]R,predu:KxRa]B(predu(V’tlme ))
(V, ntime(t/): ﬂ:time(t)a A'predr:/ﬁ\><]R—>IB3([l:u]]))
A
A’\'/':K,M'J:/_\‘,time/:R,I:n*edr:/_\‘></_\'><lRﬂ]E%(pr‘(zdr(‘_;’ W, time/))
(V, W, Tfn'me(t/)y )\’predr:xxﬂxﬂk—)]B( [[r]] ))
‘zevars(u — h?xWr)getll':ll’:liEl(v[[z]] ) | gettlme(t) | I”ECV[[h]] (w[[xj])
— | 1aff([[((WuJU{x}p)nVarsp) U {time}]]) «t/

INZ1ras /
| |yeJuWU{x}setmem’(W[[ﬂ]) | setﬁl‘ﬂe’(t )

Decision 5.18 assumes that all communication channels are non-urgent. So, the ul-
timate delay functions for any of the communicating channels ends will be co. Hence:

AT (u—hle:W:rt,V) =00

A (u—h?x:W:rt,V) =00

Recursion Variable Process Term

The recursion variable process term models repetition. If X € M denotes a recursion
variable, then variable X can do whatever the process term of its definition can do.
The process term is either defined through the environment variable R or by one of
the recursion scope operators [z X — G :: p ]|, and X corresponds to a process label in
the translated process. So, we can directly use [[X]] as a process reference.

F (X, Varsp,J) = [[X]]

The ultimate delay function for the recursion variable process, is not affected by
translating the recursion variable process term. Therefore, if X — p, then we model:

ATY(X, t,V) = AT™(p, t,7V)

time time

5.3.7 Process Terms

The translation for the Chi 2.0 process terms are explained next. This also incorpo-
rates the specifications for the corresponding ultimate delay functions.

Sequential Composition Operator

The sequential composition of the process terms p and g, written as p;q, behaves as
process term p until p terminates, and subsequently behaves as process term g. To



92 Chapter 5. Modeling Specification Languages

express this behavior in the mCRL2 specification we use the sequential composition
operator “’:

]:(p;qﬁvarsDaJ) =
F (p,Varsp,J)-F (g, Varsp,J)

The ultimate delay function for p;q is calculated from the actions that can be per-
formed by p. Hence, we specify:

AT (p;q, t,V) = Al (p, t,V)

time time

Alternative Composition Operator

The alternative composition operator applied to process terms p and g, denoted p [ g,
describes the non-deterministic choice between the behaviors of p and q. The non-
deterministic choice is in the mCRL2 language denoted by ‘4. Since the languages
have different non deterministic notions (i.e., strong time deterministic versus weak
time deterministic), a straightforward transformation of the alternative composition
operator is not possible. Hence, we take Decision 5.12 into account.

With the help of the function AF™ we determine the delay that the alternative
composition may perform. The maximal delay is computed from the current values
of the model variables, the value of the current time and the values of the updated
model variables. Hence, the we decorate the alternatives with the synchronizing
actions that exchange the current and the updated values for both the time and the
IMemory processes.

To assert that the decorated actions correspond to the actions performed by the
translated process terms, we add the communication operator. This function takes
two exchange actions that have equal values (e.g., the getgl'e]}n actions) and produces
a single exchange action. Multiple value receives and send requests for the same
variable are prevented by A; (Chapter 5.3.5). Hence we introduce a communication
operator. By applying the communication they mutually agree on a value. When a
communication cannot be applied, either only one value exchange for a variable is
required, or different values have been selected and will therefore be blocked by Ar.

To exchange the current value of the model variables for the processes p and g, we

specify {x Evars(p)wars(q)getr[r[l’e‘ﬂ(V[[x]]). A choice dictates different futures. Therefore it
is possible that a variable can have different values for a different futures. Hence we
need to updated variables for each of the branches separately. When process term p
is executed, we update the values of the model variables by y evars+(p)setr[£i£,(ﬂ/’[[y]]).
When process term ¢ is executed, we update the values of the model variables by
y Evarer(q)setI[z I]r]l,(vT/’[[y]] ). Note that vars™ : Py, — 2Y returns the set of model variables
that are updated by executing the process term.



5.3. Translation Scheme 93

With the aforementioned constructs we translate p || g as:

F(p| g Varspy,J) =
22 Y (Tunet) = Tme(t) < AP | @, My (£), 7)) —

F:A WA t,t':Timey

L, om0 Iv

{getlum Igetiem —gethvam set ™ [sec™

em'

}xe\;ars(p)uyars(q)ge‘tn[rr[l)ér]r]iv[[xﬂ) |gettime(t) | Settime(t/) |
=
F (p’ VCU”SD,J) I ‘yévars*(p)setmem’(W[[y]])
+

]-'(q,VarsD,J) | { set[[y]],(ﬁ[[y]])

yevarst(q)”  mem

)|

rset - rs8eliime g€t ime —8€Liime SeliimeSelime —S€tiime:VEV}

<t

The ultimate delay function for the alternative composition operator is defined as:

Af(pll g, t, V)=

time time

Parallel Composition Operator

The parallel composition for process terms p and g, denoted by p || g describes the in-
terleaving behavior of the process terms p and q. The mCRL2 language uses the same
operator to denote parallelism. The semantics for the parallel operator of the mCRL2
language differs, as it interleaves and synchronizes the actions that are performed by
p and q. So, when we model p || g in the mCRL2 language, it gives rise to additional
multi-actions. Hence, the behavior is restricted by applying Decision 5.7.

To model Decision 5.7 we subsequently apply the communication operator and the
allow operator. The communication denotes the synchronizing actions for the channel
communication is modeled by C. The mutual value exchange for both model variables
and time is modeled by C’. The allow operator only allows actions that comply to the
signature of a modeled Chi 2.0 action transition. The allowed actions are modeled via
the set A, that consists of a set of getglg}] actions (where v € V for which V € V holds),
one action that corresponds to a Chi 2.0 action, one or two diff actions (depending on

the number synchronizing actions, which is at most two), and a set of setr[r[;/m]],
(where v/ € V’ for which V/ €V holds).
So, we specify the translation of p || g as:

actions

F(pll g, varsp,J) =
vV, (rcuc' ( F (p,varsp,J) || F(q,Varsp,J) ))
where
o the set of allowed actions is described by:

U (

WW’'cy

| di i
WVLVJ’CV (|V€Wgef£[1§£ |0 | diff | diff ||, cpp ety Igetﬁmelsetﬁme,)

veWgetr[l[I‘égl | o | diff | |wew'setr[r[1vev£’ |gettimelsettime/) ’
A=



94 Chapter 5. Modeling Specification Languages

where a € Ly, U {7, } U {sendyy,recvyyy + h€H}, n € {commyp,y @ he H}

e the set of synchronizing communication actions of a translated Chi 2.0 process
is described by:

C= {send[[h]] | recvpy — commyyy - he H}

o the set of synchronizing communication actions that eliminates duplicate value
exchanges during a communication is described by:

¢ = { getied | getledl — getlid sery L | sety = set V}

8eliime | 8eliime — 8€liimes S€liime | Seliime’ — Seliime

The ultimate delay function for the parallel composition operator is defined as:

AT (p |l q,t,V) =

time

min(AF(p, t,V), A (g, £, V)

time time

Channel encapsulation operator

The behavior of a channel encapsulation operator dy. applied to a process term p,
informally states that send and receive actions from the set H’ cannot propagate be-
yond the scope of the operator. Therefore, these communication ends are blocked.
The behavior is modeled using the mCRL2 encapsulation operator. So, we model
9s(p), where B = {sendpy, recvi,y; - h € H'} specifies the set of communication ends
that need to be blocked. Thus we model Jy.(p) as:

F (8 (p), Varsp,J) =
9 (F (p,Varsp,J))

The ultimate delay function for the channel encapsulation operator is defined as:

Alime G (p), £, V) = AGT(p, £, V)

time time

Variable Scope Operator

By means of the variable scope operator |[ydg, 0z :: p ]| local model variables are intro-
duced. Here, d; denotes a dynamic type mapping with domain dom(dz) = {x1,...,x,}
that corresponds to X, and o3 denotes a local valuation for the state variables of the
domain of dg (dom(o ) = dom(dyg)).

Because of Decision 5.13, all model variables that are defined by dom(dy) are
unique with respect to all other (local) model variables, which implies that no renam-
ing is required. To model the variable scope operator we introduce an mCRL2 pro-
cess equation that models local the memory management, which is provided through
Futem (dom(dg)). To ensure that the values are exchanged we add a reference to the



5.3. Translation Scheme 95

process definition, i.e., X" ent 04 @) 4 enforce the variable binding to the most lo-

cal variables, we enforce that process p exchanges values with the introduced memory

process X Mentldemdll) o1y for those variables that are locally introduced. The value

mCRL2
exchanges between the memory process XMem([[dom(d ) and the translated process

ngRLZ are performed in similar ways as we have seen in Chapter 5.3.5. The seman-
tics of the Chi 2.0 language states that local value exchanges are non-observable.

Hence, the resulting successful value exchanges com[M] com[[vﬂ, are hidden. The

actions getr[nVL,setr[IEg,,set[[V l or get[[v]], are blocked, to prohibit the exchange of val-
ues with other surrounding memory processes (e.g., when a variable scope is nested
inside a recursion scope). The translation for the variable scope operator is defined

as:

F (”:Vdf: Ogiip :”,VCU'SD,J) =
7, (8, (Te, (XAenS D (Lo g(dom(d)]) || F (p, Varsp,J) ) ) )
where

e the communication of the successful value exchanges is specified by:

= {getr[r[lzﬂl | setgl‘éﬂ - coml[][]" set | get[[v] — com[[v]] v € dom(dg)}

em’ mem’
o the non-successful communications are blocked by:

= {get’] setlV] getlEE‘é ],set[[ :v € dom(dg)}

mem?’ mem”’
o the abstraction on the local value exchanges is defined as:

H, = {comn[l‘ég,com[[v :v € dom(dz)}
The additional process equation that results from Fy.,, (dom(dy)) is added separately
to the mCRL2 specification.

The variable scope introduces locally initialized variables. When computing the ul-
timate delay function, these initialized variables need to be added. Hence, we update
the values for the corresponding variables in ¥. The update of variable i in ¥ by value
w is represented by V[i — w]. A collection of updates is represented by a subscript
after the last square bracket. Hence, we model the ultimate delay function for the
variable scope as:

AZ;‘:;('[V d)?a O.)? e p ]la t’ ‘7) A:T:«é(p; t; 1_;l:l = O-fc‘(i)]iedom(di))

Recursion Scope Operator

The recursion scope operator |[g {X — §} :: p ]| allows local recursion. A recursion
scope operators contains a mapping X — §, that expresses that every recursion vari-
able X; maps to a process term g;, 1 <i <N.



96 Chapter 5. Modeling Specification Languages

Under the assumption of Decision 5.14, stating that every mode is unique, we trans-
late the recursion scope operator. So, for every mapping we introduce a (global)
mCRL2 process equation, where every Chi 2.0 mode corresponds to a process label,
and an associated process term corresponds to the translation of that term. So, we
model |[ {X — g} ::p ]| as:

F (IR X — @} = p ]I, Varsp, J)

F (p, Varsp,J)
Additionally we model:

proc [[X,]] = F (§,, Varsp,J);

PI'OC [[X’n]] = f ((_jn, VarSD,J);
The ultimate delay function for the recursion scope operator is specified as:

AR (R X = @} p 1,6, 7) = AL (p, t,7)

time time

Action Scope Operator

The action scope operator |[, Uy :: p ]| allows local basic actions, which are hidden
for the surrounding processes. Because of Decision 5.15, we know that all actions are
unique. As the global urgency mapping U; has been defined in Chapter 5.3.4 and
U, C Ug, the urgency mapping Uy is already present in the resulting translation. For
reasons given in Decision 5.8, the internal actions are renamed to 7,. Based on these
decisions we model the action scope operator as:

F (IlaUp::p ll,Varsp,J) =
PRen (‘7: (p: VarsD,J))

where the rename function is defined as: Ren = {[[a]] — 7, : a € dom(U,)}. The
corresponding ultimate delay function is defined as:

Alime(laUa 2 p 1, £,V) = AFE(D, £, V)

time time

Channel Scope Operator

The channel scope operator |[, H :: p ]| defines local channels. Successful communi-
cations survive outside the scope as internal actions. Non-successful communications
are blocked.

In Chapter 5.3.4 we have seen that H; C U;. Hence, all channels are already de-
fined globally. Based on Decision 5.16, we know that all channels actions are globally
unique, so there is no need to replace any of the channel labels. Successful commu-
nications are renamed to 7, for similar reasons that we have seen in e.g., the hiding



5.4. Additional Considerations 97

of actions in the action scope operator. Non-successful communications are blocked
with the help of send,y), recviny (h € dom(Hy)). The translation for |[, Hy :: p ]| is
then defined as:

F (IlaHy 2 p 1, Varsp,J) =
THcom (aB (rCom (]: (p,VarsD,J))))

where

e the communication function is defined as:

Com = {sendpy) | recvyy — commypy : h € dom(Hy )}

o the blocking actions are defined as:

B = {send;,y;, recviyy + h € dom(Hp )}

e the communicating actions are hidden according to:

Heom = {commpyy + h € dom(H )}

The ultimate delay function for the channel scope operator is defined as:

Afme(laH 2 p 11, t,¥) = AR (p, t, V)

time time

5.4 Additional Considerations

Although we assume that the translation preserves the intended semantics and the
result is a valid mCRL2 specification, we here provide considerations that translate
a larger subset if we slightly tweak the Chi 2.0 input. We also provide considera-
tions, because some translated Chi 2.0 notions prevent exhaustive simulations. The
considerations are provided for the subset described in Chapter 5.2.

5.4.1 Valuation with Undefined Variables

The original Chi 2.0 language extends the valuation with undefined variables. 3| =
V — A denotes the set of all variable valuations with undefined variables. Variables
may have the undefined ‘value’ L (L & A). A valuation that contains undefined vari-
ables is defined by A| = A U {L}. For presentation purposes we assume all variables
are defined. It should be obvious that a valuation with undefined variables poses no
problem for the translation.



98 Chapter 5. Modeling Specification Languages

5.4.2 Set of Changing Variables

The changing sets of variables (represented by W) are provided in atomic process
terms. We advice to restrict the use of W to the smallest set of variables contained in
predicate u and update function r. If W represents a larger set of variables, arbitrary
values can be assigned to those. If the sort of the variable is represented by an infinite
domain (e.g., N), all possible values are considered, which renders any exhaustive
simulation useless.

5.4.3 Time

The ultimate delay function assumes that we can compute the value for an infinite
delay co. Models that are not restricted by an upper time bound and define non-
urgent actions are less suitable for an analysis. Therefore, we advise to translate (and
simulate) models for which the delays are restricted by some upper-bound time value.

5.4.4 Urgency on Channel Ends

Decision 5.18 assumes that channels are non-urgent in a Chi 2.0 specification. We
here present an alternative solution that allows for urgency on communicating chan-
nels. The urgency is defined for channel ends in contrast to successfully communi-
cating channels. The solution is reasonable, since many architectures define only one
end to be urgent.

Incorporating the change requires a slight change to the syntax and the semantics
of the Chi 2.0 language. Originally, H denotes the set of channel names for which
urgency is defined for successful communicating channels with help of U,,. The sug-
gested solution defines the successful communication channels for the sending and
receiving channel ends, respectively 7, and #,. Their urgency are specified by Uj.
The suggested syntactical change is illustrate in Table 5.1. The left column illustrates
the proposed typing for the urgent channels. The right column illustrates the syntax
that could be accommodated.

Current notation Proposed notation
UhZH—)B Uh:(H!UH?)—)B
{h! — true, h? — false}
{h — true} or
{h! — false, h? — true}

Table 5.1 Suggested definition for urgency on channel ends

The translation from Chapter 5.3.6 assumes that all channels are non urgent. If we
incorporate the individual urgency on channel ends, we have to alter the transforma-
tion rule and the ultimate delay function. The sending and receiving transformation
rules have to respectively by edited, by adding the black colored line and substitute H



5.5. Examples 99

by either h! or h?. The gray lines state the parts for the transformations that already
have been provided.

— /
lf’:ltime/:Li,time:,x,prcdh:,,Kx_r,a;,‘(predu(vﬂ time ))
A f(Ug([[H]]), V. (time < t” A t” < time’ = —(pred, (V,t"))) , true)
(‘77 nlime(r/)’ ﬂ-lime([L Aprud“ AXR H'\?([[u]] ))
A
AF:KJ?:K,time’:x,,prcd, :K><K><j;~>;‘i(predr (‘75 1;7, time/))
(\77 Lv7 ﬁn’me(t/)’ Apz‘uf AXAXR— ( [[lﬂ ))

The ultimate delay functions for the communication process have to be updated as
well. Hence we redefine the ultimate delay functions accordingly:

AT(u—hle:W:rt, V)=
if(Ug([[h!TD),
min{t” : R | Ag.3 time:z (WD, )
AVog (<AL <t = 255 timer([U]D(F, )}, 00)

AR (u—h?x W :rt, V)=
f(Ug([[h?1D),
min{t” 'R | )"V:K,time:R([[u]] )(‘7’ t,/)

Ao (£ SN <t 255 e ([WD(F, 1)) ,00)

5.5 Examples

This section presents four models with their corresponding transformations that vali-
date the translation. Although the resulting models are valid, some of the models can-
not be directly executed due to tool restrictions. To circumvent these restrictions, post
processing steps are required. The required processing steps are stated in a separate
discussion after the transformation. The actual models are provided in Appendix B.2.

The presented models share common aspects, e.g., action declarations, variable
labels and the time sort. The common concepts are provided first and hold for all
examples, unless stated otherwise.

The common sort declarations are provided first. The structured sort £ specifies
the actions that are provided by the Chi 2.0 specifications. The sort V specifies the
modeled Chi 2.0 variables. We assume that A is restricted to the sort B. The sort
Timeyy denotes the sort for the time domain with micro steps. We introduce an alias
sort Spye to conveniently adapt the resolution of the time domain.

sort L =structa|b|send, |send;
V = struct s | time;
STime = R;
Timey = struct timey (T yime * Stime> Teounter - NJ;



100 Chapter 5. Modeling Specification Languages

The action declaration declares the actions a, b, and send,,recv.,comm,. : B. The
Chi 2.0 specification only models a variable s : B. We only declare set; ., get; ..

s < . o
com; .., set; ., get; . and com; . Furthermore, we add the required auxiliary

actions 7, and diff.

act a,b,7,;
send,,recv.,comm, : B;
Settime> &€liime> S€lime’ s §€Liime’ * TimeH;
setsmem’ getsmem’ Comf’nem’ setsmem/ ’ getsmem
diff : Set(V);
All of the examples use the same urgency mapping. Therefore U, is defined com-
monly. The urgency for channels is defined for channel ends (Chapter 5.4.4). We
assume that a and send, are the only urgent actions.

S . .
seom o, 1B

map U;:L—B;

eqn Ug(a) = true;
Ug(b) = false;
Ug(send,) = true;
Ug(recv,) = false;

The initialization is derived from the transformation scheme. Note that {s — true}
is the valuation that initializes the global memory process Xﬁé’ﬁi{;}) for all of the ex-
amples whenever required.

proc ngpri{;})(s :B)=

Z Seﬁmem(s)|get§mem’(s/) 'Xxén];]E{zs})(s/)

s":B
s Mem({s})
+ set) . (s) | coms . (s) X%CRI({Z})(S)
s s / em({s}) ./
+ /Z com; . (s) [ com’ . (s") X cpin (57)
s":B
s s Mem({s}) ¢ y.
+  com] . (s)|com’  (s) X crin (5);
init T {r,}
v COMeime|comty, . laldifflcom ./ lcomyiper, comiime|comy, ., [bIdifflcom; lcom e,
COMyime [comy o [T cldiff lcom”  lcomyper, COMiime|comy, .., [comm |diff |difflcom” . lcomp,es

( {setimelgetiime —COMiime,Seliime’ 8t ime’ —COMyjmes S€linem Igeﬁmem

Xnct (true) | X (timen (0,00) | X5y );

—com$ .set®

et’ ,—com’
mem/ ‘g mem/ mem/ }

5.5.1 Guarded Action Update Example
The first example is taken from [BHR08]:

(time>1—a:0: true, {time — 0}, ({time — cont}, {a — true}, 0, D))

The process delays until time point 1 is reached. At that point in time, the guard
(time > 1) becomes true. Hereto, the action a becomes enabled. The action label is



5.5. Examples 101

declared urgent via the urgency mapping {a — true}. This means that it is impossible
to delay the action at time point 1. Hence, the guarded action update statement
“time>1 —a: 0 : true” must be executed, and terminates subsequently.

If we apply the translation we get the following mCRL2 specification:

proc XglhclRLz = Z ((A‘timezsnme,predu:TimeHﬂB(predu(time)
t,t":Timey
AN iflUg(a), Vs, x < time = =(pred,(x)), true)))
(T ime (") Tyime (1), (lx:Sﬁmx >1))—
8etiime(t) | act’” | diff (time) | setyime (t');

The corresponding implementation of the model can be found in Appendix B.2.1.

Discussion The specification contains no model variables. Therefore a memory pro-
cess and value exchange actions become optional. If we would translate the memory
process, we would gain a (global) memory process that can only executes T actions,
thereby introducing 7 loops before and after performing action a. Since the memory
process is irrelevant, we remove it and obtain a specification for which the behav-
ior is branching bisimilar w.r.t. the translated specification that contains the memory
process.

To simulate the model we apply two modifications. The first modification is re-
quired to linearize the specification. That is, we need to map the time domain with
micro steps to a time domain without a micro steps, since the tools only allow the sorts
N,N*,Z or R. Other (strictly) ordered sorts are not supported for the ‘’-operator. The
abstraction can be performed safely, since no two actions occur at the same moment
in time. The second modification is required for simulation purposes. Here we change
the alias for the Sy, to N, since the simulation tools do not allow enumeration over
dense domains (such as R).

After applying the modifications, we can simulate the behavior. If we now change
the urgency mapping of Us(a) to false, all time points > 2 become valid. Because
N has no upper bound, the behavior describes an infinite branching structure (Chap-
ter 5.4.3) that cannot be explored exhaustively.

5.5.2 Alternative Composition Example

To illustrate the effect of (non)-urgent action updates, and the translation of the al-
ternative composition we consider the following specification:

(time>2—a:0:true] 10>time>1—b:0:s=false,
{time — 0,s — true}, ({time — cont,s — disc}, {a — true, b — false}, 0, 0))

The urgency restricts the length of the delay. Because a is an urgent action and b is
a non-urgent action, time can progress until action a is performed. This means that
between the time points 1 < time < 2 the process can choose to perform the non-
urgent action b. On time & 2 it can perform the urgent action a as well. If the process
chooses to perform the action b, it sets the value of the variable s to false.



102 Chapter 5. Modeling Specification Languages

To compute the maximal delay, we represent the first argument of the AT (which
is the interpretation of a Chi 2.0 process term) into a suitable mCRL2 data expression.
Hence we interpret a Chi 2.0 process terminate as the structured sort y. For the rele-
vant signature, every function symbol of a Chi 2.0 term is mapped to a separate con-
structor. The corresponding arguments of a term are represented as the arguments of
the constructor function. The alternative composition is modeled via the constructor

function x,;, and the guarded action update is modeled via the constructor function

Xy—sa:w:r*

sort X = struct
Xaie(701 2 X, 702 0 %)
| xu—>a:W:r(7Tu 1B X STime — B, g ‘Cbasic’
T - Set(V), 7, : B X B X Spjppe — B);

We assume that dom(r,) is modeled by S_{, X Strime, Where S:, informally states
the sorts that are associated to the model variables with their current values. Since
all variable are of sort B and the set of variables consists of, dom(r,) is modeled
as B X Sy For dom(r,) we assume that it models Sy, X Sy, X Syyme, Where the S,
informally states the sorts that are associated to the model variables with their current
values. The second S, states the associated sorts that are to the model variables with
their updated values. Since all variable are of sort B and the set of variables consists
of s, dom(m,) is modeled as B X B X Sriye-

To compute A7 we specify the following data equations. We have taken the liberty
to pre-compute (and ease) the urgency functions for both the actions a and b.

map A?Ifé XX B X STime - STime;
var P1,P2: X5
t: STime;
s:B;
w: Set(V);
u:B X Srime — B;
r:BXB X Spme — B;
eqn  ATV(Xqe(P1,P2), t58) = min(AG T (py, £,5), A (P2, £,5));
Amax(xu—m:w:r(u: a,w,r),t,s)= if(UG(a): 2,00);

time

Amax(xu*’a:w:r(u’ b5W7 r)’ t’s) = ,f(UG(b)) 1J 10);

time

If we apply the translation, we observe that the modeled guarded action update in
the left branch of the alternative composition does not require the value of variable
s. To simplify the specification, we model that value by a global variable dc (i.e.,
a variable with a don’t care value). So, the transformation specifies the following
mCRL2 process, that corresponds to the model provided in Appendix B.2.2



5.5. Examples 103

glob dc:B;
proc XrihClRLZ =2 X XX
t:Timey t':Timey v1:B wy:B
(ntime(t/) - Tctime(t) =<
xalt( xu—»a:W:r(Avl:B,time:STimtime =2,
a, 0’ )"vl B,w;:B,time:Sq, true):
AZ#{E Xuaa:W:r(Avl:IB,time:Snmﬂtime <10Atime > 1, ) -
b’ {S}: A'vl:]B%,Wl:]B%,time:g‘STir,wVvl Nfalse)):
V1, ntime(t)
r{getﬁme 8t time —&Cttime S€lime! €t ime’ —>S€tiime’ -85 em 18 em ﬁgeﬁmem,ser;em, |set;nem , —>set:nem 3
gertime(t) | gEtmem(vl) | settime'(t/)

([ Z Y

t,t":Timey
( Avl:]E,time’:Sﬁmg,time:Sﬂme,predu:HBXSTimEHIB \
pred, (time")A
if(UG(a):
Vt//:sﬂmctime <t’'A
t” < time’ = —(pred, (v, t")),

true)
\ (dC, ﬂ-time(t/): ntime(t)’ A’predu:IBxSnmﬁﬁlB(time Z 2)) ]
\ = (8etume(t) | a | diff(time) | setyme (t)t)
+
set’ (wq)]

mem’

> \ |t

wq:B t,t":Timey

A'vl:]B%,time':Snm,time:Snm,predu:]EEXSTI-,MHIB% \
pred, (time") A
if(Us(b),
Vtuzsmetime S t///\
t” < time’ = —(pred, (v;,t")),
true)
(dC, ﬂtime(t/): ntime(t)’

Apred, Bx Sp,—r(time < 10 A time > 1))

2
A

}\'vl:]B,wl:IB,time':STimepred,:IBX]EXSTI-W—»]B (predr(vl’ Wi, time/))
(dC, Wi, Tctime(t/)> A’predr:]BXIBXSﬂmeﬁIB(Wl Nfalse)) j

W\ = (getume(t) | st (wy) | b | diff(fs, time}) | setyme (£)t) ) )

Discussion To simulate the mCRL2 specification we perform the same abstractions
as in our previous example. Namely, we abstract from the counter and we restrict the
dense time domain. Additionally we also set a time bound in the model by substitut-
ing oo with a (large) number. The mCRL2 tools assume that specifications are in the
pCRL format [GPUO1]. This format does not allow the use of the parallel operator, the



104 Chapter 5. Modeling Specification Languages

block operator, the allow operator, the communication operator or the hide operator
inside a process. Because the communication operator occurs inside the scope of the
sum operator, the specification is not in the required pCRL format. As the nested com-
munication operator only eliminates duplicate value exchanges for model variables,
it can be eliminated by a syntactic pre-processing step, after which the model can be
linearized and simulated.

5.5.3 Parallel Composition Example

The third example shows the transformation of a process with a parallel composition.
The example is identical to the previous one, except that the alternative operator has
been replaced by a parallel operator.

(time>2—>a:0:true| 10 >time>1—b:0:s = false,
{time — 0,s — true}, ({time — cont,s — disc}, {a — true, b — false}, 0, D))

The corresponding mCRL2 process is provided below. The implemented model can
be found in Appendix B.2.3.

glob dc:B;
hi
proc  Xito, =

\Y% geﬁmem |se£‘9mem, |getimelaldiff[set e ,geﬁmemlseﬁmem, |get ime | bIdiffIset e/ »
gt mset’ Igetime T, IdfFIdiffIsetyme

s s s
r{gettime |8€t ime 8t ime St ime’ St iime’ —S€lrime’ 188t mem [8€Lmem getmem’}
¢ n 2 ime’ ¢ n
set lset  —set: diff|diff >diff

(Zl || Zz) 5

where Z; and Z, are respectively defined as:

proc 7= 3 ¥

t:Timey t":Timey
}\'vl:]B,time’:STime,time:STime,predu:]BxSTim—»IB \
pred, (v, time’)A
if(Us(a),
Vtuzsﬁmetime < t///\
t” < time’ = —(pred, (v,t")),

true)

\ (dc’ ﬂtime(t/)a ﬂ'time(t)’ A]EB><time:STl~,,1E(time = 2)) }
— (getime(t) | a| diff(time) | setime (t)t") ;




5.5. Examples 105

proc  Z,= >, >

t:Timey t":Timey w1:B
A'vl:]B%,time':STimc,time:STi,,w,predu:]E§><STime—dB% \
pred, (v, time’) A
if(Us(D),
Vt//:S“mﬁtime <t’'A
t” < time’ = —(pred, (v, t")),
true)
(dC, Tctime(t/)ﬁ ﬂ-time(tl Atime:é«'nm(time <10Atime=> 1))
A
-
Avl:]E%,wl:]E%,time’:Sﬁm,time:STim,predu:IE%><IB><$Ti,,w—>]B% ( predr(vl’ wy,time )
\ (dC, Wi, ﬂ:time(t/)ﬁ ntime(t)ﬁ Avl:]B%,Wl:]B%,time:‘S’Ti,,w(Wl Nfalse)) j
— (sets o (W1) | getme(£) | b | diff({s, time}) | setyme (t)t') 5

Discussion The example with the parallel composition is (unlike to the alternative
composition example) in pCRL format. Hence it is not required to perform a syntactic
pre-processing steps. To linearize the process, we need to abstract from the time
domain with micro steps, as we have seen in the previous examples .

5.5.4 Communication Example

The fourth example illustrates a value exchange over a communication channel. The
sending process sends the negated value of s (which is initially true, thereby sending
false). The receiving end updates the value of s by the negation. The Chi 2.0 model
that expresses the behavior is specified as:

(time > 2 — c!(—s) : 0 : true || time > 1 — ¢?(s) : true,
{time — 0,s — true}, ({time — cont,s — disc}, {c! — true, c? — false}, D, D))

Chapter 5.3.6 states that we define urgency for the communicating channel ends in-
stead of the communicating channels. We here exemplify how this could be achieved.
So, we model the sending part of the channel urgent and the receiving part of the
channel non-urgent. For presentation purposes we only present the allowed set of
multi-actions to those that are executed after a successful communication between
channels that are relevant. Although other multi-actions are not shown here, they
are present in the implemented model. The model can be found in Appendix B.2.4.
According to the transformation we obtain the following mCRL2 process*:

TSimulation can only be performed for an untimed linearization (release February 2012). A timed
linearization results in an LPS, that requires an infinite amount of variables to find all valuations to satisfy
a proposition.

*For presentation purposes we introduce process Z.



106 Chapter 5. Modeling Specification Languages

glob dc:B;
Chi —
proc X oo =
8eliime|comm, |diff |set e ;getiime [comme | diff |diff set e,
gety o lget ime lcomm. |diff [set ;. o .get;, .. gt ime lcomm. |diff | diff |set e/ »
set’ 1getime|comm,|diff setypes,set;  |getiime|comm |diff |diff set e/,
SebpemlSet, /1getimelcommy|diff|set e ety oplset’ |getime|comm, |diff |diffset ./,

r 8etiime |8€Liime —&CLime S€liime! |S€Liime’ —Selyime’ ssend, [recv.—comm,,
get; mlgets . —gets . set’ Iseﬁmem, ﬁseﬁmem,,duﬁcldgﬁ‘ﬁdlﬁc

‘mem ‘mem mem'

Z;

D>

t:Timey t":Timey v1:B

proc Z

( A'vl:IEB,time’:ST,-me,time:ST,-me,predu:]B><$T,v,,le—>IB% \
pred, (v, time’) A
if(Us(D),
Vs, time < t”A
t” < time’ = —(pred, (v, t")),
true)
(dC, Tctime(t/)’ ntime(t)’ A'VI:JBE,time:Snme (time = 2))
— (getsem (V1) | 8elime(£) | send.(—vy) | diff (time) | setme(t')t")

I
PIDINDY

t:Timey t":Timey w1:B

( A'time’:STime,time:ST,-me,predu:Sn,m,‘—ﬂl!s \
pred, (v, time’) A
if(Ug(b),
Vt”'S‘ tlme S t”/\
*STime . / "
t” < time’ = =(pred,(v;,t")),
true)
(ntime(t/)’ ﬂ:time(t)’ (;\'time:Snmetime Z 2))
— (set’ . (w1) | getyme(t) [ recv (wy) | diff ({s,time}) | settime/(t’)%’) ;

Discussion To linearize the communication example we abstract from the time do-
main with micro steps, for the same reasons as we have seen in the previous examples.
After performing these abstractions it is possible to simulate the model. Observe that
the negated value of s is indeed transferred via the communication channel c, and the
model variable s is updated accordingly.



5.6. Related Work 107

5.6 Related Work

The Chi 2.0 language and the mCRL2 language have respectively evolved from the
languages y (0.8,1.0) [BGRT03, BTW'05] and uCRL [GP93]. Since both of the
languages have changed significantly, we felt to reconsider the transformation of
[WFO05]. An overview on the syntactic and semantic differences between Chi 2.0 and
its predecessors is found in [BHR'08]. For mCRL2 and its predecessor, the differences
can be found in [GMWUO06].

A large amount of the related work has been carried out for the predecessors
of the Chi 2.0 language. This includes the work of transformations to the state-
based imperative language PROMELA [NO96], to the timed automaton language UP-
PAAL [BLL"95] and to the process algebra language uCRL [WF05].

Our work mostly resembles the work of [WF05]. The work of Wijs and Fokkink
shows a timed translation from Chi (0.8) to uCRL. It differs in two aspects, namely
(i) the translation of time, and (ii) the considered kind of specifications.

Ad (i), the original uCRL language includes no native notion of time. The work of
[WFO05] shows a way to model time by discrete (uniform) time-steps and performs
the translation to the extended model. Here, the authors where free to choose their
interpretation of time. In mCRL2 the notion of time has been fixed to sorts with a
strict total order, for which the sort R is the only sort allowed by tools. This allows for
non-uniform time-steps between any two actions. Unfortunately, the current mCRL2
time model is incompatible with the time model within Chi 2.0, as it cannot preserve
the order for any two actions at the same moment in time or perform an action at time
0. For that reason, we opt to include a time model with micro steps in the translation.

Ad (ii), our work describes a translation of a Chi 2.0 specification to an mCRL2
specification. The work of [WFO05] translates a linearized Chi specification to an LPS.
As a result, model variables are translated differently. Our work captures them by
separate processes, apart from the translated Chi 2.0 process. In the work of [WFO05],
they are added as process parameters in the LPS. Hence, we feel that our work is
an extension of the work of [WF05], because we translate a larger set of notions.
Moreover, we consider the linearization of a processes as a separate task, e.g., as in
[Use02], because it can be hard or even impossible to perform the task successfully.

5.7 Conclusions

This chapter shows the denotational translation between two formal specification lan-
guages. The source language is the hybrid formalism Chi 2.0, foremost suitable for
formal simulation. The selected target formalism is mCRL2, that enables the verifica-
tion of modal properties for translated models.

Since both languages contain notions that are incompatible, we apply an abstrac-
tion to the source language, such that we retain a set of notions that we can transform.
We abstract from almost all continuous notions. As already indicated, it is difficult and
for some cases even impossible to exactly compute the values for ordinary differen-



108 Chapter 5. Modeling Specification Languages

tial equations. Although the mCRL2 toolset facilitates a higher order rewrite system,
the toolset is currently incapable to solve these kind of equations. Hence, we only
translate a subset of the Chi 2.0 language.

Even though parts of the languages are translation-wise compatible, the composi-
tional transformation is still complex. We hint that the correspondence is maintained
during the translation. To strengthen the validity of the transformation, we vali-
date the behavior for a limited set of examples. Here, we observe that the behavior
from the mCRL2 models is indeed dictated by the Chi 2.0 models. Consequently,
if one verifies a property, and wants to assert that the property is preserved in the
Chi 2.0 model, the verification results (e.g., the proofs/counterexamples provided by
the model-checker) need to be executed by the Chi 2.0 model. Hence, it implies that
one has to assume that the complex translation is correct (or provide a proof).

The resulting mCRL2 models are complex. Even for small models, the behavior
can be too complex to be linearized, simulated or analyzed by (only) tools. These
problems are devoted to the following four concepts.

Firstly, the tools that (currently) support the mCRL2 language are picky with time.
This means that tools can only deal with time if it is of sort R. Because we use a time
domain with micro steps, we either have to apply an abstraction or a transformation,
such that the hybrid domain is mapped to the proper timed domain. Hence we have
to apply concessions to the properties that we can verify, alter the model in a post
processing step, or state verification properties differently.

Secondly, to mimic the strong time deterministic choice in a weak time determin-
istic setting we introduce a function that computes the maximal delay between alter-
natives. If both actions in the alternatives are non-urgent, it is not guaranteed that a
maximum exists. If no maximum exists the mCRL2 tools are not able to compute a
solution and no simulation can be performed. Therefore we slightly alter the model
(e.g., set a time bound on the model) such that we can perform simulations.

Thirdly, when models can be linearized, it provides no guarantee that we can per-
form a simulation. Especially, if a guard depends on the value of the time € R vari-
able, the simulation and verification tools need to enumerate values over dense do-
mains. Hence, for simulation purposes, we either restrict the time domain to the
(non-negative) values of N, or completely abstract from time.

Fourthly, the proposed transformation uses constructs that are not in the pCRL
format [GPUO1]. Because the mCRL2 tools can only deal with specifications that are
in the pCRL format, it is possible that some transformations require a post-processing
step (e.g., to eliminate duplicates actions) or cannot be used at all (e.g., if the parallel
operator occurs in the recursion of a variable scope).

Despite the limitations the translation is still valuable. It illustrates that if one ex-
pects that two languages are suitable for a compositional transformation or defines
the semantics in a denotational manner, many complications may arise. This can be
observed in the translation, the resulting models, and the absence of a proof for the
behavioral preservation. Moreover, this approach is non-reusable. Hence, if the lan-
guage is subjected to change (i.e., which happened for the CIF [BRSR07], that evolved
from the Chi 2.0 language) the entire transformation needs to be reconsidered.



Chapter

Disseminating Verification Results

6.1 Introduction

The previous three chapters have shown how to create formal models for different
kinds of specifications. These verification models have their own abstractions and
design decisions w.r.t. the design models. This implies that when conducting verifica-
tion, it is often not possible to directly transfer the results back to the design domain.
Hence, explaining verification results is perceived to be difficult.

To ease this problem, interdisciplinary modeling methods are required. These mod-
eling methods should integrate formal methods with existing development trajecto-
ries. To be successful, these methods should be lightweight to apply and easy to
understand, preferably visually. This chapter describes a generic co-design solution
that takes the result from a formal analysis and uses it to animate physical designs.
To capture the virtual physical design, we use Computer Aided Design (CAD) models.
This chapter describes an instance of a bridge between the analysis environment and
the interchange environment from Figure 1.1.

CAD models allow a precise and a flexible view on the physical characteristics of a
system’s components. In product development immense costs are associated to phys-
ically test them. To reduce the number of expensive tests, it is possible to run virtual
tests on CAD models. CAD is also used to virtually present flexible ideas at lower
costs and allow error detection (e.g., malformed components, incorrect use of mate-
rials) in early development stages. This makes them highly suitable in a development
process. The models are also used to simulate objects in a certain (virtual) physical
environments. These simulations often consist of predefined scenarios or fixed sets of
tests which limit the system’s analysis. Such simulations can easily miss unpleasant
concurrent behavior, like race conditions or deadlocks.

A formal behavioral model contributes towards a more clear and unambiguous
understanding of the concurrent behavior of a system. These models ensure that

109



110 Chapter 6. Disseminating Verification Results

the behavior is conform the settled requirements. Unfortunately, they are difficult to
understand for engineers that practice other disciplines.

The co-design solution that we propose enriches CAD models with behavioral infor-
mation, extracted from a formal model, such that the concrete behavior is displayed
in a (non-interactive) simulated environment of the actual system. Combining these
modeling methods into a co-design solution improves system development in several
ways. Firstly, it provides engineers a better insight in the system’s behavior, since an
animation provides information in a way that is easily perceived by human vision.
Secondly, it eases communication between different disciplines, since animations vi-
sually pin-point a problem. This avoids the study of the formal models. Thirdly,
the co-design solution enables the virtual integration of dynamic components. Here,
simulations can be used to inspect a system’s integration (e.g., observe that moving
components do not collide). Fourth, it enables the virtual execution of a systems be-
havior. These simulations can contribute to a lower number of faults as the formal
models complement the physical models.

The content of the chapter is dissected into two parts. Firstly, Chapter 6.2 describes
the general approach and specifies the components that are required to realize the
visualization. Secondly, in Chapter 6.3 we illustrate the approach by a case study that
describes a wafer dryer facility. Chapter 6.4 describes work that has been performed
by others. In Chapter 6.5 we provide our concluding remarks.

6.2 Approach

Visualizing the behavior of a formal model requires five components. The first compo-
nent is an (observable) trace that needs to be visualized. In practical situations, these
traces are obtained from the logging of simulation data, are the result of a witness
during model checking, or are specified by test scenarios. The second component
consists of a kinematic visualizer. A kinematic visualizer is a system that animates
changes for virtual objects, which are accommodated by most of the current 3D mod-
eling and animation packages. Additionally, we require that a kinematic visualizer:

e is capable of importing physical models used in an industrial environment.

o allows the visualization of behavior (movement, scaling, rotation, color changes,
etc.).

e contains a scripting language that automates visualization tasks.

The third component consists of a set of (virtual) physical models that need to be
imported into the kinematic visualizer. The fourth component is a kinematic language
that specifies a mapping between the actions in the formal model and the visualized
actions in the kinematic visualizer. The fifth component denotes a kinematic pre-
processor that facilitates the generation of the animation statements for the given
trace in the kinematic language. The animation statements consist of a series of
automated tasks that are imported into the kinematic visualizer. Figure 6.1 depicts



6.2. Approach 111

the flow among the components. The following explains each of the aforementioned
components.

Kinematic Physical
Language Model
A4 v
; i A
. " (294
> _'!:‘-_;. > - > '
Trace Algorithm Ari\l/[rgzglo n Scene Animation
Kinematic Preprocessor Kinematic visualizer

Figure 6.1 Relationship between components for the proposed co-design
solution

6.2.1 Action Trace

An action trace consists of a vector of timed multi-actions, i.e., ay € 2AxDxN 5 R where
A represents the set of all action labels, D describes the possible data parameters, N
the multiplicity and R the time at which the action occurs.

The concrete action traces that we consider are described via the following BNF:

a Tla(J)lala
P = at-Pi1dtiet

Here, a<t denotes a multi-action a executed at (absolute) time stamp t. A multi-
action a is a collection of actions a(c_{) combined by means of |, where a € A and
d € D. The empty multi-action is denoted by 7, which denotes an internal action.
Furthermore, - denotes the concatenation of a timed multi-action with an action trace.
A &<t resembles a deadlock or inaction at time stamp t, after which it is impossible to
execute any behavior. The empty action trace is denoted by e. We assume that a trace
is strictly increasing with respect to the value of the time stamp. For our convenience
these traces are a subset of the mCRL2 language.

The relationship between P and ay is defined through f : P — A x DxR
flast-P) = f'(a,t)++f(P)

ft) = [{6,[]1)]
flet) = [{e[],0)]



112 Chapter 6. Disseminating Verification Results

and by f':a xR — Ax D x R:

f(z,0) = [z [ 0)]
f'la(d),t) = [{a,d,t)]
fllaylag,t) = f'(ay,t)+Hf'(ayt)

6.2.2 Physical Model

A physical model describes the set of all possible objects that need to be visualized
in an animation. An object describes the characteristics of a visual element. The
set of objects is represented by Obj. Obj is split into two disjoint sets Obj,;. and
Objgynamic- The set of static objects Obj,; does not change in an animation. They
have a fixed position, rotation, scale and color. The set of dynamic objects Objgynamic
can potentially change their position, rotation, scale and color during an animation.

To visualize an object we require an instance of an object. This means that if we
have an object named “tea-pot”, and we want to animate two tea-pots, we need to
derive two instances. Moreover, we require two different named objects if we want to
animate two instances for which one is static and the other is dynamic. An example
could be a moving tea-pot, combined with a stationary tea-pot. We assume that all
instances are taken from the collection of ;.

6.2.3 Kinematic Language

The kinematic language describes the relation between actions of the action trace,
the visualization actions and the kinematic effects associated with the visualization
actions.

Every action in an action trace is atomic. In the context of behavioral models this
implies that whenever an action is started, it cannot be interrupted by another action.
An action is guaranteed to completely finish or it is not executed at all.

Actions that are visualized often require a certain amount of time to complete (e.g.,
moving an object from one location to another). This means that visualization actions
are not atomic. For this reason, we require that every visualization action is described
by two actions. The first action indicates the start of a visualization action. The second
action indicates the end of a visualization action.

The set of visualization actions is denoted by Ay,. The function s, € A X D— A,
describes the relation between the actions from a trace and the start of a visualization
action. Similarly, the function s.,q € A x D — A, describes the relation between
the actions from a trace and the end of a visualization action. Moreover, we require
that the start and the end of an action belonging to the same visualization action
(i.e., Vge ax5(Spegin(@) = Sena(a))) are executed in alternating order. This requirement
is reasonable, since a physical action (e.g., the rise and set of the sun) can only be
performed again after an action has ended.

The kinematic language describes the effects a performed action has on the object
instance within an animation. The effects are specified via the function M: A, —



6.2. Approach 113

(Iopj — V) which describes for every visualization action the affected instances along
with their (basic) kinematic effects as a sextuple:

v — C X 2DM><N X 2DR><N % ZDSXN % 2DrgbaXN X B
A (basic) kinematic effect consists of the following elements:

e creation: C = R® x R® x R® x R* denotes the absolute position, rotation, scale
and color,

e movement: D,; = R3 denotes the relative change for the xyz-position,

e rotation: Dy = R® denotes the relative change for the Euler xyz-rotation,
e scaling: Ds = R® denotes the relative change for the xyz-scale,

e color: D,y = R* denotes the relative change for the rgha-coloring,

e destruction: B denotes whether or not the object must be destroyed.

Undefined elements are represented by a special value L. Visualization actions that
are unspecified in a mapping have no effect in the visualization, i.e., no animations
are performed. Advanced kinematic effects, such as following a certain path or twist-
ing a shape of an instance can be added to V by extending the sextuple. Hence, the
kinematic language acts as an abstraction mechanism: It focuses on the relevant as-
pects to provide a better insight in the behavior of the system by abstracting from the
irrelevant behavior. We assume that a visualization action, that describes a change,
is only performed between the initialization and the destruction of an instance of an
object. Moreover, we assume that internal actions (i.e., T) are not visualized.

6.2.4 Kinematic Pre-processor

The kinematic pre-processor computes the information that is required for the kine-
matic visualizer. This information is computed from the action trace and the kine-
matic language. To visualize an action trace, we pre-process it to determine the pairs
of atomic actions that together form a visualization action. Once we have determined
the corresponding pairs, we subsequently determine the time period for a visualiza-
tion action. The length of a visualization action is specified by the amount of time
that passes between two consecutive pair-wise actions. If a(5)<t and b(&)<t’ are a
pair, then the amount of time that has passed is specified by |t — t|. Moreover, we
assume that the animation contains no negative time stamps, the visualization ac-
tions start at time stamp > 0, and no visualization actions are started that belong to
a visualization actions that are already in progress and have a different duration.
Given an action trace and a kinematic language, the kinematic pre-processor com-
putes a bag of visualization actions F € 24v*®*X®XN where for each (a,, t;,ty,n) € F

e a,: Ay describes the visualization action label,



114 Chapter 6. Disseminating Verification Results

o t; : R describe the time stamp at which the visualization action starts
® t, : R describe the time stamp at which the visualization action ends

e n : N denotes the number of visualization actions that occur with the same
action labels with corresponding begin and end stamps.

Algorithm 2 describes the pre-processing process that transforms an action trace to
a set of visualization actions. The algorithm consists of two parts. The first part of
the algorithm, lines (1-11), collects the actions that belong to the begin and end of

_—
visualization actions. These are respectively denoted by the lists B€ Ay, x R and U €

Ay X R. The second part of the algorithm, lines (12-21), constructs the visualization
actions that are represented by F. The set comprehension C denotes the first end
action (if present) that is performed after the begin action that corresponds to the
same visualization action. To assert that the end of a visualization action is not used
twice, the end action is removed in line (20). In lines (14-19) we compose an element
for F. Here, we assume that when a begin action has no corresponding end action,
the visualization action ends at the last time that occurs in the trace. Finally, in line
(22) the algorithm returns the set of visualization actions.

Algorithm 2 uses the following notations. Let d € D; X ... X D,, be a data struc-
ture with n elements. If we specify 7;(d), (1 <i < n) we get the i-th element (of
sort D;) in the data structure. Furthermore, we define X WY as {(d;,...,d,_1,n+
m)|(d,,...,d,_1,n)€X,(dq,...,d,_,m) €Y}

The kinematic visualizer requires the following information for the purpose of the
animation:

e the bag of initial positions f.(M, F) € 2lou*CX®xN for ohject instances in the
animation on a given moment in time:

feWM,F) = {(v, my(M (1 (F D)), 7a(f), 7(f )3)
| f €F, v € dom(M(my(f))), my(range(M(m,(£)))) # L}

e the bag of the relative movements f (M, F) € 2/on*PuxEXEXN for ghject in-
stances over a certain period of time:

FAMF) = {(, m(Mm (F)W), mo(f), m3(F) = ma(F), m(f )
| f €F, v € dom(M(m,(f))), ma(M(my(f))(1)) # L}

e the bag of the Euler rotations fX(M, F) € 2/on*Prx®XEXN for object instances
over a certain period of time:

FAMF) = {(t, (M (F)W), (), T3 (f) = (), 7(f)s)
| f €F, v € dom(M(m,(f))), ma(M (1 (f))(1)) # L}



6.2. Approach 115

Algorithm 2 Algorithm to match visualization actions
Require: ay
1: while a;.getLength() # 0 do
2: o« agp.getHead()
3. if a.action() € dom(spegin) then
4 B « (a.action(), a.time()) > B
5: elseif a.action() € dom(seyq) then
6: U « (a.action(), a.time()) > U
7
8
9

else if a.action() = § V a.action() = € then
Ctime < a.time()
. end if
10:  ar.removeHead()
11: end while
12: for all b € B do
13: C {u | uelU A sbegin(nl(b)) = send(ﬂl(u)) A ﬂz(u) = Min{“z(z) | zeUA
7ty (w) = 71(2) A t5(b) < my(2)}
14:  if C # 0 then

15: LetceC

16: F « F W {(Spegin(71 (b)), 2(b), m,(c), 1)}
17:  else

18: F < F W {(Spegin(71(D)), 2(b), Crime> 1)}
19:  end if

20 U<U-—{c}

21: end for

22: return F

o the bag of the scaling operations (M, F) € 2!os*Ps*ExEX for gbject instances
over a certain period of time:

FAMF) = {(t, (M (F)W), o(f), w3 (f) = (), (D)
| f €F, v € dom(M(m,(f))), ma(M(m (f))(0)) # L}

. b . :
e the bag of the color change operations f,&"“(M, F) € 2lon*Praa*®XEXN for object
instances over a certain period of time:

UMF) = {1, (MO ()W), (), 7a(F) = ma(f ), (f )s)
| f €F, v € dom(M(my(f))), ms(M(m1(f)()) # L}

e the bag of object instances f,(M, F) € 2lo5*®*N that need to be removed from
the scene at a given moment in time:

foM,F) = {(t,m3(f), m3(f)) | f € F, v € dom(M (7, (f))}



116 Chapter 6. Disseminating Verification Results

Each of these bags describe a relative change for an instance in a scene. If action
intervals (with same change function for the same object) overlap, (e.g., let a,b €
f, such that 7,(b) < my(a) < m5(b) or my(b) < ms(a) < m5(b)) the sum over the
overlapping vectors is taken. The differential changes are constant over the length of
the visual actions.

When two atomic actions a(g ) and b(€) occur in the same multi-action and together
they form a visualization action, i.e., sbegin(a(g)) = Senq(b(€)), then the kinematic
effect of this visualization action is visualized as a discrete (instant) change.

Furthermore we assume that within the kinematic visualizer, object instances are
not destroyed before being created. We also assume that object instances are only
animated between the time stamps where an object instance is created and destroyed.

6.2.5 Kinematic Visualizer

To animate the physical behavior we use the kinematic visualizer. The kinematic
visualizer contains a virtual environment, wherein all relevant CAD objects are assem-
bled. Such a virtual environment is called a scene. The scene is used to synthesize an
animation.

Before we animate the physical behavior, all object instances are merged into a
scene. All instances that belong to Obj,.,.. get a fixed position, rotation, scale, and
color. All instances that belong to Objgyn.mic are guided by the visualization ac-
tions. This means that all actions from Fo(M, F), FX(M,F), FR(M,F), F3(M,F),

F;gba(./\/l, F) and Fp(M, F) are assigned to the corresponding instances.

In general, current state-of-the-art 3D modeling and animation software packages
such as Autodesk® Maya®, Autodesk® 3D studio Max®, Blender Foundation’s Blender,
NewTek Lightwave™, etc ..., can import object instances into a scene. To assign the
visual effects to the different instances, we require a scripting language.

Once all object instances are merged and the visualization actions are assigned, the
trace can be animated. Real-time visualizations can be used to quickly analyze the
problem, but often carry less (geometric) detail by providing an instant view. Non-
real time visualizations can be used for presentation and demonstration purposes.
Together with light emitting sources and various bitmaps for materials, photo realistic
animations can be generated.

6.3 Case Study

To study the applicability for this approach we have taken a small industrial case
study. The case study describes a wafer handler drying facility to be used in a wafer
printing device. The handler must dry individual wafers for at least sixty seconds. The
schematic control flow for the wafers of the drying facility is illustrated in Figure 6.2.



6.3. Case Study 117

sOtos1: Not Turned —Move

. > sltos4: Move
input - S, Sy
s1tosO: Turned —Move
% =
g =
w

= &
w
A
S @

Gz
w w
) )
= ~
o 5]
w w
= =
2 2
\rb @

S3

Figure 6.2 Schematic control flow for the wafer drying facility

The handler has a vertical column that offers three slots to position wafers. These
slots are numbered S, S, and Ss, respectively. Slots S; and S, in the column can
switch wafers simultaneously by rotating them upside down. A rotation (or turn
movement) takes 5 seconds to complete. A wafer moves from S, to S, or from S5 to
S, in a pan-wise movement. These actions take 3 seconds to complete. Wafers enter
the dryer facility unturned via S, and are positioned by a non-deterministic choice in
the empty slots S; or S;. Wafers enter the dryer with a rate of exactly one wafer every
30 seconds. The system must always accept incoming wafers.

Wafers may only depart the system when they have resided in the dry column for a
minimum of 60 seconds. The wafers can depart the system via S if they are in slot S;
or slot S; and are turned. They may also depart the system via S, if they are in slot S;
or slot S5 in either a turned or unturned position. Moving a wafer in and out of the
column takes 3 seconds. The amount of time needed for these movements counts as
time that a wafer resides in the drying facility.

All moves and turns are mutually exclusively executed in the system. It is impossible
to perform a move or turn when another move or turn is executed. If the slots S; and
S, are filled, a turn is executed as a multi-action of two turns, i.e., the two wafers are
rotated and swapped simultaneously.



118 Chapter 6. Disseminating Verification Results

6.3.1 Design Rules and Assumptions

The controller is modeled under the assumption that the system operates without
faults or abnormalities (i.e., the loss of wafers). In the initial state all slots are empty
and no wafers are in the dryer facility. For simplicity we only focus on the behavior
that is executed by the controller. This implies that the behavioral model does not
capture any of the physical properties like the material’s stiffness, temperature of the
wafers or the humidity in the dryer facility.

The controller stores the kinematic wafer information. The kinematic information
is for each wafer linked to an identifier Id € N, for which the positions are indicated
using Place € {S;, S1,S,,Ss, S4}, its turn-status State € B (true for turned, false for
unturned), and time stamp that marks the arrival at the system Stamp € R. Each slot
stores at most one wafer. So, there are at most five wafers in the system at all times.
Therefore we need at most five identifiers, since the available identifiers can be issued
for reuse.

The controller sends different commands to the handlers for moving and rotating
the wafer in the dryer facility We assume that the controller C executes the com-
mands non-deterministically for the wafers that are in the dryer facility DS. This
includes the behavior associated to the departure (when a wafer has spent enough
time in the dryer facility) and the movements of the wafers between the different
slots. The controller does not perform any movement or departure actions when
there are no wafers in the system. The entrance of a wafer is scheduled in such a way
that the dryer system always accepts incoming wafers, unless all positions that store
incoming wafers are occupied. The arrival of wafers is also modeled by the controller.
It abstracts from the implementation choose to only model the arrival of the wafers.
The model starts at time 1. Commands are sent by the controller to the dryer facility
at a fixed rate of at most one command per second.

The behavior of the system is modeled in the mCRL2 language. The (original)
model that specifies the system is provided in Appendix B.3.

6.3.2 The Trace

Given the assumptions and modeling decisions, we want to verify that the system can-
not deadlock, i.e., the system cannot come into a state from which it cannot perform
any actions. It turns out that this property is not satisfied. In Figure 6.3 we depict
the associated state space of the behavior the model. We see that the model has a
deadlock, denoted by a red dot.

With the help of the mCRL2 toolset, we obtain a trace to the deadlock state. The
trace is derived during the explicated state space generation. In fact, there are many
traces that lead to the deadlock state. If we inspect the traces, we observe that the
actions that are executed, belong to the transport of wafers. So, it makes sense to
visualize these actions. The trace that is visualized consists of the actions in the
following order:

SotoS;_begin(1)<1 - SytoS;_end(1)<4 - S;toS, begin(1)<19 - S;toS,_end(1)24 -



6.3. Case Study 119

Figure 6.3 The state space for the dryer system with a red colored deadlock

S,toS;_begin(1)26 - S,toS; _end(1) | SytoS;_begin(2)<31 - SytoS;_end(2) |
S;toS, begin(2)<34 - S;toS, end(2) | S;toS, begin(1) | S,toS;_begin(2)37 - S;toS, end(2) |
S,toS;_end(2) | S,t0S;_begin(1)<42 - S,toS;_end(1)45 - 5<61

6.3.3 The Physical Model

For the physical model we merge all object instances into a scene. We import the
wafers and a representation of a dryer facility. To transport wafers between positions
we choose to abstract from the transport handlers, by making them invisible to the
observer.

A wafer’s motion between slots describes a non-linear movement, i.e., wafers follow
a Bézier-like curve. From an aesthetic point of view, it is nice to define movements
that describe a complex movement over time. These movements could have been
described by altering D,,, such that it either describes a differential equation or is
divided into smaller vectors that need to be chained together. Solving a differential
equation is often too complex for kinematic visualizers, because they do not have
the solving capabilities. Slicing complex trajectories into smaller linear parts is an
intensive time consuming task.

To describe the transport of wafers between the slots, we draw motionpaths that the
wafers need to follow. A motionpath is a curve (i.e., path) that dictates the movement
for an instance of an object over a period of time. A motionpath needs to be specified
in the scene in advance, requires a direction and needs to have a unique name. If an
object is attached to a motionpath, it moves along the path.

The parts needed for the physical model are depicted in Figure 6.4. The CAD
models consist of a dryer system, the wafers and motionpaths.



120 Chapter 6. Disseminating Verification Results

Figure 6.4 Three objects from the physical model

6.3.4 The Interconnecting Model

The interconnecting model is a model written in the kinematic language. Recall that
it describes the relation between the performed actions by the trace and the visualized
actions. The syntax of this model is described using an XML notation. Before we visu-
alize a trace, we first define the relevant visualization actions. In our case study, all ac-
tions correspond to the wafer movements from one slot to another. This concerns the
visualization actions SOtoS1(wid), S_0toS3(wid), S_1toS2(wid), S1toS4(wid),
S2toS1(wid), S2toS3(wid), S3toS0(wid), S3toS2 and S3toS4(wid), where wid
denotes the wafer identifier number, i.e., wide N. The action Create-S0(wid) and
the action Destroy-S4 (wid) are important for the visualization, as they respectively
denote the creation (entrance in a scene) and the destruction (exit from a scene) for
a wafer instance wid.

Action Relations

Actions in a trace are defined as atomic discrete event actions. Their corresponding
visual behavior is defined for some period of time. So, we need to define which
actions from an action trace form a pair in the visual action. This is accomplished
by defining an action relation between the visualization action and the begin and end
actions of the action trace. An action relation ActionRelation is defined by:

e The value of the XML element Action corresponds to an element of the visual-
ization actions Ay,.

e The value of the XML element BeginAction corresponds to an element of the
begin actions A x D.

o The value of the XML element EndAction corresponds to an element from the
end actions A x D.

Example 6.1(Action Relation). This example shows how to map spegi, and senq re-
spectively to visualization actions with the help of the action relation. We define the



6.3. Case Study 121

action relation for the create, the destroy and the transport of a wafer from slot S, to
slot S;. The action relation for the create of wafer with wid = 1 is described by the
first ActionRelation. The action relation for the transport of the wafer with wid =1
is described by the second ActionRelation. The action relation for the destroy of
the wafer with wid =1 is described by the third ActionRelation.

<ActionRelation>
<Action> Create-S0(1) </Action>
<BeginAction> S0toS1_begin(1) </BeginAction>
<EndAction> S0toS1_begin(1) </EndAction>
</ActionRelation>

<ActionRelation>
<Action> Destroy-S4(1) </Action>
<BeginAction> S3toS4_end(1) </BeginAction>
<EndAction> S3toS4_end(1) </EndAction>
</ActionRelation>

<ActionRelation>
<Action> SO0toS1(1) </Action>
<BeginAction> SOtoS1_begin(1) </BeginAction>
<EndAction> SOtoS1_end (1) </EndAction>
</ActionRelation>

Create Action Map

An action map element describes the semantics for a visualization action. That is,
it specifies whether an action creates a new object instance, changes information on
an object instance or destructs an existing object instance. If a visualization action
creates a new object (when the value of a Type element equals Create) it is required
to define:

e the initial xyz-position (defined by the Position element),

o the xyz Euler rotation (defined by the Rotation element),

o the xyz-scale (defined by the Scale element), and

o the rgb-color value with a opacity channel (defined by the RGBA element).

The value of an Action element defines the visualization action that creates an object.

Example 6.2(Create Action Map). The create action map creates an object instance.
The value of an Instance element defines the dynamic instance of an object. The
Action element defines the label of an action that affects the instance. This example
shows the constructor function for an object that corresponds to wafer (1) (wafer
with wid = 1). The initial position of the object is equal to the origin of the Euclidean
space. The instance of the object is not rotated, nor scaled in any dimension and has
a green non-transparent color.



122 Chapter 6. Disseminating Verification Results

<ActionMap>
<Action> Create-S0(1) </Action>
<Instance> wafer(1) </Instance>
<Type> Create </Type>
<Position>  <X>0</X> <Y>0</Y> <Z>0</Z> </Position>
<Rotation>  <X>0</X> <Y>0</Y> <Z>0</Z> </Rotation>
<Scale> <X>1</X> <Y>1</Y> <Z>1</Z> </Scale>
<RGBA> <R>0</R> <G>1</G> <B>0</B> <A>1</A> </RGBA>
</ActionMap>
A
Change Action Map

For action maps that describe changes (i.e., the value of the Type element equals
Change), only the relevant elements are specified. As the complex movements are
described using motionpaths, we here exchange the Position element (denoting the
offset movement) with Motionpath (stating that it should follow a motionpath).

Example 6.3(Change Action Map). In the change action map, we show the move-
ment for object instance wafer (1) by changing its position if S1toS2(1) is executed.
In this case the instance rotates 180° clockwise orthogonal over the y-axis during

the length of a visualization action. While rotating, the object follows motionpath
S1ToS2path.

<ActionMap>
<Action> S1toS2(1) </Action>
<Instance> wafer (1) </Instance>
<Type> Change </Type>
<Motionpath> S1ToS2path </Motionpath>
<Rotation>  <X>0</X> <Y>-180</Y> <Z>0</Z> </Rotation>
</ActionMap>

Destroy Action Map

The destroy action map defines the destroy of an existing object instance. This means
that the instance is removed from the scene. Hence, the value of an Type element
must equal Destruct. The XML elements that are mandatory are the visualization
action, the object and type of the mapping.

Example 6.4(Destroy Action Map). This example shows the destroy action map
for the object instance wafer (1). When the action Destroy-S4(1) is executed, it
performs a destroy.

<ActionMap>
<Action> Destroy-S4(1)  </Action>
<Instance> wafer(1) </Instance>
<Type> Destruct </Type>
</ActionMap>



6.4. Related Work 123

Time Conversion Unit

Apart from action maps, we also require a time conversion unit. The time conversion
unit specifies the relation between the time in the visualization actions and the time
in the trace.

Defining such a relation is practical, since for high speed processes it acts as a
slow-motion function, as it might reveal footage that is missed by the human eye.
Moreover, for slow processes it could act as a fast forward function.

By defining the TimeUnit the conversion time unit is set. The relation is expressed
in frames per second per time unit of the trace.

Example 6.5(Frame Rate). If a time unit in a trace equals 25 frames in a visualiza-
tion, the value for the TimeUnit needs to be set to 25¢:

<TimeUnit> 25f </TimeUnit>

6.3.5 Visualization

In our approach we have chosen to visualize the trace by using the modeling, anima-
tion and rendering package Autodesk® 3D studio Max® (2009) [Aut]. This package
has been chosen, as (i) it supports a wide range of CAD models and (ii) repetitive
tasks can be executed using MaxScript.

After generating an animation, it turns out that the system deadlocks when both
S; and S5 are occupied and a wafer enters the drying facility. Because wafers are
not enforced to leave the system the deadlock occurs. This implies that the controller
should schedule the wafer’s departure from the system as soon as possible.

A part of the trace is visualized in Figure 6.5.

6.4 Related Work

Visualizing simulations are often performed ad-hoc, carried out by a special team
of engineers, which are often not part of the development trajectory. The resulting
simulations are therefore often custom made, not suitable for reuse, are led by an
artistic inspirations, or are targeted to marketing and sales. The work presented here,
does not focus on these custom made visualizations, but discusses the relation to work
of other that try to visually study the behavior of formal models.

The authors of [BHBMO7] study the behavior of a printer design using Happy Flow.
Happy Flow describes and visualizes the desired path of a print sheet and the ideal
movements of parts that influence the paper’s motion. Happy Flow uses a kinematic
view, where non-idealistic behavior such as friction, jerk of motors and hysteresis are
not taken into account. As such, Happy Flow provides a quick design space explo-
ration with respect to job scheduling. The prerequisite of a Happy Flow model is a
mechanical layout of a paper path including the position of pinches, switches and



124 Chapter 6. Disseminating Verification Results

Figure 6.5 Four still images taken from the kinematic visualization

sensors. The mechanical layout is a 2D profile of the machine. The paper path that
the paper sheets have to follow, consists of a 1D concatenation of all the registration
points that they have to pass, together with their traveling distance and traveling time.
The logistics and timing information are combined into position-time diagrams. Al-
though the approach is very effective for the paper document processing industry, it is
very difficult to apply it on systems that show other kinds of behavior. The simulation
tool requires two dimensional CAD models. In practice it is common to design hard-
ware components in 3D. Therefore whenever a 2D image is needed either a profile
is required (which needs to be derived from the 3D model) or custom made images
need to be drawn.

Another technique that studies the concurrent behavior of systems are found at the
analysis of (large) state space transition graphs. Work of [HWWO01, PT08] tries to
visualize the behavior of large systems by positioning individual states in an interac-
tive 3D grid space environment. Work of [PW07] focuses on the structure of a graph,
but uses a clustering technique based on state attributes and visualizes behavior with
state based diagrams. These visualization environments allow simulations by execut-
ing actions at an abstract level, which are visualized as transitions between states.
The essential difference between the work [HWWO1, PW07, PT08] and the work pre-
sented in this chapter, is that we generate a concrete visualization (i.e., an animation)
instead of providing an abstract visualization.

The authors of [PWO06] visualize state transition graphs and extend the visualiza-
tion with custom diagrams suitable for animation. Here, we see a couple of similar-
ities. Both methods use a formal behavioral model and use a visualization tailored



6.5. Conclusions 125

towards the system under study. The differences between the methods are found in
e.g., the kind of models that are used: we use the physical designs of development
process, whereas the authors need to draw custom designs. Another difference is that
the visualization of [PWO06] is based on the state of the model, while our method uses
the transitions between states.

6.5 Conclusions

For systems that are built in multi-disciplinary environments, it is crucial to detect
faults early in a design phase. As different engineers concurrently develop a system,
it is often difficult to explain to other engineers the traces or counter-examples that
violate a property. To lower these efforts, and inspired by visual techniques to conduct
system analysis, we implemented a general and reusable bridge between formal be-
havioral models and industrial practice, that with the help of visualization techniques
can address shortcomings in system design.

The work presented here originates from a feasibility study where a sketch of the
system, a description of the controller’s behavior and a set of requirements imposed
on the behavior had been given. The analysis of the system has been carried out
prior to the development of the system. Therefore all involved engineering disciplines
should be able to understand the verification results on the initial designs. Hence, we
added a visualization layer for a perceptual dissemination of the verification results,
thereby contributing to a better understanding of the system’s behavior. By analyzing
the behavior prior to the actual development, valuable development resources have
been saved.

Moreover, a visual approach enables more easily the sharing of information be-
tween developers from different disciplines. The method can be applied in many
fields, because the mapping is flexible, relatively easy to deploy, and can be adjusted
to the needs of the analysis. To setup an animation, one requires CAD models and
formal models. CAD models are often present, since they are required for various
reasons. Creating a formal behavioral model requires resources. However it saves
expensive test time, because model-checking addresses difficult to detected behav-
ioral characteristics (e.g., race-conditions, rarely occurring deadlocks, etc...) that
would probably have been missed by conducting expensive tests. Once the kinematic
language is implemented, animations are generated without addressing additional
resources. This makes the method also suitable for demonstration purposes.

Worthwhile to mention is that the approach can be used with different kinematic
visualizers. The choice of a visualizer depends on the level of expertise of an en-
gineer, and the (dis)advantages of the visualizer. Moreover, the approach can also
be used to generate animations for other types of (generated) data. This includes
logs from actual system runs or simulations performed by other (formal) behavioral
specifications.



126 Chapter 6. Disseminating Verification Results



Part 11

Semantically Engineered
Models

127






Chapter

Formalizing a Behavioral
Language

7.1 Introduction

The second part of the thesis describes a generic transformation for models of a formal
language to a formalism suitable for verification purposes. The approach is explained
by four chapters. Since many languages are still informally defined, the first chap-
ter illustrates the formalization of an informal DSL. The second chapter presents the
transformation of the formal semantics into a formalism that facilitates automated
analysis. The third chapter demonstrates the applicability of the approach for a con-
crete formal language, namely the mCRL2 language. The fourth chapter reflects on
the modeling approach.

To cope with the complexity of control software, model-driven software engineer-
ing (MDSE) techniques have widely been adopted over the last decade. MDSE treats
models as first class entities and aims at a reduction in the lead-time and a decrease
in the development effort, while improving the system’s quality in comparison to the
more traditional software engineering techniques. Model specifications are commonly
created using domain specific languages (DSLs). DSLs are languages that are geared
to a well-defined class of problem domains or a particular set of domain aspects.
Therefore a DSL has a focused expressiveness as it is targeted towards the jargon
[Kle09] to address the problem domain or specific aspects. The second part of the
thesis concentrates on executable DSLs, which are used to describe system behavior.
These DSLs are mainly used to generate executable models or derive code from con-
crete domain models. In practice, this means that the semantics of a DSL is implicitly
and informally defined in the engine/interpreter that processes the concrete domain
models. Occasionally, the formal semantics is stated in a separate chapter, book or
document. For languages that are defined in this way, it is difficult to enable the au-

129



130 Chapter 7. Formalizing a Behavioral Language

tomated reasoning on the executed behavior. To effectively analyze particular models
in these languages, we require an explicit formal semantics, that can, in a processable
way, be transformed to a formalism, accommodated with sufficient tool support for
formal reasoning.

This chapter concentrates on the first step that is required before we deploy the
semantic bridge. It starts with the formalization of an existing, industrial DSL called
TRECS [Nie04], for which the execution semantics is defined informally and implic-
itly through an interpreter. The DSL supports the definition of predictive and reactive
rules to optimally allocate manufacturing activities (i.e., tasks) to mechatronic subsys-
tems (i.e., resources) over time while they are subjected to dynamic constraints. Since
its conception, the DSL has been tried in an industrial setting where UML-like activity
diagrams have been extended with non-disclosed reactive concepts, constraints and
run-time optimization rules.

The purpose of the formalization is to capture the intended semantics of the lan-
guage formally, and compare the result with the actual implemented behavior. We
show that formalizing a DSL is likely to uncover sub-optimal design decisions and
ambiguities. Thereby, we illustrate how to minimize the formalization impact while
retaining backward compatibility. During the formalization both the structure (and
relations) of the abstract notions and their behavioral effects are considered. We use
Structural Operational Semantics (SOS) [Plo04] to define the effect of language terms
from an operational perspective.

Although we formalized almost the entire industrial DSL, this chapter is limited to
only the disclosed parts, illustrated by making an Italian dessert: Tiramisu [Sax94].
The preparation of the dessert serves as the running example for this chapter. To focus
on relevant aspects, we first make the decisions behind the concrete syntax explicit by
projecting it onto an abstract syntax. The projection defines the operators and process
variables, which are used to define the formal semantics. The formal semantics is then
validated with domain experts and language engineers.

Chapter 7.2 describes the domain related abstract notations and introduces the
leading case study. Chapter 7.3 assigns the semantics to the abstract notions and
validates that the assigned formal semantics is correct. Chapter 7.4 discusses related
work and Chapter 7.5 presents our conclusions.

7.2 Formalizing Domain Notions

To illustrate and discuss all disclosed features of the DSL we consider a concrete model
that contains the cooking instructions for preparing Tiramisu. The details of the ex-
ample are provided in Chapter 7.2.1. Chapter 7.2.2 projects the example’s concrete
syntax onto a formal abstract syntax. Chapter 7.2.3 presents the derived formal ab-
stract notions and taxonomy, after which Chapter 7.2.4 validates that the projection is
sound. Chapter 7.2.5 describes the notions that are additionally required to preserve
the backward compatibility with the informal language.



7.2. Formalizing Domain Notions 131

A. Make Tiramisu

. add mascarpone - using a wooden spoon, beat 225 gram mascarpone cheese in a bowl until it is

B. Make Cream Topping

1.
. egg yolk mixture - meanwhile whisk 70 ml milk, 50 grams sugar, 35 grams flour and 6 egg yolks

. whisk milk & egg yolk - once the sweet milk has just come to a boil gradually whisk it into the

. enrich mixture - take the result from B.4 of the heat and strain into a large bowl. Whisk in

. cool down topping - place the bowl in the refrigerator and let it cool down for approximately

C. Make Layers
1.

2.

ingredient cream topping  coffee syrup  assembling
milk 500 ml

white sugar 150 gram 75 gram

flour 35 gram

egg yolks 6 pcs.

dark rum 60 ml 60 ml

vanilla extract 2 teasp.

mascarpone cheese 225 gram

ladyfingers 32 pcs.
espresso 360 ml

butter 60 gr

Make Cream Topping - see B
soft and smooth. Then gently whisk the mascarpone into the result from A.1 until the custard
mixture is smooth.

mix coffee syrup - in a large shallow bowl combine 360 ml espresso, 75 grams sugar and 60 ml
dark rum.

line loaf pan - before making layers, take a loaf pan and line it with plastic wrap and making
sure that the plastic wrap extends outside the loaf pan to allow wrapping.

Make Layers - see C

cool down cake - once all layers are made, cover the Tiramisu with plastic wrap and place it in
a refrigerator and have it cool for at least 6 hours.

present and serve - once the cake is cooled, remove the plastic wrap from the top and gently

invert the Tiramisu from the loaf pan to a serving plate. Remove remaining plastic wrap and
serve the dessert.

boil sweet milk - in a saucepan heat 430 ml milk and 100 grams sugar right up to the boiling
point.

in a heatproof bowl.

egg yolk mixture. Transfer this mixture into a large saucepan.
reduce mixture - next slowly cook the result from B.3 while stirring constantly until it comes

to a boil. Once it boils, continue to whisk the mixture constantly for another minute and let it
reduce a bit.

60 ml dark rum, 2 teaspoons vanilla extract, and 60 grams butter. Cover the bowl| with plastic
wrap to prevent crust-forming.

two hours.

8 fingers? - ensure that we have 8 ladyfingers to create a layer.

dip fingers - one ladyfinger at a time, dip 8 ladyfingers into the coffee syrup from step A.3 and
place them side by side in the loaf pan.

cover with cream - spoon 1/4 of the custard from A.2 and completely cover the 8 ladyfingers.

make Layers - repeat Make Layers until no more ladyfingers are left.




132 Chapter 7. Formalizing a Behavioral Language

7.2.1 Running Example

Tiramisu requires ingredients, kitchen utensils and appliances, a recipe and a way
of working as specified on Page 131. In the DSL, ingredients, kitchen utensils and
appliances are called “resources”. The recipe and its sub-recipes are called “subplans”.
The individual activities in a subplan are called “tasks”.

The DSL’s concrete syntax is inspired on activity diagrams, for which the Tiramisu
recipe is illustrated in Figure 7.1. Figure 7.1(d) shows the resource definition through
a hash-like table. An initialization is required to execute a concrete model. We assume
that Make Tiramisu is the initialization and is executed only once. Furthermore we
assume that all of the required resources are exactly those which are specified. If
we obey these rules, it results in an initialization of ingredients, kitchen utensils and
appliances as illustrated in Figure 7.1(e).

Make Layers

Make Tiramisu

Make Cream Topping

[true]

dip fingers

ss Ifalse]

egg yolk mixture

(Cskie ) (cover with cream)

whisk milk & egg yolk

line loaf pan

Make Layers

cool down cake

Eeduce mixture)—}(enrich mixture)

(a) Tiramisu subplan (b) Cream Topping subplan (c) Layers subplan
task consumes produces resource(s) init
add mascarpone | wooden spoon: 1pcs | wooden spoon: 1 pcs milk 480 ml
mascarpone: 225 gr | bowl: 1 pcs sugar 225 gr
cooled topping: 1 pcs | custard: 4 vol. wooden spoon 1pcs
bowl: 1 pcs refrigerator 1 pcs
(d) Resource usage (e) Resource initialization

Figure 7.1 Partial Tiramisu recipe in the DSL’s concrete syntax

7.2.2 Concrete Syntax Projection

Before we assign semantics to syntax, we first define the language’s syntactic notions.
We start by identifying and projecting the most elementary notions in terms of be-
havior to obtain a compositional formal syntax. If we cannot capture the intended
behavior by any of the already introduced notions, we either add or refine existing



7.2. Formalizing Domain Notions 133

notions. Note, that we choose a process algebra-like notation like [BBR09], for which
we reuse process algebraic operators where possible.

Task

A task is the smallest identifiable behavior in a system under control. In Figure 7.1(a),
add mascarpone and mix coffee syrup are tasks. The concrete syntax of a task is
denoted by a rounded rectangle (node) with a name label.

Decision 7.1: The execution of a labeled task is atomic and observable. 1

Decision 7.2: In some cases we do not want to observe behavior. An example is
shown in Figure 7.1(c) by a task labeled with the reserved word skip. This word
is represented by a process term 7, denoting an internal non-observable action. For
now, 7 denotes the finite set of all tasks including . a1

Precedence Relation

The order of the execution of tasks is restricted by precedence relations. The DSL
has two kinds of precedence relations. The first relation describes a finish-start prece-
dence relation (fs) that can be used to start behavior if and only if the preceding
behavior has terminated successfully. This is shown in Figure 7.1(a) as a transition
without a label between the tasks cool down cake and present and serve. Such a
transition informally denotes that the task present and serve may only be executed
after the task cool down cake has been successfully (and fully) completed.

The second precedence relation is the start-start precedence relation (ss). This
relation starts behavior if and only if the preceding behavior has started its execution.
In Figure 7.1(b) such a relation is depicted as a directed edge with label ss between
boil sweet milk and egg yolk mixture. Informally, such a transition denotes that the
task egg yolk mixture can be started once task boil sweet milk is started, but has not
necessarily been fully completed.

Decision 7.3: For both relations we introduce a dedicated operator. Let p and g be
process terms. Then the finish-start relation in the abstract syntax is expressed by the
finish-start operator - as:

p-q
The start-start relation in the abstract syntax is expressed by the start-start operator
I as:

pllq

-

Decision 7.4: This decision extends Decision 7.1 where all tasks are considered atomic.
Atomicity implies that if p would be a single task t, we could not distinguish the be-
havior of the ||| operator from that of the - operator. To make this observable, we
introduce for all labeled tasks except 7, an explicit start and finish action. Let 7, be a



134 Chapter 7. Formalizing a Behavioral Language

finite set of elements called starting tasks, i.e., the alphabet of starting tasks. Let 7,
be a finite set of elements called finishing tasks, i.e., the alphabet of finishing tasks.
We refine the labeled tasks such that t, € 7, and t,, € 7,, denote the start and the fin-
ish of task t respectively. For now, we assume that every action t, that is performed,
t., will always eventually follow (Chapter 7.3.2, Decision 7.18). From this point for-
ward, we refer to the execution of action t, followed by action t,, as the execution of
the (labeled) task t. We denote 7 =7T,U T, U {7}, where t & T, UT,,. a4

Choice

Behavior can be conditionally executed, as shown in Figure 7.1(c) where the choice
8 fingers? tests if we have sufficient ladyfingers. The outcome of a choice is based
on the evaluation of a data expression. These data expressions may consist of values,
variables and functions. The concrete syntax of a choice consists of a split diamond
that is closed by a merge diamond. The alternative conditional behavior (branch) is
specified in between the split and the merge diamond. Therefore every branch in the
choice is syntactically finite. A branch is selected according to the outcome of the
evaluating function. Every outcome corresponds to one annotated label of an edge,
specified in between squared brackets. The precedence relation for the split diamond
is denoted on the incoming edge and holds for all the outgoing edges. The precedence
relation for the merge diamond is denoted on the outgoing edge and holds for all the
incoming edges.

Decision 7.5: We map a branch i to its corresponding process term p;, and define an
operator across branches. We assume a decision function d that maps every eval-
uation to exactly one branch in the process term. According to this description we

obtain:
\/d<p1:~">pn>

J

Decision 7.6: The choice operator acts on the state of a system. This means that
we require a mechanism to store the actual state. Let A denote the set of all values
and let V denote the set of all variables. Then ¥ =)V — A denotes the set of all
variable valuations. A variable valuation is a total function that captures the values
of the variables. Now, o € Y. denotes a variable valuation where o is the state vector
that stores the variable valuation observed by the system’s behavior. The signature
of the evaluated decision function is specified as d : & — N, where every valuation
corresponds to exactly one alternative process term. J

Concurrent Execution

To maximize the output of a system under control, one ideally likes to execute tasks
concurrently. Execution can be forked and joined using multiple incoming/outgoing
precedence relations, possibly having different precedence relations. Forking con-
current behavior (i.e., the start of the concurrent execution) is depicted by the two



7.2. Formalizing Domain Notions 135

outgoing transitions of the task boil sweet milk in Figure 7.1(b). Joining concurrent
behavior (i.e., the end of the concurrent execution) is depicted by the two incoming
transitions for the task whisk milk & egg yolk in Figure 7.1(b). Note that a join may
be depicted in such a way that the concurrent behaves originates from two (or more)
different forks. Likewise, a fork may be depicted in such a way that the concurrent
behavior ends in two different joins.

Decision 7.7: We cannot assume that concurrent behavior is started by one fork, and
is ended by another (single) join. Hence we duplicate the labeled tasks and force
the synchronization in such a way that it corresponds to the concurrent execution
described by the structure of the forks and joins. Let p and q be process terms and let
1| be the synchronized execution operator. So, we specify the synchronized execution
as:

pllq

Informally, this term states that for the task labels that occur in both the terms p and
q, we force their synchronized execution. For labeled tasks that occur in either the
term p or the term q we allow the interleaved execution as long as the precedence
relations are respected. If we want to specify a forking task then we specify it as
the first task in both the term p and q. If we want to specify a joining task then we
specify it as the last task in both the term p and q. Tasks that need to be performed
concurrently, need to be specified between the fork and join task and may only appear
at one side of the operator. The use of this operator and the formal syntax is clarified
in Figure 7.2 (Chapter 7.2.4). 2

Decision 7.8: This decision extends Decision 7.4 where start and finish actions are
implicitly considered to be unique. Since task labels are now duplicated to capture
the forking and joining of behavior, it is possible that these labels become indistin-
guishable. For example, when two tasks carry the same label and appear on both
sides of the operator, but should be executed interleaved, they are now synchronized.
To resolve this, we refine the definition for a labeled task t by extending it with a
unique identifier i € N such that t, becomes té and t,, becomes ti). While diagrams
are syntactically finite, the set of unique labels that need to be assigned can also be
chosen finite. J

Composition

A subplan combines a set of tasks into a named group, thereby enabling the reuse and
nesting of behavior. It is represented by a square labeled box that contains behavior in
the form of labeled tasks. In Figure 7.1, Make Tiramisu, Make Cream Topping and
Make Layers are subplans. Subplans may refer to other subplans (including itself). A
reference is represented by a smaller square labeled box that does not contain tasks.

Decision 7.9: We introduce process equations to facilitate composition. Let S denote
the set of subplan labels, disjoint from the set of task labels, i.e., SN T = 0. Further-
more, we require that in every subplan all of the subplan references are unique. This



136 Chapter 7. Formalizing a Behavioral Language

assumption guarantees that all tasks can be uniquely identified. Let A€ S describe
the behavior for process term p by the equation

A=p

In the equation provided above, the process term p denotes the modeled implemen-
tation of subplan A. J

Decision 7.10: This decision extends Decision 7.8, because process equations may
refer inside a subplan to another subplan, therefore making the tasks potentially in-
distinguishable. To illustrate the uniquification of tasks, consider a single task label
that is used and instantiated in two different subplans. We assume P : List(S) to be
a list of subplan labels at which actions tfx and ti) are extended such that during
execution we observe t-* and t"F.

If we consider the left-hand side of the equation as the parent node and the element
on the right as its child, we infer a tree-like structure on subplans. Every node in the
tree stores the label of a subplan reference. If a node has children, we know that
every directly attached child is uniquely labeled, because we assume that all subplan
references inside a subplan are unique. Now, if we construct a path of from a leave
node to the root, we know that this path is unique. Since this path instantiates P, we
know that all tasks can be uniquely identified by a path.

Note that P only appears during execution, because it is computed during the exe-
cution. So if we write a specification, we omit the writing of P. J

Decision 7.11: To mark the initial process we introduce a special keyword init that
marks the initial process term p. We assume that every specification has exactly one
initialization, which is expressed by

init p

Resource

A task consumes a set of resource labels when it starts its execution and produces a
set of resource labels when it finishes. Both sets can be empty. All tasks with the same
label are of the same (proto)type: they produce and consume the exact same amount
of each resource label. In the DSL, these definitions are stored separately as shown
for task add mascarpone in Table 7.1(d). Note that some resource labels (such as
wooden spoon) are used by consuming them at the start and returning them at the
end of a task.

Decision 7.12: We assume that a task claims all required resources during its entire
execution. So, an early resource release is not considered. Let R denote the finite
set of resource labels. Now, the function R, : 7, — (R — N) denotes the (possibly
empty) set of resources that are required to start the execution of a task. Similarly,



7.2. Formalizing Domain Notions 137

the function Ry : 7, = (R — N) denotes the (possibly empty) set of resources that
are produced when the execution of a task finishes. The amount of resources that
are available is denoted by the function R, : R — N. The resource usage is encoded
in the state vector as the reserved variable R, in o, whereas R, and R are globally
given. 4

7.2.3 Derived Formal Syntax, Taxonomy and Static Semantics

Next we provide in Table 7.1 a summary of the derived formal syntax and taxonomy
for the DSL. Here, pjegacy a0 Psemantics denote placeholders terms for the additional
syntax that are required to describe the legacy language construct (Chapter 7.2.5) and
assign the semantics (Chapter 7.3.3), respectively. The descending binding strength
of operators is defined as:

[T 13 HJ_” wl]» « 2
> > > d

Of these operators “ ||| 7,“||” and “-” associate to the right. Priorities can be overruled
by using the parentheses “(” and “)”.

process term operator name variable description
pi= T skip
t[‘;P start of a task t i:N finite identifier

P : List(S) | list of process
definition labels
P finish of a task t i:N finite identifier
P: List(S) list of process
definition labels

p-p sequential composition

pllp preemptive sequential composition

V4 (p1,---,pn) | conditional choice d:X—>N | decision function
n:N finite branch number

pllp synchronized parallel composition

A=p process definition AeS

Dlegacy grammar for legacy language constructs

Dsemantics grammar for defining semantics

init p the initial executed process term

Table 7.1 Formal abstract syntax and taxonomy for the DSL

The static semantics of the DSL is described in Table 7.2. Here, we introduce a
set of variables V and a set of values A, by which we can construct the set of all
possible valuations ¥. The resource management is represented by the state vector
o : 2. Resources are claimed and released by tasks. Hence we introduce 7, and
T, that respectively denote the collection of task starts and task finishes. The entire
collection of tasks, including the internal action, is denoted by 7. To map the available
resources, the required resources and the produced resources per task, we specify R,,
R, and Rp, respectively. To specify subplan references, we introduce the set of process
labels S.



138 Chapter 7. Formalizing a Behavioral Language

symbol description
v set of all variables
A set of all values
=V —-A set of all variable valuations
o:z state vector
Ta finite set of task starts
Te finite set of task finishes
T finite set of tasks, where T, U7, ,U{r}and v &€ T, U T,
Ry,:R—N argument of o; denoting the available quantity per resources
Rq: Ty —(R—N) denoting the required resources to start the execution of a task
Rp:T,— (R —N) | denoting the produced resources at the finish of a task
S finite set of process labels where SN7T =0

Table 7.2 Static semantics for the DSL

7.2.4 Validation of the Formal Syntax

At this point, domain experts and language engineers are involved to mature the
formal abstract syntax. So we first transform the concrete syntax into the formal
abstract syntax, where after we sat down with the involved experts and engineers to
validate the derived syntax and discussed the intended semantics.

For illustrative purposes we reconsider the subplans from Figure 7.1 and write them
in the formal abstract syntax as shown in Figure 7.2. To obtain the specification all
nodes are transformed to start tasks. Since every task label occurs only once, we omit
(for presentation purposes) their identifiers. All finish—start precedence relations are
specified by the - operator. All start—start precedence relations are specified by the |||
operator. The choice operator is replaced by the \/ having an arity of two, because
the choice depicts two alternatives. Furthermore we specify three equations and an
initialization. The equations specify the behaviors for the different subplans. The
initialization denotes the subplan that is executed first. The concurrent behavior is
specified with the help of the synchronized operator ||. Here the forking and joining
of tasks are duplicated in the way described in Decision 7.7.

To validate the completeness and the soundness of the syntactic notions, we com-
pared the notions with the intended behavior by composing them into different terms
and showed the resulting behavior using a prototype implementation of the semantic
engineering bridge (Chapter 8). Using this approach, we detected five ambiguities.
Since the language is provided under a non-disclosure agreement, we are allowed to
only illustrate two of them. The remaining ambiguities concern non-disclosed parts in
the language. To show the ambiguities we reuse the Tiramisu example and moderate
some part for illustration purposes.

The first ambiguity is illustrated by Figure 7.1(b). Here we moderate a part of
the Tiramisu example by replacing the sequential composition between reduce mix-
ture (B.4) and enrich mixture (B.5) with a preemptive sequential composition. We
keep the sequential composition between B.5 and Cool down topping (B.6) such
that we get B.4 ||| (B.5- B.6). The result is shown in Figure 7.3(a). Next, we define
E=B.4 ||| B.5 as illustrated in Figure 7.3(b). Based on a syntactic replacement on
the concrete syntax level, domain experts expect from both Figure 7.3(a) and Fig-
ure 7.3(b) that B.6, can occur before B.4,,. However in Figure 7.3(b), the DSL’s



7.2. Formalizing Domain Notions 139

Make Tiramisu = ((Make Cream Topping || line loaf pan, - Make Layers) ||
(Make Cream Topping - add mascarpone, - Make Layers) ||
(Make Cream Topping |l mix coffee syrup, - Make Layers)) -
cool down cake, - present and serve,

Make Cream Topping = ((boil sweet milk, ||| egg yolk mixture, -
whisk milk & egg yolk,) || (boil sweet milk, -
whisk milk & egg yolk,)) - reduce mixture, -
enrich mixture, - cool down topping,

Make Layers =\/g ¢ oerer{ 7, dip fingers, - cover with cream, - Make layers )

init Make Tiramisu
Figure 7.2 Subplans and their initialization in the DSL’s formal syntax

(legacy) implementation performs a mathematical substitution such that brackets are
placed around E. This changes the dynamic behavior, since E needs to successfully
terminate completely before B.6, is performed, i.e., the legacy behavior is described
by (B.4 ]l B.5)-B.6.

Decision 7.13: Changing the execution semantics of existing operators adversely ef-
fects the behavior on the validated and implemented concrete legacy models. To
preserve the backward compatibility for concrete models of the informal DSL, a new
“all finish-start" precedence relation is added. We use a directed edge annotated with
an fs” label. This precedence relation can only be used in conjunction with a subplan
reference. Let p be a reference and q be any process term then the all finish-start

behavior is described by (p) - q. 4
E
(B4 ¥ 85 ¥ Bs ) O»(_ss )?b( s >@>(es )
(@ (b)
E
e > (s p(es ) O»(Cea I >(os @ »(es )
(©) @

Figure 7.3 Ambiguity on finish—start and start—start relations

The second ambiguity considers a similar fragment, namely B.4 - B.5 ||| B.6 which
is shown in Figure 7.3(c). Here, domain experts expect that B.4,, is followed by B.5,,



140 Chapter 7. Formalizing a Behavioral Language

and B.5,, is followed by either B.5,, or B.6,. Now, we define E = B.4 - B.5 and write
E [ll B.6 as shown in Figure 7.3(d). By considering a syntactic replacement, we expect
that B.6, occurs no earlier than after performing B.5,. Domain engineers however
expected that B.6, can occur after performing B.4,. Engineers consider a composite
term is ‘in progress’ as soon as some start action is observed and not when all start
actions have been observed.

Decision 7.14: To preserve the backward compatibility for concrete models written
in the informal DSL, a new “any start-start" precedence relation is added. We use a
directed edge annotated with an ss$ label. This precedence relation can only be used
in conjunction with subplan references. Let p be a reference and g be any process
term then the any start-start behavior is expressed by

pllq

7.2.5 Formal Syntax for Legacy Constructs

Based on Decision 7.13 and Decision 7.14 we instantiate placeholder term pjeg,c, With
its corresponding grammar. Because only Decision 7.13 adds a new operator, the
grammar is extend by the || operator. The other decision is covered by previously
defined constructs, i.e., placing parentheses.

process term | operator name [ variable | description
= pllp [ left merge composition | [

Dsemantics

Table 7.3 Formal abstract syntax for expressing the DSL’s legacy language
constructs

Adding the || operator affects the binding strength of the operators. Hence, we
redefine the precedence rules:

[T 13 |-|_77 « |-”_» W] « ”
> > > > d

Of these operators “ || “,“ ||| ”,“l]l” and “-” associate to the right. Priorities can be
overruled by using parentheses “(” and “)”.

7.3 Formalizing Dynamic Semantics

We use SOS to assign dynamic operational semantics to the DSL’s process terms (ab-
stract notions). SOS associates a labeled transition system to terms, where action tran-
sitions describe the discrete event behavior. While SOS has already been explained in
Chapter 2.1, we here only explain the semantic notions and assign semantics to the
individual DSL’s abstract notions.



7.3. Formalizing Dynamic Semantics 141

7.3.1 Semantic Preliminaries
Process

A process is a tuple (p, o), where p denotes a process term for an element of an
activity diagram, and o € % denotes a variable valuation.

Transition

A transition describes a state change between two processes, thereby observing a
possible action that is represented by a label.

Decision 7.15: The displayed information is limited to the executed task and its as-
sociated resources during the transition. Hence, a label consists of two elements: (i)
the label of the executed task and (ii) the associated set of resources. A transition
dictates either continuative behavior or successful termination. a1

Continuative Action Transitions : — C(PxX)x (X x(R—N))x (P x %),
where X is (i) 7 when an internal action is performed, or (ii) 7 x N x £(S) when the
start of a task is performed. The intuition of an action transition (p, o) il (p’,o")
is that the process (p, o) performs a discrete action (t,R), thereby transforms into
the process (p’,0’). ¢’ denotes the corresponding valuation of the process p’ after
performing the transition t, associating the set of resources R.

Terminating Action Transitions : — (v, JS(PxZ)x (X x(R—=N))x(Px %),
where X is the same as for the continuative action transitions. The intuition of a

. . . t,R . .
termination transition (p, o) —— (v, ¢’} is that the process (p, o) transforms into
the process (v, ¢’), by performing the discrete action (t,R). Here v denotes the
successful terminated process.

7.3.2 Operational Semantics

Skip

The internal action 7 is defined in Table 7.4 as deduction rule (skip). A T action is an
internal action that cannot be observed nor claim resources.

Decision 7.16: T does not change the state vector o, because is does not specify an
update to o. Hence, @ represents the no resource claim V. {R(r) = 0}, where it uses
the auxiliary function R that maps all resource labels to zero. a1

Start of a Task

The start of a task is defined in Table 7.4 as deduction rule (start-task). tgp is the
action that starts task t. To perform t;P , all of the required resources R,(t,) need to
be available.



142 Chapter 7. Formalizing a Behavioral Language
(skip) ————5——
(tr,0) —(V,0)
(start-task) o(Ry) = RQ(ta)
. P Ro(ty) | .
(tP o) “ 25" (¢2P, 0 [Ry = 0(Ry) — Ro(ty)])
(finish-task) R
(thP o) *—=""(V,0[Ry — o(Ry) +Rp(t,,)])
B, v B, v,o’
(p’o>_p)< p/ ;OJ> (p:o-)_p)< p/ O_/ >
(FS) (ss1) —
a0 ( 1 o pllgo) 22 27
p'-q p'llg,o
.0y 22 (v, <q,o>&”< v o> .0") 25 (v 0
(SS2) 1

Bp! p "
(plllg,0o) <p|qu”a >

(p,o) e, < V.o >

p',o’
(S8S$) i 0.0
(puq’o'>—><p/J0|_q’o_/ >

B.p N
(Pd(a),U) - < ' ,0/>

Vo 2 3, )

((9) d(o) e[1,n]

(p Jsyne(p) Nsyne(q) L, o) 25 < v ,o’>

(spc) P 7 /
(pllg,0) —( .0
p
B, v oo,
<p;0'> _p) < p/ , O >
(pe) A=peS

BIP/p], v
(A9O-) —P> P< p/[PqA/P] ’OJ>

Table 7.4 Deduction rules for the DSL’s basic operators



7.3. Formalizing Dynamic Semantics 143

Decision 7.17: The resource availability is expressed by the premise (O'(RA) > RQ(ta)) .
As all functions are total, we assume a point-wise evaluation. If tff is performed, we
observe tgp € 7T, where i is the unique identifier and P is the position in the subplan
hierarchy, thereby claiming resources Ry (t,). 4

Decision 7.18: To ensure that ti;P follows after tgp , we rewrite the term to the fin-
ish of the task. The number of claimed resources are subtracted from the available
resources. This is reflected by o [Ry — 0 (Rs) —Rq(t,)]. 1

Finish of a Task

The finish of a task is defined in Table 7.4 as deduction rule (finish-task). ti’)P is the
action that finishes the task t.

Decision 7.19: Any release of the claimed (produced) resources is added to the set
of available resources, reflected by o[R, — 0(R4) + Rp(t,,)]. The set of premises
is empty, so the finish of a task is performed unconditionally. We observe ti;P and
Ryp(t,) on the transition and rewrite ti’)P to v’ such that the tasks indicate successful
termination. a4

Sequential Composition
In Table 7.4, deduction rule (FS) defines the sequential composition.

Decision 7.20: We follow the standard semantics given in literature, in e.g., [GMRT06].
Here, p - q behaves as q, if p successfully terminates after performing action (3, p),
i.e., the upper case of in Table 7.4 as deduction rule (FS). If p, by performing action
(B, p) becomes p’, then the process p - g behaves as p’ - q, i.e., the lower case of in
Table 7.4 as deduction rule (FS). a

Preemptive Sequential composition

The preemptive sequential composition is defined in Table 7.4 as deduction rule (SS1)
and as deduction rule (SS2). Here, we want a right term of the operator to perform
actions iff a left term can successfully terminate.

Decision 7.21: Deduction rule (SS1) defines the behavior when the term p performs
a transition. Whenever p successfully terminates, then the process continues as q.
If p continues as p’, the term continues as p’ ||| q. Informally, deduction rule (SS2)
expresses that g can perform an action, iff p can terminate but does not perform the
action yet. p ||| q states that q performs action (8, p) such that p stays allowed to
successfully terminate by performing action (8, p). To ensure continuation of p after

the action taken by g in deduction rule (SS2), the premise (p,c"”) b, (V,0™") is
added. a



144 Chapter 7. Formalizing a Behavioral Language

Left Merge Composition

In Table 7.4, deduction rule (SS$) defines the left merge composition. The process
on the left of the operator has to perform an action first, after which the remaining
process behaves concurrently. Note that the concurrency used here is less restrictive,
in terms of concurrency, than the || operator.

Decision 7.22: The upper case of deduction rule (SS$) expresses that if p successfully
terminates in p || g the process behaves as g (no remainder of p can interleave). If p
continues as p’, the lower case of deduction rule (SS$) expresses that the remaining
process behaves as p’ |@| q. To allow reuse, we introduce p’|@|q, which takes the
tasks that need to synchronize as a parameter. When no tasks need to synchronize
the parameter is set to (). A detailed explanation for this auxiliary operator is given in
Chapter 7.3.3. a

Conditional Choice

The conditional choice selects a process term according to the outcome of an evalua-
tion function as defined in Table 7.4 as deduction rule (C).

Decision 7.23: Letd : ¥ — N be a surjective function that, provided a state vector o,
returns a value within the domain of the enumeration (which is a subset of N). The
outcome of d(o) is forced to be in range by the function. 4

Synchronized Parallel Composition

The semantics for the synchronized parallel composition is given in Table 7.4 as de-
duction rule (spc). If the behavior occurs on both sides of the operator and all of the
actions are enabled, then the execution is synchronized. If the behavior occurs on
only one side, it executes without any synchronization.

Decision 7.24: As terms are rewritten on both sides of the operator, the set of syn-
chronizing actions must be calculated prior to executing any action. The set needs to
be preserved until the synchronized parallel composition successfully terminates. For
this we use an auxiliary concurrency operator, that is the same operator as the pre-
emptive sequential operator, though instantiated differently. The concurrent execu-
tion operator initiates the auxiliary concurrency operator p | C | q, where it computes
C C T x N x List(S), being the set of synchronizing actions that occur in both p and

q. a4

Decision 7.25: To compute C, we introduce function sync that computes the intersec-
tion of transition labels that both occur in p and g by sync(p) Nsync(q). We interpret
a transition label § = t;’P as the triple (t,,i,P) € T x N x List(S). The sync function



7.3. Formalizing Dynamic Semantics 145

is defined as

sync(t) = 0

syne(t;") = {(te,1, P} Usync(ty))

sync(t-P) = {(t,,1,P)}

sync(p - q) = sync(p) Usync(q)

eV (prsopa)) = Usyne(py) o
i=1

sync(p |l q) = sync(p) Usync(q)

sync(p L q) = sync(p) Usync(q)

sync(pllq) = sync(p) Usync(q)

sync(A) = sync(p’) where A=p € S and p’ is obtained by

substituting all labels P by P <Ain p

Process Definitions

In Table 7.4, deduction rule (pe) states the semantics for a process definition. For
each task in a process, we generate a unique identifier by taking the list of identifier
equations (the scope in which an action is executed) and combine it with the task’s
identifier. The generation of such an identifier is determined during execution by
substituting the hierarchical levels in tasks.

Decision 7.26: The substitution is performed by taking the current hierarchical level
P and append the identifier's equation P <« A. The result is then assigned to the
action and the remaining process term. To illustrate, we evaluate term D = a' at
the hierarchy level ¢, which claims no resources. If we perform the substitution we
observe the transition a>[°“P1 @ during the execution. a

7.3.3 Auxiliary Operational Semantics

This subsection describes the operational semantic for the syntactic notations that
have been introduced while assigning the semantics to the abstract syntax. As these
notions could not be captured by the already defined semantics, the auxiliary opera-
tional semantics extends the semantics for the abstract syntax. The syntax is extended
by the syntactic notions, which are displayed in Table 7.5.

process term operator name variable | description
Dsemantics ::= PJCLp | concurrent execution C set of actions
Clp encapsulation operator c set of actions

Table 7.5 Definition for the DSL’s process term Pgemantics



146 Chapter 7. Formalizing a Behavioral Language

Decision 7.27: We extend Decision 7.25 by adding the following two equations to the
synchronization function. These functions are used in the operational semantics of
the auxiliary operators.

sync(C | p) = CuUsync(p)

syne(p]Clg) = CUsync(p)Usyne(q) 2

Concurrent Execution

The concurrent execution p | C | q only synchronizes behavior, if an action 8 occurs in
C and both p and g have the action enabled. Otherwise, if 8 does not occur in C,
enabled actions from both p and q are performed without synchronization.

If we consider the action 8 ¢ C and p or g having action 3 enabled, then in Ta-
ble 7.5 deduction rule (spe5) and deduction rule (spe6) define that if either p or g
successfully terminate in p | C | q, they respectively continue as C|p or C|q. In Ta-
ble 7.5, deduction rule (spe7) and deduction rule (spe8) define that if either p or q
continue as p’ or ¢’ in p | C| q, they respectively continue as p’|C|qor p]C|q’.

If action 8 € C, then in Table 7.5 deduction rule (spel) states that if p and g can
perform the action 8, and both end up in a terminating state, then p | C | q ends up
in a terminating state after executing 3. In Table 7.5, deduction rule (spe2) and
deduction rule (spe3) state that if either p or g ends up in a terminating state and
both processes perform an action f3, they continue as a right synchronized execution
Clp’ or C|q’, respectively. In Table 7.5, deduction rule (spe4) states that if p and q
both have action 5 enabled and continue as p’ and q’, p | C | ¢ continues as p’ | C | q'.
In all cases C remains constant.

Decision 7.28: Deduction rules (spe2) and (spe3) dictate encapsulation (| ), which is
undefined within the current semantics. Therefore we introduce an auxiliary operator,
for which we assign semantics. a

Encapsulation Operator

The encapsulation operator C | p, prohibits the execution of all actions that occur in C.
The semantics is provided in Table 7.5 as deduction rule (encap), where the successful
termination of C | p is denoted in the upper case, and the continuation of C | p as C | p’
in the lower case.

7.3.4 Validation of the Formal Semantics

To validate the assigned semantics, we have used the framework that is presented
in Chapter 8. With the help of this framework, we could automatically generate
state spaces for the DSL’s models, using the above stated syntax, the corresponding
semantics and the mCRL2 toolset [GMR"06]. The generated state spaces have been



7.4. Related Work

147

Bec,(p.o) 25 (v, 0", (q,0) L5 (v, o)
(pIClgo) B (v, 0"

(spel)

Bec, (p,o) L5 (o, 0"),iq,0) L5 (v, o)
(plclg,o) L5 (CcLp, o)

(spe2)

Bec,(p,o) 25 (v 0", (q,0) L5 (¢, o)
(plCla.o) 25 (clq, 0"

(spe3)

B.p B.p
/5 € C’ <P’ U) - (p/a OJ); (q:0> - <q/’ OJ)

(pIClg,0) L5 (' clq, o)
B.p

B.p , B )
(spes) PEC (P, 0) — (. 0) (spesy LEC:(20) = (/,0)

(plClg,o) 25 (Clq, o) (plClg,0) 25 (CLp, o)

(spe4)

BeC,(p,o) 25 (', o) BéC,(g0) 5 (¢, 0")

(spe7) Bp (spe8) 5o
(plClg,0) —(p’IClq,0") (plClq,o) —(plClq’,0")

<p,o>’l’< Yo'} BeC

(encap)
B.p v ,
clp.0) 2 (L )

Table 7.6 Deduction rules for the DSL’s auxiliary operators

visualized and validated by observing the possible execution scenarios. With the help
of the framework, we were also able to point out the differences between the behavior
executed by the models depicted in Figure 7.3(a) and Figure 7.3(b). The concrete
state spaces for this example are visualized in Figure 7.4(a) and Figure 7.4(b)*. The
entire state space for the Tiramisu example can be generated and be visualized in a

similar fashion.

7.4 Related Work

The formalized DSL is inspired on the UML [RJB04] modeling format. As such, the
formalization of UML Statechart Models [DMY02, JS04], UML State Machines [Kus01,
PL99], UML Sequence Diagrams [Are02], and UML Activity Diagrams [BCROO] can

*The superscript notations have been removed for presentation purposes.



148 Chapter 7. Formalizing a Behavioral Language

(a) Intended behavior (b) Observed behavior

Figure 7.4 Generated LTSs for a discovered disambiguation

be considered as starting points. Here, design constraints are captured by the Ob-
ject Constraint Language (OCL) [CWO02]. As DSLs add domain specific notions, the
usability of these existing formal definitions are significantly reduced depending on
the complexity and nature of the changes. In our case, the non-disclosed changes
are quite extensive and include scheduling, dispatching logic, exception handling and
more. When considering TRECS as a separate language, rather than one special-
ized from UML, we find many frameworks and methods that transform DSLs and/or
their concrete models in such a way that formal syntax and semantics is assigned
[MWWO04].

The framework of [EWO05] restricts the modeling languages in a way that only
descriptions of possible domain configurations are mapped. Firstly, domain (onto-
logical) semantics is assigned to language constructs. Secondly, the ontological as-
sumptions are identified by administering the elements of the domain and their rela-
tionships. Thirdly, the ontological assumptions are transferred and become the rules
that restrict the use of the language constructs and limit the statements to the specific
domain. Finally, they construct the meta-model from these rules.

A similar approach is taken by [JS09] where the meta-model is formalized bottom-
up. They start from a simple core that defines the syntax for a class of DSLs. Next,
a relating class, i.e., transformation, is defined to relate syntactic elements of one
domain with elements of another. Then, a special element is introduced that gener-
ates all the domains for a particular class, i.e., the meta-model. Finally, formal Horn
logic [Hor51] is added to preserve and formulate various properties over the different
domains using the FORMULA [JS08] theorem prover. In the work of [EWO05, JS09],
a meta-model is created that describes the constructs that specify the commonalities
and/or differences between DSLs. Meta-models are expressed using OCL and class
diagrams that define relationships [CCR08]. Our route is similar, since we take basic
notions and create a syntactical meta-model for them. Rather than constraining class
diagrams, we provide an actual model of computation through SOS. This allows us to
specify the behavior mathematically for each syntax element in isolation and provide
a compositional language.

The work of [CCGT09] shows a pragmatic and instrumented approach towards
providing operational semantics for DSLs. They sketch how the semantics in an



7.5. Conclusions 149

axiomatic, operational, or denotational (translational) manner, based on the DSL’s
assigned taxonomy. Based on the selected adequate target language, a mapping is
provided that preserves the semantic relation. Our approach is similar but we use
operational semantics instead. Operational semantics is preferred when considering
the semantics of complex, composed language terms. In [Wol09] operational seman-
tics in the MDSE are explored for a small academic language. Since we demonstrate
feasibility of the operational approach for a large, industrial language, other aspects
(like backward compatibility) need to be considered. Our work supersedes this scope
and complements both approaches.

Work of [AvdBE11] shows yet another approach. The authors prototype the se-
mantics of a DSL, called SLCO [ABE10]. With the help of the ASF+SDF Meta-
Environment [BvDH'01], SLCO models are transformed into an LTS. In work of
[AvdBEV12], the authors again take the SCLO language and transform it to an LTS.
However they now provide the transformation in the MOF [ISO05] and EMF [BBMO03]
framework. These approaches can be considered as alternative options.

Finally, in [DRJKt06, SW09] different approaches are taken to assign dynamic
semantics to DSLs in the context of MDSE. Here, dynamics are assigned through
Abstract State Machines (ASMs) [B6r98], with extensions to Prolog [Wie03] and
Scheme [IEE91]. As the underlying semantics of ASMs is formally defined through
SOS [Ton98], we demonstrate that intermediate semantic definitions may be omitted.

7.5 Conclusions

This chapter illustrates a structured approach to formalize the (dynamic) semantics
of an industrial DSL using SOS.

We start from an existing DSL with an informal and an implicit semantics. We first
identify the concrete notions for the concrete models. This results in a structuring of
the concrete syntax. Furthermore, it facilitates the generalization of concrete syntax
elements and syntax variation points. These observations enable multiple concrete
syntax projections in the near future.

Once identified, concrete notions are then projected onto abstract notions where
the concrete syntax is mimicked as closely as possible. By starting with the most ele-
mentary notions, we try to reuse abstract notations where possible. If the reuse is not
possible we try to refine existing abstract notions. We introduce new abstract notions
when refinement is not possible. This approach helps in creating a compositional lan-
guage. However, it also results in (many) orthogonal annotations, such as the start for
a task, process scopes, and task identifiers. These annotations are required to obtain
observable and uniquely distinguishable actions in the formal semantics.

The formal (dynamic) semantics for the abstract notions are captured by SOS de-
duction rules. Because SOS is a compositional formalism, it facilitates an incremental
approach where the behavior of simple notions are composed into a more complex
and compound behavior. As the semantics is subjected to numerous design decisions,
we had to introduce auxiliary operators to exactly capture the semantics. The formal-



150 Chapter 7. Formalizing a Behavioral Language

ization has led to the formalization of over thirty abstract notions, roughly covering
75% of the DSL.

The semantics has been assigned in consultation with engineers. By displaying the
exhibited formal execution and comparing the execution to the engineer’s intended
behavior and the performed execution by the implemented interpreter, we identified
five semantic gaps for which two of them are discussed and addressed in this chapter.
To close the cognitive gap between the intended and the implemented semantics, we
needed to introduce additional complementary operators.

In the formal semantics, “available resources” (R,) could replace the state vector
(o), since all evaluations on the examples are performed for R,. We decided to
explicitly define o since the full DSL contains other constructs that also manipulate
o and influence the decision taking process. Moreover, we choose to define resource
claims using total mappings (visible on the transition label). This implies that all
resource labels need to be known in advance. Finally, we want to emphasize that
the DSL allows to fork and join concurrency in an almost arbitrary manner. In turn,
this implied a significant refinement on the notions to obtain unique task labels and
ensure correct synchronization.

After the formalization, the suggested operators to resolve the ambiguities have
been manually implemented in the DSL’s interpreter. For each use of a legacy oper-
ator, domain experts now have to decide to either retain the legacy operator or to
switch to the new operator based on the disambiguated semantics. This approach
provides backward compatibility with the (execution behavior) of the informal lan-
guage. Note that the use of complementary operators reduced the regression and
qualification impact significantly while phasing out ambiguous behavior.



Chapter

Defining a Semantic Bridge

8.1 Introduction

Structural Operational Semantics (SOS) [Plo04] assigns semantics to syntax with the
help of deduction rules that describe the allowed set of actions that belong to a partic-
ular process. Although the notation is practical for describing the language’s behavior,
it is unpractical for verification purposes. That is, there are hardly any suitable auto-
mated transformation techniques that allow the transformation of SOS specifications
(along with a syntactical instance) to models that facilitate forms of verification.

This chapter formulates a systematic approach that closes the gap by transforming
the signature of the syntax, the SOS’ deduction rules, and a language specific model
into a symbolic representation of a labeled transition system, called a Linear Process
Specification (LPS) [BBG97, Fok07]. The LPS can be subjected to formal analysis,
e.g., simulation, explicit labeled transition system generation, and verification. The
transformation that is described in this chapter is restricted to deduction rules that
are in the De Simone-format [dS85].

The LPS is chosen as the target formalism, because it (i) has a mathematical rep-
resentation that can capture the SOS’ deduction rules and (ii) can be directly imple-
mented in the mCRL2 language [GMR" 06, Sofb]. In fact, the LPS serves as a back-
bone for the representation and manipulation of behavioral models in the mCRL2
toolset. Since this toolset facilitates a higher-order term rewrite system, the execution
of behavior and other transformation tools, we are able to exhaustively explore state
spaces and conduct profound analyses for these LPSs.

The approach aims to transform any formal behavioral specification into a specifi-
cation that is suitable for a formal analysis, e.g., simulation and model-checking. The
technique can be used to prototype formally defined DSLs, to investigate the behavior
dictated by the underlying operational semantics, or enables the transformation of
any formal language into a valid mCRL2 specification. This chapter only discusses the

151



152 Chapter 8. Defining a Semantic Bridge

transformation. Reflections on usability and efficiency of the method are separately
discussed in Chapter 10

Chapter 8.2 describes the construction of a semantic bridge. Chapter 8.3 states the
correspondence relation between the semantic bridge and the operational semantics
of the subjected language. Chapter 8.4 demonstrates the approach for a small lan-
guage. Chapter 8.5 provides a few recommendations when implementing an mCRL2
model. Chapter 8.6 shows how the semantic bridge deals with predicates. Chapter 8.7
describes how rule format extensions can be modeled. Chapter 8.8 highlights some
of the work that has been performed by other authors. Chapter 8.9 briefly concludes.

8.2 Method

The method provides a template that transforms a Transition System Specification
(TSS) into an LPS. The LPS is described in the mCRL2 notation, which is a symbolic
description of the transition relations (transition system) described by a TSS.

To perform the transformation we require a TSS. Explicitly a TSS defines the signa-
ture of the terms for which the semantics are assigned. A TSS also incorporates the
deduction rules that define the semantics for the syntactical expressions. We assume
that any model that is transformed adheres to a TSS’ term signature.

The method translates a TSS into an LPS. An LPS consists of several components,
for which the sort component encodes the different sorts used in the TSS and the
TSS’ term signature. The collection of the LPS’ data equations are used to compute
the set of transition relations that are enabled. The LPE generates the transitions. The
(abstract) model that corresponds to the TSS initializes the LPS.

The transformation is restricted to the deduction rules that comply to the De Si-
mone format. This format is chosen since it is one of the elementary formats for de-
scribing SOS deduction rules [MRGO7]. Chapter 9 demonstrates a transformation for
the deduction rules that are provided in a more elaborate format, i.e., the Extended
Tyft format [Gal03].

To directly use the LPS in the mCRL2 toolset, we sometimes slightly deviate from
notations that are common in mathematics, e.g., when denoting a set comprehension.
The framework that we present is restricted to the use of an mCRL2-restrictive TSS,
for which the restrictions are provided below.

Definition 8.2.1 (mCRL2-restrictive TSS). A TSS is mCRL2-restrictive if
1. the signature ¥ contains finitely many function symbols,
2. the set of labels A is finite,
3. the set of deduction rules D is finite, and

4. the conditions of the deduction rules need to be expressed by mCRL2 data ex-
pressions.

Chapter 8.6 discusses several possibilities for relaxing some of these restrictions.



8.2. Method 153

8.2.1 Signature Transformation

For a signature X that consists of the different function symbols f,..., f,, we define
a sort P together with some additional functions in the mCRL2 language by:

sort P = struct f1(71: P,..., Tans): P)?isy,

| fa(mt1: Py, arp,y: PI2isy s

For terms of this sort, fi,..., f, € C are the constructor functions. The projec-
tion functions 7; € M are used to retrieve argument i of a function symbol. These
functions are defined by the equations 7t;(f(xy, ..., X4())) = X; in case i < ar(f)
and undefined otherwise. The recognizer functions is; € M facilitate the evaluation
whether a term is of a particular form. The equations defining recognizer function isy,
are is; (fj(x1, .., Xar(sy)) = true and isg (f;(xy, ...,xar(fj))) = false for i # j. For sort
‘P equality is denoted by ~s. Since all sorts in an LPS need to be represented finitely,
item 1 from Definition 8.2.1 needs to hold for modeling P.

8.2.2 Transition Relations

The transition relation models pairs that consist of a label and a term. The transition
relation is represented by R. We assume that the set of action labels, say {a;,...,a,},
is represented by a sort .A.

sort A =structa; |---]a,;
sort R = struct relation(m;: A, mt.: P);

The projection functions 7t; and 7, are used to respectively retrieve the transition label
and process term for a transition relation. Recognizer functions are not specified,
because they are irrelevant for the transformation. Since all sorts in an LPS need to
be represented finitely, item 2 from Definition 8.2.1 needs to hold for modeling .A.

We introduce a function R that satisfies the property, for all s,s’ € C(X) and labels

le A

relation(l,s”) € R(s) iff s
Strictly speaking, we transform the mathematical representation of s,s’,1 on the right
of iff into the counterpart mCRL2 representation on the left.

Every relation transition must be derived from the conclusion at the level of the ini-
tial source term, i.e., at the bottom of the proof tree. Let D be the set of all deduction
rules that are described by the TSS, represented by {d;,...,d,}. Then we introduce for
each of deduction rule d € D a function R, : P — Set(R) that computes the transition
relations for deduction rule d given a process term. All the transition relations that
are valid for a process term are computed with the help of function R: P — Set(R):

map R:P — Set(R);
var p:P;
eqn  R(p) =Ry (p)U---URy (p);



154 Chapter 8. Defining a Semantic Bridge

Because we compute Ry (p) U -+ URy (p), we require that D contains a finite (pre-
sentable) set of deduction rules. Hence, item 3 from Definition 8.2.1 must hold.

Definition 8.2.1 (De Simone format). A TSS (X, D) is in De Simone format, when
every deduction rule d € D complies to the following form:

l; .
{xi—yliel}

[Cond,]
f(Xl, e ,Xar(f)) —t

where all of x1,...,X,s) and y;, for i € I are distinct variables, f €%, I S {1,...,ar(f)},
and t is a process term that only contains variables from {x; | j I} U{y; |i € I} and
does not have repeated occurrences of variables, [;’s and [ are labels and Cond, is a
condition on the labels of the premises and the label of the conclusion.

Now let d be a deduction rule in the De Simone format and for each d € D, we
introduce a data equation Ry. Its informal explanation of the structure and the defi-
nition of the introduced auxiliary functions are provided after the data equation. The
formal explanations of the auxiliary functions are described in the following para-
graphs.

The data equation R; computes the set of transition relations that holds for deduc-
tion rule d:

map R;:P — Set(R);
var p:P;
eqn  Ry(p)= { s:R
| iSf(P)
Aot (m(s))
A3 lm(COTldd(ll,...,lm,TCl(S))
A Nig; i € vars(t) = relation(l;, py, (m(s))) € R(mi(p))
A Nier yi €vars(t) = 3, prelation(l;, 2;) € R(m;(p)))
A /\j¢1 x; €vars(t) = ,ufcj(ﬂ:t(s)) ~ 7;(p)};

The body consists of several conjuncts. An element is added to the set of transition
relations when all conjuncts of the body hold. Here, the conjunct is;(p) states that
the rule can only be applied to terms p that are headed by the function symbol f.
The conjunct o‘(7,(s)) states that the target term must have the same structure as
the term t from the deduction rule (see Check Target Structure below). The third,
fourth and fifth conjunct state that labels [; and terms y; need to be found such that
the condition and premises of the deduction rule are satisfied (see Capture Conditions
below). The third conjunct states that we require a transition relation that fulfills the
condition. The fourth and the fifth conjunct restrict the possible transition relations
to those that agree with the substitution for the occurrences of x; and y; in t to
obtain 7,(s) (see Extract Variable Instance below). The expression u! (p) denotes the
term (from p) that instantiates the variable x in t. The last condition checks that the
substitutions of the source variables, occurring in the target, are those provided by p.



8.2. Method 155

Check Target Structure

The transition relation’s target term requires to be an instance of the term t. So, we
define a function o': P — B that asserts this requirement. If t is of the form x for
some variable p then we introduce the following equation:

var p:P;
eqn  o*(p) = true;

and for t of the form f (t1,.. ., t,s)) for some function symbol f and terms ty,. .., t4f)
we introduce the equation:

var p:P;
eqn o/ (ole)(p) =ise(p) AT (7 (D)) A -+ AT Ty (D))

Here the auxiliary functions ¢'i: P — B for 1 <i < ar(f) correspond to the target
structure checks for the terms t;.

Capture Conditions

The user who performs the transformation needs to introduce the functions Cond,
that capture the meaning of the conditions in the deduction rules. Hence, the appli-
cability is restricted to the conditions that can be expressed by mCRL2 data equations.
The functions take a set of action labels and rewrite them to a Boolean expression.
The computability of these expressions are bound to the solvability of the underlying
rewriter. All data expressions must be stated in the mCRL2 syntax.

map Condy: Ax:-+xAXxA—B;

For practical cases, these functions can be easily captured by the mCRL2 data lan-
guage and are computable by the mCRL2 rewriter. When a condition function is
introduced item 4 from Definition 8.2.1 must hold.

Extract Variable Instance

To retrieve the terms that instantiate a variable x in the term t, we introduce the
projection function u! : P — P. When t is of the form x we introduce the following
data equation:

map P —P;
var p:P;

eqn  ui(p)=p

When t is of the form f (t4,..., t4y)) for some function symbol f and terms ty, ..., ty(s),
we introduce for each 1 <i < ar(f) a data equation such that x occurs in t;:

map u{((tl""’t“’m) :P—P;
var p:P;

FCatary) v
eqn w7 (p) = pli(m(p))



156 Chapter 8. Defining a Semantic Bridge

Additionally, we add the auxiliary functions u'i: P — P with their corresponding
equations. Note that we only use u in those cases where x € vars(t). Hence it is
irrelevant that the function u! is not defined for variables different from x that do
not occur in t. Because we only consider t in which every variable occurs at most
once, u! is well-defined. To illustrate the extraction of variable instances consider
Example 8.1.

Example 8.1(Extract Variable Instance Data Equations). Let t = ®(x, y,2) be a
resulting term to which the conclusion of a deduction rule rewrites, where @& denotes
a function symbol and x, y, z are instantiated variables. To extract the values from the
instantiated variables we define the following data equations:

map  pf, ), ul, pEU), B, 00er)  p

var p:P;

eqn  ui(p)=p;
uy(p) =p;
pz(p) =p;

peYA(p) = u* (71 (p));
Mf(x’y’z)(l’) = u)(m2(p));
‘u,?(x’y:z)(p) = ‘U,ﬁ(ﬂg(p)):

Here m4,..., ™3 denote the projection functions that respectively retrieve the first,
second and third argument of &(x, y,z). A

8.2.3 Linear Process Transition Generator

The generation of transitions is captured by the specification’s LPE. Basically, transi-
tions are performed as long as the set of transition relations belonging to term p is
non-empty. So we declare process X with the process parameter p: P. Then, for every
iteration we select a transition relation r such that r € R(p) holds. Subsequently, for
each r we dispatch the transition, i.e., 7r;(r), and update term p in the next state to
be 7,(r). So we specify the following LPE:

proc  X(p:P)= %r €R(p) = m(r) - X(m(r));

The behavior associated with a term p is specified through process X(p):

init  X(p);

8.3 Correspondence

The following theorem expresses the correspondence between a labeled transition
system associated with a closed process term and an mCRL2 process X (p). The proof
of this theorem is stated in Appendix A.2.



8.4. Application 157

Theorem A.2.5 (Correspondence). Let (X, D) be an mCRL2-restrictive TSS in the De
Simone format. Then for every p € C(X), the labeled transition system associated
with p and the labeled transition system associated with X(p) are isomorphic.

8.4 Application

To illustrate the details and the applicability of the approach, we consider the process
algebra MPT from [BBRO9], extended with the parallel composition operator. The
example assumes that the set of actions is finite, i.e., A = {a4,...,a,}. The signature
of the language consists of the nullary function symbol 0, the unary function symbols
a._(for a € A and _ denoting the argument), and the binary function symbols _+ _
and || . For representing the binary function symbols in the deduction rules, this
section uses the infix notation (instead of a prefix notation). By applying the signature
transformation we get:

sort P =struct zero?is,,, | ag(my: P)?isy, |-+ | a,(7y: P)?is,,
| alt(my: P, 7yt P)isg, | par(my: P, my: P)?isyg;
sort A=structa; |---|a,;

sort R = struct relation(n;: A, 7t,: P);

where zero, a;(_), alt(_, ) and par(_, ) represent0, a;. , + ,and || _respectively.
The deduction rules for the MPT process algebra are:

l

X1—™N
(a)— (@)——— ()
a;.x; — X, an. X1 — X Xyt Xy
X l Y X l Y X l Y
27 )2 1)1 27 )2
@2)——————— (r1) (p2) i
X1 +X——Y, X [ xg— 1 I x2 x|l xg—x1 1l y2

As no conditions other than true appear in the deduction rules we do not consider
them in the remainder of this section. To accommodate the (auxiliary) computation
we introduce the following functions and variables:

map R, Ral’ oo JRan’Ral’R327Rp1’RF2 P - Set(R),
O-Xl’ O-X2’ O—)’l’ O—)’z’ o—)’1||xz’ O-X1| Yoo P — B;
X1 X2 gy Y gnllxa nllxa pxallys pxallys . .
LS 25 gty 2, 12, st B2, e, a2 P — P
var p:P;

The sort R refers to the declaration defined in Chapter 8.2.2. The overall transition
relation function is defined as:

eqn R(P) = Ral(p) U--- URan(p) URal(p) URaZ(p) URpl(p) Usz(P);

To illustrate the relationship between the deduction rules and the data equations we
consider the deduction rules for the action prefix (al1) and (p1). For presentation



158 Chapter 8. Defining a Semantic Bridge

purposes we only state data equations within the simplified set comprehensions. The
resulting data equations for an action prefix terms (a € A) are:

eqn o*1(p) = true;
pe(p) =p;
Ry(p) ={r:R|isg(p) A o™ (m(r)) Apt(m(r)) ~ mi(p)};

The required equations for the deduction rule (al) are:

eqn  0”1(p) = true;
py(p) = p;
Rai(p) = {r: Rlisq(p) Ao (m,(r))
A3y atrelation (1, 43 (7 (1)) €RCT (P) A m(r) ~ D}

To model the deduction rule (p1) the following set of equations (including the auxil-
iary ones) is constructed:

eqn 02 (p) =is,,, (p) A 0¥ (1 (p)) A 2 (15(p));
o”1(p) =true;
o*2(p) =true;
wye(p) = p (1 (p));
uy(p)  =p;
e (p) = w2 (my(p));
pe(p)  =p;
Rpi(p) = {r:Rlisye(p)A oV (n(r)
A 3,. 4(relation (l,,uﬁ”xz(rct(r))) € R(m,(p))
A uplhe(r(r) & ma(p)) A m(r) ~ 13;
The deduction rules (a2) and (p2) are analogous modeled to the deduction rules (al)
and (p1).

To perform a meaningful analysis for the closed term p, we provide the following
LPE:

proc  X(p:P)= %r €R(p) = m(r) - X(m (r));

The LPS specification is instantiated by p:
init  X(p);

To illustrate that the method is effective, Figure 8.1 provides some graphs that
are generated by the mCRL2 toolset (Release 2012, February) for which the models
have been obtained using the aforementioned approach. The captions state the initial
process terms that has been used to generate the LTSs. The tools that subsequently
have been used to generate the pictures are:

1. txt2lps: This tool reads a textual LPS and stores it into the binary LPS format.



8.5. Implementation 159

2. |ps2lts: This tool exhaustively explores an LPS and stores the result in an LTS.

3. Itsview: This tool visualizes the LTS using a spring layout algorithm. The tool
has been used to visualize and export the LTS.

; a;
a;
@12 as
as
%3
(@) ay(ay(as(zero))) (b) par(a;(zero),ay(zero)) (c) alt(a;(zero),a,(az(zero)))

Figure 8.1 Three generated LTSs for different MPT SOS input models

8.5 Implementation

The implementation requires a finite number of deduction rules and a finite signature,
such that we can generate a finite textual specification. Furthermore we have to
apply two restrictions to conduct an analysis. The first restriction applies to the use
of actions. The second restriction applies to the use of quantifiers.

In the example we use elements of sort .4 (part of the data specification) as actions
in an mCRL2 specification. Within the mCRL2 language the direct use of data sorts
as action labels is prohibited. To overcome the limitation, we declare a (dummy)
action with a data parameter of sort .4 and use the data parameter to encode the

concluding transition relation from the TSS. This means that instead of p = p’, we

Trans(a) . . .
get p — " p’, where Trans is the dummy action label and we use a € A as its data

parameter®.

The second restriction applies to the use of quantifiers. The mCRL2 language al-
lows existential quantifiers (3) for which it can solve quantifiers that are reduced into
Skolem normal form using the Skolemization method. If quantifiers cannot be re-
duced into a normal form they are enumerated. Adversely, quantifiers that cannot be
reduced into the Skolem normal form and range over an infinite domain may have
infinite many solutions, which cannot be property exhaustively simulated.

Recall the data equation that models a deduction rule in Chapter 8.2.2. Here we
used the existential quantifiers z; if we were only interested in the transition and

*For presentation purposes we have removed the dummy actions from the examples in the previous
sections.



160 Chapter 8. Defining a Semantic Bridge

not the corresponding term. Note, that these quantifiers are not per se necessar-
ily. Therefore, the expressions 3, relation(l;,;) € R(m;(p)) can be simplified to the
expressions I; € R!(m;(p)), where the function R' is like R but instead of returning
a set of transition relations (consisting of labels and terms) it returns only a set of
labels. Let R': P — Set(.A) be the derived function that uses the auxiliary functions

Rii : P — Set(.A) for the deduction rules d € D. Then we define R' = | J Rii and specify
deD
the auxiliary functions as:

eqn  Ri(p)={a: Alis;(p) ATy, 4, ( Condy(ly, ..., 1, )
A Nier (i € R (i (PN}

8.6 Predicate Extension

A predicate is an expression of a semantic expression. [GV92] shows that predicates
are coded as binary relations, i.e., a predicate is a statement that is either true or false.
Predicates serve various purposes and have different representations, e.g., divergence
[AH89], enabledness [BPW93], probabilistic behavior [1.592], priorities [CH90], etc.
They are used to express behavioral properties, like termination and divergence and
useful addition to TSSs [BV93].

Because predicates can be encoded into the De Simone-format, we here explain
how it can be accomplished using multiple transition relations. Basically every predi-
cate introduces a (different) transition relation function R. With the help of different
dummy actions in the LPE, we can observe whether predicates.

Predicate Modeling

To illustrate how predicates are used in deduction rules consider the following two
deduction rules. We assume that PP is a predicate and — is a transition relation.
When d is a deduction rule with function symbol f, the rules are represented by:

I.
{x; —y; i€} U{Px; | j €J}
Pf(xl,...,xar(f))

[Cond,]

or
L . .
{xi—y lieltUu{Px;|jeJ}

z [Cond,]
f(xla AR xar(f)) —t
where all of x1,..., X,y and y;, fori €I are distinct variables, f €%, I,J € {1,...,ar(f)}
and INJ =0, t is a process term that only contains variables from {x; |k €TUJ}U{y; |
i € I'} that does not have repeated occurrences of variables, and [;’s and [ are labels
and Cond, is a condition on the labels of the premises and the conclusion (if any).
A predicate can be considered as a special kind of transition relation with a special

. . . . . P
transition label. Therefore, we introduce a special transition relation symbol — for



8.6. Predicate Extension 161

predicate P. Then the above deduction rules are represented by:

L . P .
{xp >y lieltu{x;—y;|jeJ}

= [Cond,]
f(XI’ . -;xar(f)) —)f(ziy . '>zﬂr(f))

x, if i€JAIL]

Wherezi:{yi if ieJAig]

or
l; . P .
{x;—ylietui{x;—y;|j€J}

z [Condy]
f(xl, .. ‘)xar(f)) —t

Because I and J are disjoint the rules remain in the De Simone-format.

The two transition relations are modeled by two transition relations functions. The
first transition relation is defined through the function R, such that for all s,s’ € C(X)
and labels [ € A, holds:

relation(l,s”) € R(s) iff  s—s

The second transition relation, that models the predicate relation, is defined through
function Rp,.4, such that for all s,s” € C(Z) and labels P € A4, holds:

relation(P,s") € Rp,.4(s) iff  s——s

When we assume that s and s” are syntactical identical, the predicate relation appears
as a self-loop transition in the generated LTS. To emphasize that the action transitions
are different from predicate transitions, we use the action label Trans to model action
transitions and use the action label Pred to model predicate transitions.

act Trans: A,
Pred: Ap,eq;

proc  X(p:P)=D, . 1 €R(p)— Trans(m(r))-X(m,(r))
+Zr: R re RPred(p) - Pred(nl(r)) 'X(Tct(r));

Predicate Application

This example extends the MPT example (Chapter 8.4) with the termination predicate.
We also extend the signature with the function symbol 1. Here 1 denotes the success-
ful termination of a process term. The termination predicate is modeled using the |.
In the MPT extension it is common to write x |. The deduction rules are defined by:

(t1)— (t2) xl—l (t3) xz—l (t4) M
1] X1 +x; X1 +x; xq [ xg ]



162 Chapter 8. Defining a Semantic Bridge

Because predicates are special transition relations, we replace the predicates by the
predicate transition relation. So, for the rules above we obtain the following deduc-
tion rules:

!
X1 —
() — 12— 1N
1—>1 X1+X2—>y1+X2
X, =y X =y x,—y
(t3) 2 2 (4L 1¢ 2 2
X1 +Xy X1+ Y2 Xy [ xy—y1 1l 2

To model the termination predicate, we first extend the signature by adding a
nullary constructor function one representing the constant 1 and a recognizer function

Sonet
sort P =struct zero?is,,, | one?is,,, | ag(1my: P)?is,, | -+ | ay(my: P)?is,,
|alt(ry: P, 7yt P)isg, | par(my: P, my: P)isyg;

To model the predicate we add the singleton set of action labels Ap,.q = {|} for
which we assume Ap,q N.A = 0. For computing the terminate predicate relation
we introduce the function Rp,,4, that is defined through the four auxiliary functions
Ri1,Ri9, Ry, Ryy- The valid relations for the predicates are computed by:

map RPred7Rt1:Rt2:Rt31Rt4: P - SEt(R);
var p:P;
eqn Rprea(P) = Ryg URgp UR3 URyy,;
Ru(p) ={r:Rlispe(p)Am(r)~pAm(r)~|};
Ru(p) ={r:R|isgq(p) Ao (n(r))
A relation(l, 3 2(m(r))) € Rprea(m1(p))
A p e (m(r) & ma(p)}s
Rys(p) ={r:R|isg(p) A o™ (m(r))
A relation(], w3 72(7(1))) € Rprea(72(p))
A e (my(r)) ~ w1y (p)};
Ru(p) ={r:R|isy,(p) Aor 2 (m(r))
A relation(], 72 (1,(r))) € Rppea(m1(p))
A relation(, u3! 72 (7,(r))) € Rprea(m2(p))};

To illustrate the use of predicates for the approach, consider Figure 8.2. It shows a
generated example with the mCRL2 toolset. The initial specification p is shown in the
caption. Here the process performs either an action a; and a deadlock or performs an
action a, and terminates successfully. The tools that have used are identical to those
in our previous example.

The actual models that have been used to generate the graphs, including the ones
of the previous example, are found in Appendix B.4.



8.7. Rule Format Extensions 163

Trans(a;) @
(o)

e Pred(one)
Trans(a,)

Figure 8.2 Generated LTS for the input model alt(a;(zero), a,(one))

Remark 8.6.1. Chapter 8.5 discusses the use of a dummy actions to model a data
expression as a transition. Here, the dummy actions express the difference between
transition relations and predicates relations.

8.7 Rule Format Extensions

This section briefly sketches the SOS rule format extensions that can be incorporated
to model different behavior. We consider the use of multi-sorted term signatures,
environments, negative premises, and look-ahead transitions.

Multi-sorted signatures are modeled in a similar way as single-sorted signatures,
as we have seen in e.g., Chapter 8.2.1. For single sorted signatures all function sym-
bols and variables are of the same sort. Hence, the modeled constructor functions
and their arguments that represent the term are of the same sort. In multi-sorted
signatures, function symbols and arguments consist of different sorts. By modeling
the (appropriate) different sorts, we can deal with multi-sorted signatures. Chapter 9
shows how such a signature is modeled.

Deduction rules sometimes allow that behavior is influenced by data that originates
from some environment. Commonly, such an environment is represented by a valua-
tion. If we assume that such an environment E is always present, it can be modeled
as a separate process parameter of the LPE. The (transition) relations is then modeled
by:

relation(l,s’,E") € R(s, E) iff  (s,E) LR (s',E"

This extension modifies the structured sort relation and the function R such that they
require an environment as an additional argument. Furthermore, they require a sort
that models the environment and the functions that provide operations on it. In
Chapter 9 we see an example of an environment being a valuation.

Negative premises appeared first in [BB88] to specify the semantics of a priority

l
operator. To model negative premises of the form s /4, where | € A, we specify the



164 Chapter 8. Defining a Semantic Bridge

(transition) relation as:

!
Vyesrelation(l,s") & R(s) iff  sA

Note, that TSSs with negative premises must be well defined, i.e., stratifiable [ Gro93],
when the LPS is subjected to an (exhaustive) simulation. This requirement is a lan-
guage engineer’s responsibility and is not detected by the transformation.

Behavior that is affected by any future behavior, it is often modeled through n, (n >
1) look-ahead transitions in the premise. If we assume state s', 1 <i < n is the input
state for the i*"-look-ahead transition’, then we compute the i'" transition relation
relation(lt,s'*1) by R(s'). Hence, the chain of n look-ahead transitions is modeled as:

. . . 1° I
relation(1%,s1) € R(s®) A ... Arelation(I™®,s") e R(s") iff s®—st,...,s" —> 5T

For transitions and states that do not appear in the conclusion of the deduction rule,
we need to add existential quantifiers to find witnesses that are (possibly) used by
other look-ahead transitions. The addition of these quantifiers may increase the com-
putational complexity.

8.8 Related Work

SOS meta-theory research is mainly aimed at proving useful properties about TSSs
[AFV01, MRGO7] such as congruence results [GV92], deriving equational theories
[ABV94], conservative extensions [FV98], and soundness of axioms [AIMR09]. Re-
search on how to implement them is underexposed. Most of the related work is per-
formed with the Maude model checker [Sofa]. Other authors have studied the link be-
tween the rewriting logic [MOM96] and SOS both from a theoretical [Mes92, Bra01,
DGP02, BM05, MRGO7] as well as practical point of view [BHMMO00, BHMMO2,
DGP02, VMOO02, MR06, VMOO06].

In [BHMMO2], the outline of a translation from Modular SOS (MSOS) [Mos04a,
Mos04b] to the Maude rewriting logic is given and proven correct. The translation is
straightforward and the technical twist is in the decomposition of labels, i.e., to the
structure of the labels in MSOS. A more elaborate explanation is found in [Bra01].
The work of [VMOO6] tries to capture the semantics of Calculus of Communicat-
ing Systems (CCS) using rewrites. As these rewrites are labelless, the labels are en-
coded in the result of a rewrite rule, e.g., the CCS transition of p SN q is written as
a.p —> {a}p. Though this is a correct transition, (a.p) || g — ({a}p) || q is not, since
the right-hand side term is not well formed. To overcome this problem, they intro-
duce a dummy operator by which they extend the semantics to generate the transitive
closure ([VMOO6], pages: 34-38). Basically, rewrites are performed on the outermost
function symbol and the result needs to be constructed as such. Since we use tuples

"The 0" look-ahead transition is the transition that corresponds to the transition relation from the input
state.



8.9. Conclusions 165

to store a relation, rather than encoding it into a single term, we do not suffer from
this drawback.

In the works of Mousavi and Reniers [MR06], Verdejo [Ver02], and Verdejo and
Marti-Oliet [VMOO02, VMOO06] we see that the most noticeable difference is the for-
malism in which they express the TSS. The authors stick to a representation for which
hardly any tooling for formal analysis is available, or needs to be developed from
scratch. This hinders the possibility to conduct a formal analysis, e.g., model check-
ing. We have chosen the LPS as the target formalism, because it is supported by a
collection of tools that are specially aimed at performing formal analysis.

LETOS [Har99] is a tool environment that generates BIEX documents and exe-
cutable animations in Miranda [Tur85]. This can be accomplished for a wide range
of semantics, including some deterministic SOS forms. Since LETOS only deals with
deterministic semantics, it poses some problems when analyzing the behavior of con-
current (non-deterministic) systems.

An approach for implementing SOS rules is presented in [But94], which combines
(unconditional) term-rewriting and A-calculus for simulation. It demonstrates how
SOS can be used in proof tools that are based on term rewriting. For that the Larch
Prover [GH93] is used, and explained in [But92]. Their method aims at demon-
strating and proving the equivalence between different semantics definitions. We,
however, aim at creating a bridge that closes the gap between a language for specifi-
cation and a language for performing analysis. Furthermore, we include conditions,
predicates and other rule format extensions, whereas they only allow predicates.

Process Algebra Compiler (PAC) [CMS95] is a tool that takes the signature and
the SOS rules of a language and generates a LEX/YACC scanner/parser as well as
verification libraries for Lisp and Standard ML. These are then respectively compiled
with the kernels of the MAUTO tool [BRASV89] and the Concurrency Workbench
[CS96]. In fact, PAC is a compiler front-end for verification tools. With the help
of so-called back-end procedures, it generates the required routines for the different
target systems, by relating concepts from the original language to those in the target
formalism. The relationship that connects them still needs to be addressed by the
user. As our work describes such a relation, this method could be implemented in
PAC.

8.9 Conclusions

This chapter demonstrates the transformation for a subclass of SOSs deduction rules,
adhering to the De Simone rule format, into a Linear Process Specification in a formal
and processable manner. These models can be subsequently analyzed by the mCRL2
toolset. It also expresses how predicates can be modeled, and describes how several
rule format extensions can be added.

The semantic bridge still depends (fully) on the formal interpretation and imple-
mentation of an engineer. Since we have proven the correspondence relation be-
tween a Transition System Specification and a Linear Process, we are confident that



166 Chapter 8. Defining a Semantic Bridge

the bridging problem, opposed to an syntactic engineered transformation, results in a
transformation that is less prone to interpretation and implementation errors.
Although we have selected mCRL2 as our specification language, we do not foresee
any difficulties when choosing another language as long as it has the same expressive
power, i.e., the supporting tools facilitate a rewrite system that can compute set com-
prehensions and provide a transition generator to (exhaustively) explore behavior.



Chapter

Applying the Semantic Bridge

9.1 Introduction

This chapter describes a feasibility study that takes a formal specification language,
for which the semantics is defined by a TSS and applies the semantic bridge. A defined
set of deduction rules is transformed into data equations of an LPS’ data specification.
The LPE dispatches the transitions for the different transition relations. An instance
of the model serves as the initial value for the LPE. Subsequently, the LPS can be
subjected to different kinds of analysis, i.e., simulation, state space exploration and
verification of modal properties. The idea of the transformation has been discussed
in the previous chapter.

There are many formal languages available. So, which one should we select? We
could select the SCPL language from Chapter 4. Since we have omitted the semantics,
we need to assign the semantics first, like we did in Chapter 7. To avoid the repetition
of the formalization process, it is better to select a language that is already formalized.
The DSL from Chapter 7 could be a candidate, however parts of the language are pro-
prietary, so we cannot disclose the full language. A better candidate would be Chi 2.0.
Since the transformation to the mCRL2 language is discussed in Chapter 5, we could
validate that the transformation indeed expresses the prescribed Chi 2.0 semantics.
Nevertheless, if we want to know that the denotational approach is correct, we need
to assert that the implementation of the mCRL2 toolset implements the mathematical
counterparts, i.e., the semantics described by the deduction rules. While the entire
thesis is based on the mCRL2 specification language and many case studies have been
performed using the mCRL2 toolset, we select the mCRL2 language as our subject of
study. We model the deduction rules, restricted to the untimed subset of the mCRL2
language, inside an mCRL2 specification. Hence, we dogfood the mCRL2 toolset its
own language [Har06].

To perform the approach, we require (i) a sort that captures the signature of an

167



168 Chapter 9. Applying the Semantic Bridge

mCRL2 process term, (ii) a transformation of the SOS deduction rules into mCRL2
data equations, and (iii) an LPE that performs the (different) transition relations.
The domain in which we describe the steps (i), (ii) and (iii) is indicated by the term
meta notation. The approach from Chapter 8, only discusses the transformation of
the deduction rules in the De Simone format [dS85]. Because the mCRL2 language is
described in a richer semantics, namely Extended Tyft format [Gal03] the approach is
extended by modeling multi-sorted (open) process terms, and format rule extensions
that include a data valuation, data parameters in action transitions, multi-actions,
functions on action transitions and freshly generated variables.

The outline of this chapter is as following. The mCRL2’s language specific design
decisions that are incorporated into the semantic approach are described in Chap-
ter 9.2. Chapter 9.3 describes how the deduction rules are modeled. Chapter 9.4
demonstrates some of the models that have been used to validate the correspon-
dence relation between the implementation and the defined semantics of the mCRL2
language. Chapter 9.5 reveals the discovered mismatches in the validation process.
Chapter 9.6 describes the limitations that are imposed by the implementation of the
semantics. Chapter 9.7 discusses related work. Finally, in Chapter 9.8 we conclude.

9.2 mCRL2 Specific Design Decisions

Even though the mCRL2 language is formally defined in Chapter 2.2, we have to take
design decisions such that the semantics can modeled. These decisions are based on
the syntax and the semantics of the mCRL2 language. These are provided for the
following mCRL2 concepts:

o the deduction rules (Chapter 9.2.1)

e the interpretation of the successful termination (p, o) LNV (Chapter 9.2.2),
o the modeling of the signature of a process term (Chapter 9.2.3),

o the modeling of data (Chapter 9.2.4),

o the representation of data expressions in the meta notation (Chapter 9.2.5),

e the computation of syntactic multi-actions into semantic multi-action equiva-
lence classes (Chapter 9.2.6),

o the transition relation representation (Chapter 9.2.7).

The transformation describes the concepts as closely as possible. Hence, models
are not targeted towards the validation or the verification in the most efficient way.
For concepts that cannot be (exhaustively) simulated by their directly modeled coun-
terparts, but have an equivalent notions that can be simulated, we choose the equiva-
lent notions. Concepts that cannot be (exhaustively) simulated are omitted from the
transformation. Alternative notions are explicitly stated. The transformation contains



9.2. mCRL2 Specific Design Decisions 169

notions that are either model specific or language specific. Language specific notions
are modeled equally for every mCRL2 model, e.g., operators. Model specific notions
may be modeled differently between any two mCRL2 models, e.g., the declaration of
actions. Hence, Appendix B.5 is dissected into three parts, namely the language spe-
cific notions, the model specific notions and the different models that have been used
to validate the semantics.

9.2.1 Deduction Rules

SOS deduction rules may describe arbitrary behavior. To ensure that all behavior is
modeled by suitable meta notations and poses no threats to the (exhaustive) simula-
tion, the mCRL2’s deduction rules are analyzed first.

The TSS of the mCRL2 language is described by a multi-sorted transition relation.
It describes (i) a timed action transition labeled with a from state s to s’ at time t via
§—s .s’, (ii) a timed action transition labeled with a from state s to v at time t via

5 —s v, and (iii) the progression of time for state s via s ~,. As the time domain
is dense, i.e., R, it has an uncountable number of values between any two different
time values. Thus for any action that is performed in a time interval, or performs
a delay ~»,, it results in an uncountable number of time transitions. Without any
proper abstraction techniques, it renders any meaningful (exhaustive) simulations
impossible. Hence, we restrict the deduction rules to the untimed fragment before
we transform the semantics. The untimed fragment corresponds to the black colored
deduction rules in Table 2.1, 2.2, 2.4, 2.5, 2.6 and 2.7 in Chapter 2.

Deduction rule Def, from Table 2.7 introduces fresh variables w.r.t. o. The de-
duction rule assumes an infinite set of variables and imposes no restrictions on the

generated fresh variables. Therefore there are infinitely many ways to instantiate 7
Thus the recursion operator dictates infinite branching. In theory this kind of behav-
ior poses no problem. In practice, when no abstractions or restrictions are applied,
it results in behavior that cannot be (exhaustively) simulated. Based on the exhib-
ited behavior, deduced from tools that exhaustively simulate mCRL2 specifications,

we observe that only one 7 is generated, for which all of the variables are disjoint
from dom(o). For convenience, and the purpose of abstracting from the details of
generating fresh variables, we assume given a predicate fresh : fresh(or, v') that holds
only for those variables V" generated by the fresh variable generator. Reflecting this
discussion, we redefine the deduction rule for Def,:

@[V~ V1,007 » {dBD " (¢,0")  fresh(o, V)

(Defz) — — m
X(v =d)o)—(q,0)

where X(7:3) =q€PE.
The deduction rules Parg and Sync, silently assume that the values of the non freshly
generated variables remain the same. To make the assumption explicitly we introduce



170 Chapter 9. Applying the Semantic Bridge

the notation 0’ =) 0"
/ Y7 — / 1"
O =dom(c) 0 = vvedom(a)o- (V) =0 (V)

Since we have changed the deduction rule Def, to generate specific fresh variables,
it potentially results to situations where variables from the valuation in the target’s
premises overlap or variables inside process terms are identical that should have been
different. Example 9.1 illustrates the problems for deduction rule (Paryg).

Example 9.1(Fresh Variable Generation). Assume the mCRL2 process P(v:B) =
a; - a;(v), and T = true and F = false If we model P(v =F) || P(v = T) and assume o
initially empty, we obtain the following proof tree*:

(ma) —————
(se (0, v/ > by
ay QZ) ay
(a1-0,(v), {v' = F}) — (a,(v/), {v' = F}) (a1-0,(v), {v' = T} — (@ (), {V' = T})

(ma) ———————
(a, v > Fh) — v

(Seq,)

(Def ) (Def5)

(Parg)

(PO =B, ) =5 (@, 1V = F} (PO =T), 1) =5 (a,(v), ' = TH
(PO =F) | P(v=T), () (a2(v) I a,(v"),...)
The proof tree clearly illustrates two problems. Firstly, we observe that the conclusion
has two freshly chosen variables with the same label. Secondly, we observe that the
valuation from the left branch of the tree concludes {v' — F}, whereas the valuation
from the right branch of the tree concludes {v' — T}. A
To prevent potential variable clashes, all freshly generated variables are renamed
from the right premise that overlap with variables of the left premise. To resolve
clashes we reuse the mechanism for generating fresh variables.
Let 1?,1; be a list of variables, then we define deduction rule Parg as:

(o) = (0',0"), (4,0) == (4,0") 0" =gon() "

fresh(o’,v')  fresh(c”,v")

(Parg) o — =
(pllg, o) — (@'lI(q' [Vawp — V' 1, 0™")

such that for o’” holds:

Vvedom(a')g://(v) = ol(v) A Vvedom(o”)\dom(ol)o'”/(V) = OJ/(V)
A Vgl =1V AV 1nsgiz @ (V) = 0" ((Vagpn)
A dom(c”") = dom(o’)udom(c”)U {%}

where {%} is the set interpretation of 1?11; for which holds {%} = (dom(c”) N
dom(c")) \ dom(o), and ("), denotes the i*" element of V.

Deduction rule Sync, has a structure similar to Parg. Hence, we similarly redefine:
(p.0) = (.07, (4,0) = (¢,0") 0 Zgom(e) 0"
— —
fresh(c’,v')  fresh(c”,v")

(Sync,) o — =
(rlg,0) — (P'I(q' [Vawy — v' 1, 0™)

*Predicate fresh({},v) is omitted for presentation purposes.



9.2. mCRL2 Specific Design Decisions 171

for which the same conditions apply to o”.

9.2.2 Successful Termination

Successful termination is denoted by (p, o) —, . It is a contraction of a transition
relation and a predicate. Because the transformation is modeled by hand, and success-
ful termination can be modeled in different ways, we here provide four alternatives
from which we select one that results in a concise model. Every option consists of
two cases. The first transition relation describes the ordinary action transition. The
second transition relation describes successful termination.

1. The first option states the one presented in the mCRL2 language:

(p,0) = (p',0”)
(p,0) >V

2. The second option presents the predicate by a separate transition relation:

(p,o) % (p',0")
(p,o)=(p,0)

3. The third option extends the action label:

(p,o) —; (p',0")
(p,0) 25 (p,0)

4. The fourth option models the ' predicate as a special process term:

(p,0) = (p',0")
(p,0) — (V, 0)

In [SRW11b] the authors show how option (1) is modeled. Basically, if a process
term successfully terminates, we compute a transition relation (with an irrelevant
update state) and one for the termination predicate. If the termination predicate con-
tains a result, we deal with a terminating transition. The action termination function
and the transition relation function are nearly identical. This means that all of the
deduction rules are modeled twice, i.e., once to compute the transition relation and
once to compute the termination predicate.

Option (2) requires an additional transition relation, i.e., the termination relation.
Since the solutions for each of the relations are computed separately, we see a similar
amount of replication as in option (1).



172 Chapter 9. Applying the Semantic Bridge

Option (3) extends the action label with a special label v';. The extension signifi-
cantly alters the semantics, i.e., a special label is added to the semantic multi-action.
This implies that all deduction rules need to be redefined. Because, we want to model
(and study) the current semantics of the mCRL2 language, we do not consider this as
a feasible approach.

Option (4) models the predicate as a (special) process term. Based on the tran-
sition, we can determine whether a process ends in a successfully terminated state.
Since the data valuation is irrelevant in a successfully terminated state, we assume
that the data valuation remains unchanged w.r.t. the valuation prior to the transition.
This assumption propagates for all deduction rules that describe a successful termi-
nation. This omits the modeling of a separate transition relation. Based on these
observations we consider that option (4) provides the best solution that can be mod-
eled by hand. Hence, we model the v predicate as a (special) process term for which
we introduce the v}, process term. By modeling v' as v}, the language becomes less
restrictive. Therefore we assume that v}, is a special term that cannot be modeled
by a user. Moreover it changes the deduction rules’ signature slightly, i.e., for non
terminating transitions we need to state that the resulting term is not v,.

Example 9.2(Sequential Composition). This example illustrate the slight alterna-
tion in the deduction rules’ signature for the rules that belong to the sequential com-
position. The original rules state:

(p,0) >V (p,0) =5 (p',0”)
m (Seqz) m / /

(Seq,)

By incorporating option (4) the shape of the rules is changed to:

(p,0)— (p',0") p'#,
(p-q,0) = (p'-q,0")

(p,0) =,
(p-q,0)—(q,0)

(Sech) (Squ)

Observe that the non-terminating transition explicitly states that the resulting process
term p’ is unequal to v},. Note, that other transitions are modeled similarly. A

9.2.3 Process Term

The signature of a process term is modeled by the structured sort P. Every BNF
symbol in Definition 2.2.9 introduces a constructor function that carries the textual
characterization of the symbol.

Process terms in the mCRL2 language are multi-sorted. The multi-sorted terms are
introduced by the arguments of the BNF elements. They describe e.g., the condition
in the conditional choice operator, or the action labels that need to synchronize in the
communication. For each of these arguments appropriate sorts are introduced. The
designated sorts (e.g., Actz,C,E, Q, ...) are discussed in Chapter 9.3. For now we
assume that we know the appropriate sorts and model them accordingly. To model



9.2. mCRL2 Specific Design Decisions 173

the v predicate, we include the (special) aforementioned process term, modeled via
the v}, constructor function.

Projection functions are added to access the operands of a term. Here, 1, denotes
the n'® operand of a process term being of sort 7. To access other operands of other
sort elements, like the c in a conditional choice, we add projection functions with spe-
cially selected names, e.g., .. Recognizer functions are added to recognize process
terms, which are provided after the question mark (?). These functions only evaluate
to true iff the term matches the corresponding constructor function.

Based on these decisions we specify the structured sort P in the meta notation by:

sort P = struct

Vp?isy | Deadlock?iss

| Alpha(nmultiaction:LiSt(ACtE))?isa | Alt(nl P, TEZ:,P)?isAlt

| Seq(71:P, 5 P)?isgeq | Cond; (7:E, 701:P)?iscong,

| Condy(7:E, 7012 P, T P)?iscong, | Sum(m,:V, 71:P)isgy,

| Par(mt,: P, o P)?ispyr | Lmerge(7t,:P, 7052 P)?iS merge

| Sync(my:P, 752 P)?isgyn, | Allow( Ty, :Set(Bag(Actyqp)), T1:P)?iS Atiow

| Block(mtg:Set(Actqp), T01:P)?iSg10c | Rename( g :Acti gy — Actian, T01:P)?iSrename
| Hide(t;:Set(Acty ), T1:P)?iSpiqe | Prehide(my:Set(Act;qp), T1:P)?iS prenide
| Comm(ﬂCgﬁlm :LiSt(C): st :P)?iSComm | Def(nPE[ab : X, Tprocparasss LLSt( Q))?iSDef;

Discussion

For convenience and presentation purposes, we model a multi-action as a list of ac-
tions, i.e., Alpha( T uriacrion:List(Actz)). To model the signature precisely requires a
separate sort to model a syntactic action, i.e., the sort M that incorporates the struc-
ture of ‘|’ in a syntactic multi-action:

sort M = struct tau | Act(7t,,, :Act;qp, Targs:List(E)
| Bar(m} M, m? :M)?isg,;

multiaction multiaction

So, we should model Alpha( 7, piqction:/M)). However, by transforming the | into a
list of actions we provide a less verbose, but still recognizable structure that represents
a syntactic multi-action'.

9.2.4 Data

Definition 2.2.14 (Chapter 2.2.2) states the semantic interpretation for values, vari-
ables, data expressions, lambda expressions, quantifiers and where-clauses. We re-
strict the interpretation to values, variables and data expressions. Although it is pos-
sible to provide suitable implementations for the other concepts, we consider them are
out of scope. Moreover, the semantic interpretation of sorts, and their corresponding
elements have the same representations as their syntactic counterparts.

TFor similar reasons semantic multi-action equivalence classes are modeled by lists.



174 Chapter 9. Applying the Semantic Bridge

Values

The meta notation presents all values by a single sort A*. With the help of constructor
functions we represent the different sorts. The sorts that are modeled in the meta
notation are derived from the specified sort names in an mCRL2 specification. Let
SMCRL2 be the occurring sort names in an mCRL2 specification, then we model the
sort A as:

sort A =struct Sor«tll\(sl:Sortl)?issml |...| Sorty(s,:Sort,)?isge, | L;

where Sort; € S™®2 are the sort labels, Sort) denotes the constructor function for
Sort;, isg,y, denotes the recognizer function and L denotes an undefined value. The
order of the constructor functions are analogue to the order in which the sorts are
declared in the original mCRL2 specification. This results in a type system where
values with their sorts are encoded in a prefix notation, e.g., “s:S” becomes “S(s)”.
The sorts Sort,,...,Sort, are copied from the mCRL2 sort declaration. Hence, we can
use the built-in sorts and the user defined sorts in the meta notation. Example 9.3
illustrates the declaration of values (for built-in sorts).

Example 9.3(Sorts in the meta notation). When an mCRL2 specification defines
the sorts B and N, then the structured sort A is specified as:

sort A =struct B,(b:B)?isy | Ny(n:N)?isy | L;

For the projection functions we have selected appropriate names. To model the
Boolean value true, we simply write B, (true). A

Variables

Variables, are like values, represented by a single sort that represents all possible sorts.
The representation requires two sorts. The first sort V;,, models the different variable
labels. The second sort V models a variable, where the constructor function indicates
its sort, i.e., V models X™°RL2, The argument of the constructor function models the
designated variable, which retains the option to model the different typed variables
in the meta notation. The sorts V;,, and V are then modeled as:

sort Vg, =struct vy [ ... | v, | v, (7;q : N)?is, ;
sort V= struct Sort), (v :Viap)?iSsor, | -+ | SOTEL (v :Vian)?iSsore ;

Every element from V,,, and V is derived from an occurring variable in the mCRL2
specification. Hence, we assume that the meta notation contains for every variable
v;, (1 < i < n) that occurs in the mCRL2 specification a variable v;. The variables
v,(m) € {v;|1 <i <n}, (m > 0) denote the reserved variables for the generation of
fresh variables. The constructor v, acts as a prefix for the m™ freshly generated
variable. Example 9.4 illustrates the declaration of variables in the meta notation.

*Alternatively, values can be modeled by separate sorts.



9.2. mCRL2 Specific Design Decisions 175

Example 9.4(Variables in the meta notation). When an mCRL2 specification defines
the sorts B and N, and the variables b:B and n:N, then the structured sorts V and V;
are specified as:

sort Vg, =struct b | n|v, (1 : N)?is, ;
sort v = struct BV(VL :VLab) | NV(VL:VLab);

where v, (74 : N)?isvy corresponds to the labels for the fresh variables. To model the
value v of sort N, we simply write Ny,(v). A

Data Valuation

The meta notation characterizes the data valuation o as a list of tuples V x A. The
left element represents a variable and the right element represents a value. In the
mCRL2 language it is not possible to model tuples without a constructor. Therefore,
we define the structured sort Argument, for which argument acts as the constructor
function for a tuple. The valuation sort is modeled by the sort S:

sort S = List(Argument);
sort  Argument = struct argument(m,,:V, 7, :A);

We assume that the elements in data valuation are (increasingly) ordered.

Discussion

A data valuation can be modeled in different ways. So we provide a rationale for
our chosen solution. Firstly and preferably, we like to specify the data valuation as
V — A. To generate fresh variables for the duplicate variables in e.g., deduction rules
Par, and Parg require enumerations. Since the mCRL2 toolset (currently) provides no
support for the enumeration of functions, we cannot model the valuation as V — A.

Secondly, by modeling an argument as } x A, we allow the Cartesian product of
Viap X A. We assume that the input specification is well-typed. Therefore the exces-
sive introduced variables are harmless, as they are not present in the input mCRL2
specification.

Thirdly, we assume that all semantic interpretations evaluate to a well defined
value, i.e., not L. If we allow the evaluation of L, it would pose all kind of problems,
e.g., when communicating values. Hence, 1 may never occur during simulation.

9.2.5 Data Expressions

Data expressions describe functions on syntactic variables. Data expressions are
used to express action data parameters, process parameter updates and conditional
choices. Internally, data expressions are specified through abstract data types. When
we write a value, the value can internally represented by an application of constructor



176 Chapter 9. Applying the Semantic Bridge

functions and variables, e.g., the natural number 2 can internally be represented as
successor(successor(zero)). Here, successor(n) and zero are constructor functions for
the built-in sort N. Like N, other (basic) data types such as Z, B, List, Set, ... are part
of the mCRL2 language.

Data expressions of the meta notation are modeled in a similar fashion as data
expressions of the mCRL2 language. Hence, data expressions can be modeled by
variables and functions (possibly) having arguments. For readability, presentation and
modeling purposes, we also allow values as they provide elegant shorthand notations
for compounded terms that consist of constructor functions and variables. Moreover,
this allows for the conversion of meta notation data expressions into mCRL2 data
expressions, which is shown at the end of this subsection.

When we assume that a structured sort F models the function symbols, we specify
the data expression sort £ as:

sort & = struct &, (dvr:V)?isy
| E/S(dvl:A)?is.%xpr
| é'expr(f:f)?lsg 0
| EL (f:F,expry:E)2isg’

expr
| : - .
| 5;(;}(]‘ :F,expry:E, ... expr,_; :5)?1'3?? A

| En (f:F,expry:E, ... expry:ENisg’ s

expr

where a syntactic (typed) variable is modeled by &), a syntactic (typed) value is
modeled by £,, and a syntactic (typed) function, with function symbol f € F having
arity i, is modeled by Seixpr. Example 9.5 and Example 9.6 respectively illustrate how
variable and value data expressions are modeled in the meta notation.

Example 9.5(Data expression variable). Assume that a Boolean variable b oc-
curs as a data expression. To model the expression in the meta notation, we write
Ey(V(b)). A

Example 9.6(Data expression value). Assume that the Natural value 2 occurs as a
data expression. To model the expression in the meta notation, we write £,(Ax(2)). A

Data Expression Functions and Function Operators

A function operator describes either a label of a modeled constructor function or a
label of a modeled mapping (function). Like variables and values, function operators
are typed as well. Function operators are defined by the sort F. Function operators
are typed in a similar way as we have seen with values or variables. The structure
sort JF is constructed from an operator label sort O that defines the operation:

sort (O =structO; | ... |0,
sort  F = struct Sorty, (1,,:0)?isge, | ... | Sortl (7,,:0)?isg0r ;



9.2. mCRL2 Specific Design Decisions 177

Example 9.7(Data expression constructor functions). This example shows the
modeling of constructor functions. We model a sort GrayScale that represents dif-
ferent gray scale levels:

sort  GrayScale;

To model the whiteness level, we assume the constructor functions white and darker.
In the original mCRL2 specification, they are modeled as:

cons white : GrayScale,
darker : GrayScale — GrayScale;

Here, the constructor function white has no arguments and the constructor function
darker has one argument. To model the constructor functions in the meta notation,
we first declare the following sorts:

sort O = struct darker | white;
sort  JF = struct GrayScale (7 ,,:0)?iSGrayscates

Subsequently, we model a data expression variable v that belongs to the sort GrayScale:

sort  V;,, = struct v;
sort V= struct GrayScale,,(V;);

Now we can express:

e a GrayScale variable by: &),(GrayScale,,(v)).

e the white constructor, written in mCRL2 as white : GrayScale, is modeled by
Eg(pr(GrayScaleO(white)). Because white is a constructor function that has a

: 0
zero-arity, we use Sexpr.

e the darker constructor, written in mCRL2 as darker : GrayScale — GrayScale
is modeled by ngpr(GrayScaleo(darker), &y (GrayScaley,(v))). Since darker is
a constructor function that has an arity of one, we use Selxpr.

Semantic Interpretation of Data Expressions

The semantic interpretation of a data expression is represented by a value. To com-
pute a value we introduce the function semg : £ x & — A that requires a data ex-
pression and a valuation. For the interpretation of data expression variables and data
expression values we define the following data equations:



178 Chapter 9. Applying the Semantic Bridge

map semg:E XS —A;
var vr:V;
vI:A;
o:S;
arg : Argument;
ean  semg(&,0m), [1) = L;
semg(Ey(vr,argr o) = iflo(vr) ~ V(arg), m(arg),semg (&, (vr), 0));
semg(EA(VD), 0) =VI;

Data expression functions require separate data equations, which extend the ones
from above. We only add the equations for the operators that are defined in the input
mCRL2 specification. Let f be an operator with the result sort Sort;, and let B be a
function, then for the defined functions we introduce:

map semg:E XS —A;
var expry,...,expr,:&;
o:S;
eqn  semg (&, (f,expry, ... expr,),0) =
Sort;(semg(expry, o) B - - Hsemg(expr,, 0));

Example 9.8(Semantic interpretation of a function). To demonstrate the semantic
interpretation of a function, we model the semantic equivalence of two data expres-
sions, modeled by the X operator. The resulting sort of the function is the predefined
sort B, that needs to be converted to the meta notation sort B,. Since ~ is defined for
all sorts, the semantic interpretation function is modeled as:

var expry,expry:&;
eqn semg(é’ipr(c‘)@(w), expr,,expr,y), o) = B, (semg(expry, o) ~ semg(expr,, 0)));

A

Converting Meta Notation Values

For every modeled sort in the meta notation it is possible to specify all of its cor-
responding rewrite rules separately. From the experiences of the uCRL toolset and
the motivation for developing its successor mCRL2 [GMWUO6] show that specifying
the rewrite rules for commonly accepted sorts, turns out to be annoying and a time
consuming task. For practical reasons, we like to reuse rewrite rules that are either
defined by the mCRL2 language or are provided in the translated specification. To
circumvent the (re)specification in the meta notation, we provide converts from the
meta notation values to values in the mCRL2 language. This is accomplished by the
function Sort|:A — Sort, where Sort € S™MCRL2 denotes a sort in the mCRL2 specifica-
tion. After a value has been converted to the mCRL2 language, it is possible to use
the equations of the mCRL2 specification/language. To convert an mCRL2 value back
to the meta notation, we use the appropriate constructor from sort A. Example 9.9
shows how to access mCRL2’s built-in functionality, using the converts.



9.2. mCRL2 Specific Design Decisions 179

Example 9.9(Value conversion). This example expresses the addition on natural
numbers in the meta notation using converts. We assume that sort N is modeled in
the meta notation and the addition is defined by &. We specify O and F as:

sort (O = struct &;
sort  F = struct Ny (7,,:0)?isy;

where an appropriate name is chosen for the projection function. The addition of the
value 3 with the value 2 (i.e., the data expression 3 4 2) is modeled as:

Eezxpr(NO (@), EANA(3)), Ex(NA(2)))

The sort N is a built-in sort that is accompanied with a set of rewrite rules including
an operator for addition. We decide to use the internal rewrite rules. For that we
convert sort N, to N with the help of function Nj:A — N:

map Np:A—N;
var n:N;
eqn N (Np(n)) = n;

Using the convert function N; we specify the addition as:
var expry,expry:&;

eqn semg(Eipr(é'@(EB),exprl,exprz), o)=
Ny (N, (semg(expry, o)) + N (semg(expry, 0))));

Now, if we compute the semantic interpretation for some o for
semg(Ex, (No(®), Ex(NA(3)), Ex(NA(2))),0)

the expression rewrites to the meta notation value £,(N,(5)). A

9.2.6 Multi-actions

The mCRL2 formalism defines syntactic multi-actions and semantic multi-action equiv-
alence classes. Syntactic multi-actions are written in an mCRL2 specification. A syn-
tactic multi-action consists of a list of syntactic actions. Semantic multi-action equiva-
lence classes are observed during the execution of a process. A semantic multi-action
equivalence class consists of an (ordered) list of semantic actions. This subsection
explains the modeling of multi-actions in the meta notation, and how they are trans-
formed from the syntactic to the semantic domain.

Syntactic Actions

The structured sort Actz models a syntactic action, defined through two construc-
tor functions. The first constructor function Act defines an external syntactic action,



180 Chapter 9. Applying the Semantic Bridge

i.e., an action that consists of an action label and an (optional) list of data parame-
ters, written as a list of data expressions. The action label and the list of arguments
are respectively retrieved with the help of the projection functions 7, :Act;,, and
Tlargs:List(E). The second constructor function tau defines the internal syntactic ac-
tion, i.e., T.

sort  Actg = struct Act(7t,,, JAct;qp, Targs:List(E)) | tau;

Semantic Actions

The sort Acty, models a semantic action, having one constructor function ActSem that
corresponds to an externally observable semantic action. Multi-action equivalence
classes that consist of only internal actions are modeled by empty lists. Therefore
no constructor function is provided for an internal semantic action. We specify a
semantic action as:

sort  Acty = struct ActSem(7t,, , :Act;qp, Targs:List(A));

Transforming Syntactic Actions into Semantic Actions

Syntactic actions are transformed into semantic actions with the help of function
semy,.. The rewrite rule that defines the function is:

map  semp, :Actg X S — Acty;
var o:S; )
a:Actgp;
args:List(£);
eqn  semy_(Act(a,args), o) = ActSem(a, sengi“(args, 0));

The data equation for sem,_(tau) is intentionally left unspecified, since the syntactic
multi-action interpretation function removes all tau®.

The semantic interpretation for a set of action data parameters (i.e., a list of data
expressions) is computed by the function sengi“ :List(£) x S — List(A):

map  semi:List(E) x S — List(A);

var o:S;
ds:List(E);
d:f);'

eqn Sem?t [1,o)=11 ‘
sem*(d > ds,0) = semg(d, o) > semP(ds, 0);

Syntactic Multi-actions

The meta notation represents a syntactic multi-action List(Actz) as an unordered list
of syntactic actions.

$The multi-action interpretation function is provided later in this section.



9.2. mCRL2 Specific Design Decisions 181

Semantic Multi-action Equivalence Classes

The meta notation represents the semantic multi-action equivalence class List(Acty)
as an (ordered) list of semantic actions. Hidden actions are excluded from the list.
Hence, the empty list represents the semantic equivalence class that consists of only
the internal actions.

Transforming Syntactic Multi-actions into Multi-action equivalence classes

A syntactic [semantic] multi-action consists of syntactic [semantic] actions, and an
action consists of a label and a list of data expressions [values]. Definition 2.2.16 is
implemented in function sem/ﬁij; :List(Actg) X S — List(Acty;) which transforms a list of
syntactic actions into a multi-action equivalence class (i.e., an ordered list of semantic

actions):

map  sem: :List(Actz) X S — List(Acty,);
sem,m: ‘Actg X S — Acty;
var as:LisE(ActE);
a:Actg;
o:S;
eqn  sem¥ ([1,0)=[];
sem St (abas,0) = ifla~ tau, sem’s! (as, o),

Actz .
InsAct(semy_(a, o), semf‘ff: (as,0)));

The insertion of a semantic action is performed by the auxiliary function InsAct:Acty, X
List(Acty,) — List(Acty,):

map InsAct:Acty, X List(Acty) — List(Actsy);
var X, y:Acts;
ys:List(Acty);
eqn  InsAct(x,[]) = [x];
InsAct(x,y >ys) =if(x < y,x > y>ys,y >InsAct(x,ys));

Discussion

Multi-actions are mathematically a bag of actions. Therefore it would be natural to
model them as such. The characterization of bags in the mCRL2 language are repre-
sented by functions with function updates that model exceptions. Since function sorts
cannot be enumerated, bags cannot either. Because this functionality is required when
transforming the syntactic multi-actions into semantic multi-actions (Example 9.10),
we model them as a list of (un)ordered actions.

Example 9.10(Multi-actions represented by bags). If we model multi-actions as a
bag of actions we require a function, say f, with the following signature:

Bag(Actg) x S — Bag(Acty,)



182 Chapter 9. Applying the Semantic Bridge

that interprets a bag of syntactic multi-actions and transforms them into a new bag of
semantic multi-actions. Ideally, f is performed as a map on each of the elements of
the bag. Since we deal with infinite bags, we cannot apply f to individual elements.
Instead, we need to define the set comprehension via the inverse of f, i.e., f ~'. This
requires that the relation is a bijection. As the semantic interpretation function is not
a bijection, we cannot define the inverse. A

9.2.7 Transition Relation Representation

A state in an mCRL2 model is represented by a process term p and a data valuation
o. The meta notation introduces process X with a process parameter that stores the
current value of the (counterpart) p and the value for the (counterpart) valuation o.
Process X describes the transition relation for a state (p, o), i.e., (p,o) SN (p’, o),
for which we (i) model the signature of the transition relation i>, and (ii) model the
possible transitions along with the corresponding updated state (p’, o”).

Data expressions cannot be directly used as transitions. To meet (i) we model the
semantic multi-action equivalence class as a data parameter of the action A. The
action label denotes the kind of relation, i.e., the transition relation. To model the
signature of - we declare (and use) the following mCRL2 action declaration:

act A:List(Acty);

To model (ii) we require a function that given a state, computes all transitions with
the corresponding state updates for every transition relation. We introduce the sort
R that models a triple of a multi-action, a process term and a data valuation by:

sort R, = struct at(my:List(Acty), 7, P, T5:S);

Here, at is the constructor function for a relation, argument 7, denotes the multi-
action equivalence class, argument 7, denotes the updated process term and argu-
ment 7, denotes the updated data valuation. Every translated deduction rule d
introduces a separate function R;:P x & — Set(R,.). All relations are computed by
R:P x § — Set(R,.), which specifies the union over the transition relations of the
individual deduction rules.

map R, RAlpha’RAltl yeene >RDef1 aRDefz PxS— Set(Rat);
var p:P;
s:S;
eqn  R(p,s) = Rypna(p,s) URyy, (P,5) U ... URp (p,5) URp, (P,5);
Because only the applicable functions return a non-empty set, only the action transi-

tions that can be performed remain. The implementation of the individual deduction
rules can be found in Chapter 9.3. Thus we model the LPE as:

proc  X(p:P,s:S)= >. r €R(p,s) = A(74(r)) X(my(r), e (1))

R



9.3. Modeling Deduction Rules 183

To initialize the LPS we write
init X(po,00);

where p,, 0 denotes the initial state of the counterpart mCRL2 model. Initially we
assume o to be empty.

9.3 Modeling Deduction Rules

This section describes the data equations that correspond to the deduction rules from
the mCRL2 language. The assumptions and design decisions regarding the implemen-
tation are explicitly stated. The untimed deduction rules originate from Tables 2.1,
2.2, 2.4, 2.5, 2.6 and 2.7 (Chapter 2) and are modeled under the assumption that v/
is replaced by the special v}, (Chapter 9.2.2).

9.3.1 Deadlock

A deadlock in an mCRL2 specification is modeled as the process term 6. The meta
notation uses the expression Deadlock. Because the term has no deduction rules, we
are not required to model data equations.

9.3.2 Multi-actions

When a syntactic multi-action a is performed the model performs an (observable) set
of actions. In the meta notation we write a syntactic multi-action as:

Alpha([ay,...,a,])

where qa,,...,q, €Actz.

The function R, computes the relations by a set comprehension, that correspond to
the deduction rule of a multi-action (Table 2.1, rule ma), given a process term p and
a valuation s. We allow a relation r in the set iff:

e the input term p is an action process term (is,(p)),

e the semantic multi-action corresponds to the syntactic multi-action evaluated

under the data valuation (7,.(r) ~ sem=" (T usiaction(P),5)),

e the process denotes a successful termination (is, (7, (r)), and
o the data valuation remains unchanged (7, (r) ~ s).
With the help of the above conditions we express the corresponding data equation as:

eqn Ra(pas) = if(isa(P), {r:Rat | TL'aC(I”) ~ semﬁicsé(nmultiaction(p): S)
A l'S\/(TCp/(T')) A TCU/(T) ~ S}, 0)7



184 Chapter 9. Applying the Semantic Bridge

9.3.3 Alternative Operator

An alternative composition p + g allows a non-deterministic choice when both process
p as well as process g can perform a transition. In the meta notation we write the
alternative composition as:

Alt(p,q)

where p,q € P are process terms in the meta notation.

The deduction rules are provided in Table 2.1 by Alt;, Alt,, Alt; and Alt,. The
corresponding relations are respectively computed by the functions Ry, Ray,» Rar,
and R,. When a process term p or a process term q can perform a transition, re-
spectively modeled by R(7t;(p),s) and R(7,(p),s), then Ry (p,s) (1 <i <4) can also
perform a transition. Note, that the functions R, and Ry, explicitly state 7,/ (r) ~s.
These conjuncts are required for the deduction rules that replace v by v}, because
we assume that the data valuations remain unchanged.

eqn Ry, (p,s) = iflisan(p), {r: Ry | 1 € R(m1(p),s) Aisy (7, (r)) A (1) & 53, 0);
Rai,(p,s) = iflisu(p), {r: Ry | 1 € R(m1(p),s) A —is, (7, (r))}, 0);
Rai,(p,s) = flisau(p), {r: R, | T € R(15(p),s) Aisy (71 (1)) A 10 (1) & 53, 0);
Rai,(p>8) = iflis (), {r: R | 7 € R(ma(p),s) A —is, (7 (1))}, 0);

9.3.4 Sequential Operator

A sequential composition is denoted by p - gq. In the meta notation we express the
sequential composition as:

Seq(p,q)

where p,q € P are process terms in the meta notation.

Deduction rule Seq, in Table 2.1 expresses the successful termination of p. Deduc-
tion rule Seq, in Table 2.1 expresses the continuation as p’ - ¢ after p has performed
an action and does not successfully terminate. Note that Rg,,, demands that the sig-
nature of the resulting process term is again a sequential composition (isgeq(7t,(1))).
Hence, we specify the following two data equations:

eqn RSeq1 (P,S) = if(iSSeq(p):
{r:Rae | at(ee(r), vp, (1)) € R(71(p), s)
Ay (r) R m(p) A 1o (r) & 53, 0);
RSeqz(p’s) = If(iSSeq(p):
{r R | 18seq(my (M) A at(74,(r), 71 (7 (1)), 7 (1)) € R(71(p), 5)
A Tea(7y (1)) & 1o (P) A sy (71 (7 (1)), 0);

9.3.5 Conditional Choice

The conditional choices ¢ — p and ¢ — p ¢ q allow the execution of behavior w.r.t. the
evaluated condition. The first operator only executes the behavior of process p when



9.3. Modeling Deduction Rules 185

data expression c evaluates to true. The second operator has two bodies, i.e., p and
q, for which the first process p is only executed when c evaluates to true. The second
process g is only executed when ¢ evaluates to false. The first operator is modeled by:

Cond;(c,p)
The second operator is modeled by:

Cond,(c,p,q)

In both meta notations, ¢ € £ is a data expression and p,q € P are process terms.

Both operands contain a syntactic Boolean data expression that requires a semantic
interpretation. With the help of function semg, we compute the semantic value for
1.(p) (the projection function C applied to process term p) under the data valuation
s € S. To evaluate the condition we convert the condition with function B,. The
condition is written inside the guard of the if-statement, instead of the body of the
set comprehension. This notation circumvents infinite rewrite sequences. A more
detailed explanation is given in Chapter 10.3.

The first operator ¢ — p corresponds to the deduction rules Cond; and Cond, in
Table 2.1. for which we provide two data equations:

eqn RCondII(p:S) = if(iSCondl (P) A Bl(sems(ﬂc(P),S)),
{rRoc | 7 €R(11(p),s) Nis (1 (r)) A (1) % 53, 0);
RCondlz(p:s) = l:f(iSCondI (P) A Bl(sems(nc(P),S)),
{rRoc | 7 €R(mt1(p),s) A —is, (1, ()}, 0);

The second operator ¢ — p ¢ q corresponds to the deduction rules Cond,’, ..., Cond,’
in Table 2.1, for which we provide four data equations:

eqn RCond21 (p,s) = lf(iSCondZ(p) A Bl(semé‘(nc(p):s)):

{r:Ro | 7 €R(1t1(p),s) ANis (1 (r)) A o (1) 7 53, 0);
RCondZZ(p:s) = lf(isCondZ(p) A Bl(semf(nc(p):s));

{riRy | T €R(m1(p),s) A s, (1, (r))}, 0);
RCond23 (p:s) = if(iSCondz (P) A _'Bl(semf(nc (P),S))

AT R | 7 €R(my(p),s) Aisy (7 (1)) A (1) & 51, 0);
RCond24 (P:S) = if(iSCondZ (P) A _‘Bl(Semg(ﬂc (P); S))

AT R | T €R(ma(p),s) A —is (1 ()}, 0);

9.3.6 Sum Operator

The sum operator Y. p specifies the enumeration of values over a domain of sort

v:D
D and assigns the values to variable v. Under the selected values, the execution of
process p is performed. The sum operator is modeled as:

Sum(v,p)



186 Chapter 9. Applying the Semantic Bridge

where v € V is a (typed) variable and p € P is a process term.
Although it is illegal to write “true ~2” in an mCRL2 specification, the meta notation
data expression:

E2 (No(“~7), Ex(By(true)), E,(NA(2)))

is a valid mCRL2 data expression. Hence, we need to restrict the generated values to
the proper domain with the domain restriction function My, : V X A — B, modeling
w € Mp, of rules Sum,; and Sum,. If a model specifies the sorts Sort,, ..., Sort,, we
model each disjunct as separate conjunct in the restriction function. The function
returns true if the sort’s value corresponds to the sort’s variable. The data equations
that correspond to function My, are:

map Mp:VxA—B;
var V:A;
w:V;
eqn MD(VJ W) = (iSSortl (V) A isSortl (W)) V...V (iSSortn (V) A iSSort,l (W));

We assume that the sort order for V and A are identical to the order in which the sorts
are declared in the provided mCRL2 specification.

The sum operator possibly extends the data valuation. To ensure that arguments in
the valuation preserve their order, we add a new argument to the ordered list using

A
InsArg : Argument x S — S, i.e., InsArg(argument(v,w),c) = o[v — w]:

map InsArg: Argument X S — S;
var X,y : Argument;
ys:S;
eqn  InsArg(x,[]) = [x];
InsArg(x,y >ys) =if(x < y,x > ypys,y >InsArg(x,ys));

Enumeration over values is defined by an existential quantifier in the body of the
set comprehension. Let p = Sum(v, p’) describe a sum operator in the meta notation.
To update the value that belongs to variable v in the data valuation s we use function
InsArg. The enumeration variable is obtained through the projection function 7,
applied to p, i.e., 7, (p). To find the enumerated values that are valid for this variable
we restrict the set of possible values by M (7, (p),v). Hence, we model Sum, from
Table 2.2 as:

eqn  Rgyp, (p,5) = fisgum(P), {71 R | o () s Ais (10, (1))
A El\/:A]V-’D(ﬂ\/(p);V)/\
(at(moe(r), mp(r), Z) € R(71(p), Z)
whr Z = InsArg(argument(m,(p), v),s) end
)}, 0);

To model Sum, in Table 2.2 we require three auxiliary functions:

o The function GenFreshVar:) x N— ) generates a fresh variable. Fresh variables

are prefixed with a label, i.e., the constructor v, is reserved for the GenFreshVar



9.3. Modeling Deduction Rules 187

function. In this way the n'® generated fresh variable (starting at 1) is repre-
sented by v, (n):

map  GenFreshVar:V x N — V;
var IVans
id:N;
eqn GenFreshVar(Sort%)(l), id)= Sort%;(vy(id));

GenFreshVar(SortY,(1),id) = Sort},(v, (id));

e The function VariableSubstInProcessTerm:(}V — V) x P — P renames all vari-
ables in a process term according to the provided variable substitution func-
tion. Since its implementation is lengthy and straightforward, it is provided in
Appendix B.5.1.

e The function GetHighestld:S — N computes the highest generated identifier
value according to a data valuation. It returns O when no identifiers are found.

map  GetHighestld:S — N;
GetVarld:Argument — N;
var  fs:S;
a:Argument;
eqn  GetHighestld([]) = 0;
GetHighestld(a > fs) = max(GetVarld(a), GetHighestld(fs));
GetVarld(a) = iflis, (v, (m())), (v, (m1,(a))), 0);

Deduction rule Sum, generates a fresh variable, computed by the outcome of func-
tion GenFreshVar(m,(p), GetHighestId(s) + 1). Because the outcome is required twice,
it is assigned to the where-clause VAR. The variable-to-variable substitution function
Ay (V)[7,(p) — VaRr] provides the first argument for the function VariableSubstIn-
ProcessTerm. For the second argument we add argument(VAR, v) to valuation s with
the help of function InsArg, such that we compute InsArg(argument(Var,v),s). Hence
we model deduction rule Rg,y,, as:

ean Ry, (p,5) = iflissun(p), {7 Ree | is, (1 (1)
A (HV:AMD(TCv(p)’ V)
A r € R(VariableSubstInProcessTerm(
Ay, (p) — Var], 7, (p)),
InsArg(argument(Var, v),s)))}
whr VAR = GenFreshVar(m,(p), GetHighestld(s) + 1) end

,0);



188 Chapter 9. Applying the Semantic Bridge

9.3.7 Parallel Operator

The parallel composition p || ¢ denotes the concurrent execution of the processes p
and g. The meta notation expresses the composition as:

Par(p,q)

where p,q € P are meta notated process terms.

The semantics is provided in Table 2.4. The deduction rules Par; to Par, merge
the semantics multi-action equivalence classes from the premises into a new semantic
multi-action equivalence class in the conclusion. To merge the ordered lists of se-
mantic multi-actions we model the auxiliary function MergeActionLists : List(Acty;) X

A
List(Acty,) — List(Acty;), i.e., MergeActionLists(n,m) = (n | m).:

map  MergeActionLists : List(Acty,) X List(Acty) — List(Acty,);
var X,y :Acts;

xs,ys : List(Acty);
eqn  MergeActionLists([],[]) = [1;

MergeActionLists([],xs) = xs;

MergeActionLists(xs, []) = xs;

MergeActionLists(x >xs,y bys) =

if(x <y, x> MergeActionLists(xs, y >ys),
¥y > MergeActionLists(x b xs,ys));

With the help of function MergeActionLists the deduction rules Par; to Par, are mod-
eled straightforwardly. The deduction rule Parg requires several auxiliary functions,
which are subsequently explained.

eqn RParl (P:S) = if(isPar(p)a {r:Rat |
at(1q(r),vp,8) €R(m1(p),s) A 1y (r) & ma(p) A 1y (1) & s}, 0);
RParz(p:s) = if(isp(P), {r: Ry |
Spar (T (F)) A at(1tee(r), 701 (11(r)), T (1)) € R(71(p), )
A =is  ( (1 (P)) A mo(, () & my(p)3, 0);
RPar3(p’S) = if(ispa(P), {r: Ry |
at(7,.(r),vp,8) € R(1y(p),s) A 1y (r) & m1(p) A 1o (r) ~ s}, 0);
RPar4 (p,s) = if(isper(P), {1 R |
Spar (T (r)) A at(7e (), mo( 7y (), 7o (r)) € R(ma(p), s)
A =is (1o(my (P A my(my () & my(p)}, 0);
RPar5 (P,S) = ’f(isPar(p): {r:Rat | is\/(np/(r))/\
3tl,t’z:List’(ActE)at(tl’‘/p’s) € R(Tfl(p):s) A at(t25‘/p’s) € R(ﬂ:2(p):s)
A MergeActionLists(tq, t,) ~ 7, (1)}, 0);
RParG (p,s) = if(isper(p), {r: R |
Elrl,rZ:Rat rne R(Tfl(P),S) ATy € R(sz(P),S)
Nisy(my(r)) A =isy (1,(r2))
A MergeActionLists(Ttq.(11), e (1)) & o (1)
ATy (r) & my(ry) A me(r) & m(r;)}, 0);



9.3. Modeling Deduction Rules 189

RPar7(p:s) = lf(isPar(p): {r:Rat I
I rraT1 ER(71(P),S) A 15 €R(75(p),s)
A =i (7 (r)) A sy (7 (13))
A MergeActionLists( 7. (7)), Tae(r2)) & o (1)
A y(r)~my(r) A Ty (r) ~ ne(r)},0);

To model deduction rule Parg from Chapter 9.2.1, we require nine auxiliary func-
tions. These auxiliary functions are used to identify duplicate variables in the separate
valuations, generate fresh variables and perform substitutions. The descriptions and
implementations are provided next:

1. The function DuplicateVariablesInValuation:S x S — List()) takes two valuations
and computes a list of overlapping variables, i.e., dom(o) N dom(c”’). Hence,
we model:

map  DuplicateVariablesInValuation : S X § — List(V);
var X,y : Argument;
xs:S;
ys:S;
eqn  DuplicateVariablesinValuation([],ys) = [1;
DuplicateVariablesInValuation(xs, []1) = [];
DuplicateVariablesInValuation(x > xs, y >ys) =
if(my(x) ~ my,(y), Ty (x) > DuplicateVariablesInValuation(xs,ys),
if(y,(x) < my,(y), DuplicateVariablesInValuation(xs, y >ys),
DuplicateVariablesInValuation(x > xs,ys)));

2. The function GenFreshVars:N x List(V) — List()) generates a list of fresh vari-
ables. It requires an identifier, i.e., a natural number, to generate unique vari-
ables. To assert that the freshly generated variables are properly typed, it
requires a list of variables’. The function GenFreshVar is described in Chap-
ter 9.3.6.

map  GenFreshVars:N X List()V) — List(V);
var vs:List(V);
v:V;
n:N;
eqn  GenFreshVars(n,[]) = [];
GenFreshVars(n,v >vs) = GenFreshVar(v, n) > GenFreshVars(n + 1,vs);

3. The function GetHighestId:S — N has already been described in Chapter 9.3.6.

‘The freshly generated variables are later substituted for the ones provided here. It is important that
the order of the variables (and therefore the sorts) stays preserved.



190

Chapter 9. Applying the Semantic Bridge

4. The function CreateVariableSubst:List(V) x List(V) — (V — V) models v — v’

It takes two variable lists and creates a variable substitution function. The first
argument denotes a list of variables that is substituted. The second argument
denotes a list of new variables. The lists must have the same length and the
sorts need to be presented in the same order.

map  CreateVariableSubst:List(V) x List(V) — (V — V);
CreateVariableSubst:List(V) X List(V) x (V = V) — (V = V);
var x:V;
x'V;
xs:List(V);
xs’:List(V);
PV —-V;
eqn  CreateVariableSubst(xs,xs") = CreateVariableSubst(xs,xs’, Av:V.(v));
CreateVariableSubst([]1, [1,p) = p;
CreateVariableSubst(x > xs,x’ > xs’, p) =
CreateVariableSubst(xs,xs’, p [x — x']);

The function VariableSubstInValuation:(V — V) x § — S renames the variables
in a data valuation for a given variable substitution function. Hence, we model

— —
o[V — v'] by VariableSubstInValuation( v’ — v’ , o).

map  VariableSubstinValuation:(¥V —» V) xS — S;
var pV—-V;
f5:S;
a:Argument;
eqn  VariableSubstInValuation(p, [1) = [];
VariableSubstInValuation(p, a > fs) =
argument(p(my,(a)), 7w (a)) > VariableSubstinValuation(p, fs);

The function VariableSubstIinProcessTerm is described in Chapter 9.3.6.

The function ValuationMinusValuation:S x S — S takes two (ordered) valua-
tions and removes the arguments from the first valuation if the variables also oc-
cur in the second valuation. Whenever we write ValuationMinusValuation(c,c”)
it models o \ o’.



9.3. Modeling Deduction Rules 191

map
var

eqn

ValuationMinusValuation : S X § — S;
X,y : Argument;
xs:S;
ys:S;
ValuationMinusValuation([],ys) = [];
ValuationMinusValuation(xs, []) = xs;
ValuationMinusValuation(x > xs, y >ys) =
if(x ~ y, ValuationMinusValuation(xs,ys),
if(x < y, x > ValuationMinusValuation(xs, y >ys),
ValuationMinusValuation(x > xs,ys)));

8. The function MergeValuations : S X S — S takes two (ordered) valuations and
constructs a new (ordered) valuation. Thus MergeValuations(c’, c’) models

ocuo’.

map
var

eqn

MergeValuations : S x § — S;
X,y : Argument;
xs,ys : S;
MergeValuations([1,[1) = [1;
MergeValuations([],xs) = xs;
MergeValuations(xs, []) = xs;
MergeValuations(x >xs,y >ys) =

if(x <y, x > MergeValuations(xs, y >ys),

y > MergeValuations(x > xs,ys));

9. The function MergeActionLists is described at the start of this subsection.

For readability we construct a where-clause SussT that models a variable substitu-
tion. Let 7,/ (r;) and 7/ (ry) be the data valuations of respectively the premises on
the left and right. Then the short-hand notation for the clause is defined through:

SuBsT = CreateVariableSubst(

Dup, GenFreshVars(
max(GetHighestld( (1)), GetHighestld(mt . (r5))) + 1,Dup)
) whr Dup = DuplicateVariablesInValuation(
ValuationMinusValuation(7t /(15), ),
ValuationMinusValuation( . (r,),s))
end

With the help of the auxiliary functions we construct the data equation that belongs
to deduction rule Parg. Firstly, we compute the lowest identifier that can be used to
generate fresh variables with max(GetHighestld(r,.(r;)), GetHighestld(mt,.(ry))) + 1.
Secondly, we compute the arguments that differ from the valuation s. The valu-
ation of the left premise is computed by ValuationMinusValuation(r,.(r;),s). The
valuation of the right premise is computed by ValuationMinusValuation(wt,(r5),s).



192 Chapter 9. Applying the Semantic Bridge

Thirdly, by using these two valuation, we compute the variables that have dupli-
cate labels with function DuplicateVariablesInValuation. Because the outcome is re-
quired twice, we introduce a second where-clause Dup. Fourthly, with the help
of GenFreshVars(max(GetHighestld( . (r;)), GetHighestld( . (r5)))+ 1,Dup), we gen-
erate a list of fresh variables that resolves the overlapping of variables. Finally,
we compute the substitution function CreateVariableSubst. The result is assigned to
the where-clause SussT that is used in the functions VariableSubstInProcessTerm and
VariableSubstInValuation. Hence, the data equation becomes:

eqn RPars (p,s) = iflispa,(P), {r: R |
iSPar(ﬂ-p’(r)) A Elrl,rz:Rar
(r1 €R(7t1(p),s) A 15 €R(5(p),s)
A =is (T () A =is, (1(73))
A Tt,.(r) & MergeActionLists(7,.(11), Ta(15))
A 1y (e (1)) 2 ()
A my(7, (1)) & VariableSubstinProcessTerm(SUBST, 1t (13))
A to(r)~ MergeValuations(mt,.(r;y)
, VariableSubstInValuation(SUBST,
ValuationMinusValuation( 7. (r5),s)))
whr Susst=... end) },0);

9.3.8 Sync Operator

The sync composition p | ¢ denotes the synchronized execution of the first action from
both process terms p and g, after which the remainder of the process term behaves
concurrently. The meta notation that corresponds to p | q is given by:

Sync(p,q)

where p,q € P are meta notated process terms.

Deduction rules Sync;, ..., Syncs in Table 2.5 and deduction rule Sync,, discussed
in Chapter 9.2.1, describe the semantics. The semantics is similar to the deduction
rules for the parallel operator. Since we already discussed the design decisions for the
unification of the valuations in Chapter 9.3.7, we only provide the (analogue) data
equations. The implementation of the where-clause SussTt, modeled in the deduction
rule Sync,, is identical to the one modeled in the data equation Rp;., .

eqn RSyncl (P,S) = if(iSSync(p)’ {r : Rat | T’:o"(r) NS
Nis (1 (1))
A EIrl,rz:’Ratrl € R(77~'1(P);5) A ry € R(”z(?):s)
Nisy(mty(r)) A is, (1, (ry))
A MergeActionLists(7t,.(1r1), Tge(ry)) & 4. (r)}, 0);



9.3. Modeling Deduction Rules 193

RSync2 (P;S) = lf(isSync(p): {T‘ : Rat |
Elrl,rzsz r e R(7'C1 (P),S) N Ty € R(”z(P),S)
A 7is (7T (r)) A isy (7T(13))
A MergeActionLists(7,.(71), Tae(r9)) & 4. (1)
ANry(r)~ my(r) A ne(r) =~ me(r)}, 0);
RSyn53 (p,s) = lf(iSSync(p): {r:Reel
3.1 €R(M1(P),s) A 15 €R(7,(p),s)
Nisy(mty(r)) A s, (7 (rs))
A MergeActionLists( 7. (r7), Tae(r2)) & 7o (1)
A p(r)m my(ry) A o (r) ~ ()}, 0);
RSync4 (p;s) = lf(isSync(p): {r:Rat |
isPar(ﬂ:p’(r)) A Hrl,rZ:Rm
(r1 €R(m1(p),s) A 15 € R(m2(p),s)
A =iis (1 (1)) A iis (1, (1)
A Tt.(r) & MergeActionLists(7t,.(11), Tae(13))
A nl(ﬂp’(r)) ~ np'(r].)
A 1y(7,y (1)) & VariableSubstinProcessTerm(SuBsT, 7,/ (1))
A Tty (r) ~ MergeValuations(m,.(r;)
, VariableSubstInValuation(SUBST,
ValuationMinusValuation(7t,.(13),s)))}, 0);

9.3.9 Left Merge Operator

The left merge composition p || q expresses that the process term on the left has
to perform an action first, before the remainder executes concurrently. In the meta
notation, we write the composition as:

Lmerge(p,q)

assuming that p,q € P are meta notation process terms.

The semantics is described by two deduction rules. The first rule Lmerge; in Ta-
ble 2.5 expresses the successful termination of p after which the process behaves as g.
The second rule Lmerge, expresses the continuation of p’ || ¢ after performing a first
action from p. No explicit design decisions are taken. Hence the rules are straightfor-
wardly modeled:

eqn RLmergel (P;S) = lf(iSLmerge(p): {r:Rat I at(nac(r): ‘/p;s) € R(Tfl(P),S)
A 7ty (1) & 1o(p) A 1o (1) 2 53, 0);
RLmergeZ (p,s) = lf(isLmerge(p); {riRe |
i5par (70 (P A at(7oe(1), 701 (7 (1), 6 (1)) € R(71(p), 5)
A (1 (1)) & o (p) A —is (704 (70 (1))}, 0);

9.3.10 Allow Operator

The allow term V(p) only permits the semantic multi-action equivalence classes for
which the corresponding action labels are defined in the set of multi-action labels V



194 Chapter 9. Applying the Semantic Bridge

for p. The meta notation denotes the allow operator as:
Allow(V, p)

where V:Set(Bag(Act;,)) defines the set of permitted multi-action labels (represented
by a bag of action labels) and p € P defines the process term.

Deduction rules Allow; and Allow, in Table 2.6 describe the semantics that belong
to the allow operator. We see that function a.., (Definition 2.2.18) operates on in-
ference rules for which it determines if the semantic multi-action equivalence class
(without values) occurs in sets of semantic multi-action labels. To strip the data pa-
rameters from the actions, we specify the auxiliary function actionlabels:List(Acty,) —
Bag(Act;q):

map  actionlabels:List(Acty;) — Bag(Actyq);
var ac:List(Acty);

a:Acts;
eqn  actionlabels([]) = [1;

actionlabels(a >ac) = {r, (a):1} wactionlabels(ac);

Qiab

Observe that the internal action (t..) is always allowed by the allow operator. Hence,
we extend the set of multi-action labels with the empty set. To ensure that the seman-
tic multi-action equivalence class ac occurs in the set of allowed multi-actions labels
1y (p) U {0}, we state that the following condition must hold in the body of the set
comprehension

actionlabels(ac) € (n,(p) U {0})

The remainder of the deduction rules is modeled straightforwardly:

eqn RAllow1 (P,S) = if(iSAllow(p)> {r:Rat | is\/(ﬂ:p/(r)) ANTE R(ﬂl(P),S)
A actionlabels(m,.(r)) € (7, (p) U {0}) A (1) ~ s},0);
RAllowz(prs) = if(iSAllow(p)> {r:Rat | isAllow(np’(r)) A _'is\/(nl(np’(r)))
A 1y (1t (1)) & y(p) A at(me (), 01 (7 (7)), T (1)) € R(71(P),5)
A actionlabels(rt,.(r)) € (ny(p) U {0})}, 0);

9.3.11 Block Operator

The block term J5(p) encapsulates all (multi)-actions for which an action label occurs
in the set of blocking labels B performed by p. The block term is written in the meta
notation as:

Block(B, p)

where B:Set(Act; ;) is a set (of blocking) action labels and p € P is the process term.

The deduction rules Block; and Block, are stated in Table 2.6. To determine if
a part of an action label of a semantic multi-action equivalence class occurs in the
set of blocking labels, we perform an abstraction on the class. The abstraction is
provided through function actionlabels. The built-in function Bag2Set (transforms



9.3. Modeling Deduction Rules 195

the multi-action labels to a set of action labels), and the intersection of blocking la-
bels. Only when the intersection between the blocking labels and the labels of a
multi-action equivalence class are empty, it is possible to perform a transition. If
p € P = Block(B, p’) is a blocking process term, and if ac is the semantic multi-action
equivalence class, then the following condition must hold in the body of the set com-
prehension:

Bag2Set(actionlabels(ac)) N (g (p)) ~ 0

With the help of the auxiliary function we model the two deduction rules by:

eqn RBlockl (P:S) = l:f(iSBlock(p): {r:Rat | iS\/(ﬁp/(r))
A r €R(m(p),s) N Bag2Set(actionlabels(m,.(r))) N (nmz(p)) ~ 0
ATt(r) ~s},0);
Reiock, (P> 8) = if(iSpiock(P)s {7 Reae | Spiocic (70 (7))
A s (1t (m (r))) A mig(my(r)) ~ mg(p)
A at(1 (1), T (70, (1), o (1)) € R(71(p), s)
A Bag2Set(actionlabels(r,.(r))) N (rtz(p)) ~ 0},0);

9.3.12 Action Rename Operator

The action rename term pg(p) renames (multi)-action labels according to function
R (Definition 2.2.18) for a process term p. In the meta notation the action rename
operator is written as:

Rename(Ren, p)

where Ren:Act;,, — Act;,, is @ modeled rename function R and p € P is a process
term. The rename function Ren is modeled as an identity function ID, where function
updates model the renaming for selective updates. The function ID is modeled as:

map ID:Actyy, — Actg;
var X:Actygp;
eqn  ID(x)=x;

Thus the renaming of {x; — y1,...,x, — ¥,} for Ren is then defined through ID[x; —
Y15--+5Xp Hyn]

To perform the actual renaming of the labels, i.e., R e (ac), we introduce function
Actpename:(Actpqp — Actyqp) X List(Acty) — List(Acty). The function requires an action
label rename function and a semantic multi-action equivalence class, and produces a
semantic multi-action in which the action labels are renamed and ordered simultane-
ously:

map  Actgename:(Actig — Actyqy) X List(Acty,) — List(Acty);
var frAct g — Actiap;
a:Acts;
ac:List(Acty);
eqn ACtRename(f; (D="[]
ACtRename (f: av ac) = IHSACt(ACtsem(f(nalab (a)): Tlargs (a))rACtRename(f: ac));



196 Chapter 9. Applying the Semantic Bridge

Let p = Rename(Ren, p’) be an action rename operator and let ac be a semantic multi-
action, then Actg,name(Tren(P), ac) returns a semantic multi-action in which the action
rename function 7tg,,(p) as been applied to ac. To find a valid substitution for a
semantic multi-action equivalence class we introduce semantic multi-action ac’. The
deduction rules Ren; and Ren, are then modeled as:

eqn RRenamel (P, s)= if(isRename(p): {r:Rat |
is\/(np’(r)) A Elac’:List(ActE)//“Cac(r) ~ ActRename(TcRen(p): acl)
A at(ac’, mwy(r),s) € R(m1(p),s) A Ty (r) &~ s},0);
RRenameZ (p’ S) = if(isRename(p)’ {r:Rat |
TCRen(np’(r)) A ﬂRen(p) A isRename(Tcp’(r)) A ﬁis\/(ﬂrl(ﬂ:p’(r)))
A 3ac’:List(Ath)7-!:ac(r) ~ ACtRename(nRen(p)’ ac’)
A at(ac’, 7y (my(r), Ty (1)) € R(11(p), 5D}, 0);

9.3.13 Hide Operator

The hide term 7;(p) hides all actions in a semantic multi-action equivalence class,
for which the corresponding label occurs in the set of labels I. The meta notation
expresses this term as:

Hide(I,p)

where I:Set(Act; ;) is the set of action labels and p € P is a process term.

Hiding actions in a semantic multi-action equivalence class ac is performed by
the function Actyg,:Set(Act; ;) X List(Acty,) — List(Acty;), thereby implementing 6, (ac)
from Definition 2.2.18, where I is a set of action labels:

map  Actyg:Set(Act;y) X List(Acty) — List(Acty,);
var I:Set(Act;gp);

a:Acts;

ac:List(Acty,);
eqn  Actyg(I, [1) = [;

ACtHide(I7 ar ac) = lf(ﬂ: (a) € I7ACtHide(I: ClC), a DIq(:tHide(I: ac));

Qlab
Let p be Hide(I,p’) and let ac be a semantic multi-action equivalence class then
Actyige(7t;(p), ac) returns the semantic multi-action equivalence class in which the
actions are hidden. Because the semantic actions are provided in an ordered list, re-
moving an element preserves the order. Therefore it is not required to order the list
afterwards.

Using function Acty;g, and an additional semantic multi-action ac’ (to find a valid
substitution), we specify the deduction rules Hide, and Hide, of Table 2.6 as:

eqn RHidel (p;s) = if(isHide(p)’ {r:Rat |
5, (7 (T A Jaemise(acey)
Tqe(1) & Actyyge(701(p),ac’) A at(ac’, m,(r),s) € R(m1(p),s) A o (1) ~ s}, 0);
RHidez(p’S) = if(iSHide(p): {r:Rat |
(7t () & 71(p) Aispige (T (P)) A —is (701 (7 (F))) A Jaertisecacts,)
Tae(1) & Actyyige (10, (p), ac’) A at(ac’, (7, (1)), 7o (1)) € R(7t1(p), $)}, 0);



9.3. Modeling Deduction Rules 197

9.3.14 Prehide Operator

The prehide term Y (p) prehides all actions for which the action label occurs in the
set of prehiding labels. All action data parameters are removed and the actions are
relabeled to int for only those actions for which the label occurs in U. In the meta
notation the operator is written as:

Prehide(U, p)

where U:Set(Act; ) is the set of action labels that prehides the corresponding actions
in process term p € P.

The function Actpepige:Set(Actyqp) X List(Acts,) — List(Acty,) prehides actions in a se-
mantic multi-action equivalence class ac. It models 1(ac) from Definition 2.2.18
where U is the set of action labels that are prehidden and ac is the semantic multi-
action equivalence class. Note, that int is a reserved action label, that must be mod-
eled by Act; .

map  Actprenige:Set(Act;qp) X List(Acty) — List(Acty,);
var U:Set(Actyqp);
ac:List(Acty);
a:Acts;
eqn Actprenige(U, [1) = [1;
Actprenige(U, a>ac) = if(m,,, (a) € U, InsAct(ActSem(int, []),
ACtPrehide(U: ClC)), a DACtPrehide(Uy ac));

With function Actp,,piq. We model the deduction rules Pre; and Pre, as:

eqn RPrel (p:s) = if(isPrehide(p): {r:Rat | is\/(ﬂ-p’(r))
A EIac’:List(Ath)TEac(r) ~ ACtPrehide(nU(p)’ acl)
A at(ac’, my(r),s) € R(m1(p),s) A o (1) ~ s}, 0);
RPrez(pﬁs) = if(isPrehide(p): {r:Rat | ’/TU(TCP/(I')) A TCU(p)
/\isPrehide(TCp’(r)) A _'is\/(ﬂ:l(np’(r))) A EIac’:List(ActE)
ﬂac(r) ~ ACtPrehide(TCU(p), aC/)A
at(ac’, 71, (7, (1), 7o (r)) € R(71(p), $)}, 0);

9.3.15 Communication Operator

The communication term I'-(p) renames synchronizing actions. Actions are renamed
when the bag of action labels occurs in the multi-action and the action data param-
eters all have the same semantic value. The communication is specified by a partial
function, where dom(C) denotes the bags of synchronizing action labels, and range(C)
specifies the result of the action label renaming. The data parameters remain un-
changed during the synchronization. A communication mapping is modeled by the
sort C.

sort  C = struct communication(Cgop,:List(Act ), Crange ‘ACtiqp);



198 Chapter 9. Applying the Semantic Bridge

The bag of synchronizing action labels is specified through Cg,,,. The resulting action
label is specified through C, . The partial communication function is modeled by a
list of C. The communication term is modeled as:

Comm(CtS | p)

where Cﬁ;ﬁ;m:List(C) is a list of communications and p:P is a process term.

Function y. from Definition 2.2.18 is modeled by the function Act¢,,,,. The basic
idea of the function is, that it first constructs a mapping which maps the value list
from the data parameters to a bag of action labels from a multi-action equivalence
class. The mapping is computed by function f92?. This initially maps all value lists to
an empty bag of action labels. Secondly, we traverse the semantic multi-action equiv-
alence class using Actgyy,, for the first communication. If we encounter an action,
for which the list of values maps to a bag of action labels that is a subset for the bag
of communication labels, we substitute the matching actions with the communica-
tion result, and recompute for the remaining multi-action equivalence class its data
value to action label mapping. If an action does not communicate, it is added to the
list of remaining actions that need to be traversed by the next communication. The
multi-action equivalence class is traversed until all actions have been inspected. Then
it removes the communication and proceeds with the next communication, thereby
using the list of remaining actions. The process is repeated until all communications
are processed.

map  Actgymm:List(C) X List(Acty) — List(Acty,);
var ac:List(Acty);

chmm:C;

chst :List(C);
eqn ACtComm( [] > ac) =ac;

ACtComm(Ccomm > C(I;J;S,;m> ac) =

ACtComm’ (Ccomm’ Cgsr;m: ac, fd2a (ClC, )'x:List(A)w)s LZB(CdOm(Ccomm)): [] > [] );

The function f92% : List(Acty,) x (List(A) — Bag(Acty,)) — (List(A) — Bag(Act, ;) con-
structs a mapping d2a : List(A) — Bag(Act;,,) that relates lists of values to bags of
action labels from a list of semantic actions:

map 9% List(Acty) x (List(A) — Bag(Act;)) — (List(A) — Bag(Act;));
var d2a:List(A) — Bag(Act;4);
ac:List(Acty,);
a:Acts;
eqn  f9%%([],d2a) = d2a;
dea(a >ac,d2a) = ded(aC’ dza[ﬂ:args(a) e dza(ﬂ:args(a)) W {ﬂ:alab(a):l}]);

The bag of communicating action labels is computed by function L2B:



9.3. Modeling Deduction Rules 199

map  L2B:List(Act;,,) — Bag(Act;q);
var AuapActrgp
Caom -List(Acty )
eqn  L2B([])=0;
LZB(alab > Cdom) = {alab:l} W LZB(Cdom);

We traverse a multi-action equivalence class by function Acteyp,. If we find a match
(Coomm & d2a(7ye5(a)))), then the matching semantic actions are replaced by the
synchronizing result. The substitution is performed by removing the matching ac-
tions, using function Actions™. The result is added to the list successful communica-
tion actions (InsAct(Ceomm> ActSem(Ciange(Coomm)> Targs(@)), Actgesyie)). Then we recom-
pute the lists of data values to action labels mapping (f 42¢(Actions™ (Com(Ceomm), @ >
ac, Targs(a)), Ayrise(y?))- If the action does not match, it is added to the list of remain-

. . List
g actions (ACtCOmm’(Ccomm) Ccomm’ ac, dZCl, Ccomm:ActResult: a DACtRemain)) .

map  Acteymm :C X List(C) x List(Acty;) x (List(A) — Bag(Act;qp))
xBag(Act; ) % List(Acty;) % List(Acts,) — List(Acty);
var d2a:List(A) — Bag(Act;4);
Ccomm :Bag (ACtLab );
ACtResult’ ACtRemain :Lis t(ACtZ );
chmm:C;
Clst :List(C);
ac:List(Acty);
a:Acts;
eqn ACtComm’ (Ccamm7 C(L;f;lm: [] ) dZCl, CcommJACtRes_ult’ACtRemain) =
MergeActionLists(Actpesyits At comm (C3L  ACtemain));
ACtComm’ (Ccomm’ Cgésr;m’ arac, d2(1, Ccomm:ACtResulnACtRemain) =
fCeamm S 420(Trgs(@),

Actomm ( Ceomms> Co3t - Actions™ (Com (Coomm), @ > aC, Tgpgs(@)),
fd2a (ACtions_(Cdom (Ccomm)’ arac, nargs(a))’ A'x:List(A)Q)’
InSACt(ccomm7ACtsem(Crange(Ccomm)’ nargs(a))’ACtResult);
ACtRemain')

:ACtComm’(Ccomm’ Ciésrfmp ac, d2a> Ccomm’ACtResult’ a DACtRemain)

);
Here, function Actions™ is defined as:

map  Actions” :List(Act; ) X List(Acty,) % List(A) — List(Acty);
var - QgpiActy;

Cdom :Lis t(ACtLab );

ac:List(Acty,);

args:List(A);
eqn  Actions™ ([],ac,args) = ac;

Actions™ (alab > Cdom, AC, args) =

Actions™ (Cgom,Action™ (ActSem(ayq, args), ac), args);



200 Chapter 9. Applying the Semantic Bridge

The function Actions™ uses the auxiliary function Action™ to remove individual actions
from a list of semantic actions:

map  Action™ :Acty, X List(Acty) — List(Acty,);
var a, b:Acty;
ac:List(Acty);
eqn  Action (a,[])=1[];
Action™ (a, b>ac) =ifla ~ b,ac, b > Action™ (a, ac));

With the help of these functions we model the deduction rules Comm; and Comm, as:

eqn RComml(p:s) = if(iscomm(P), {7 R | l'S\/(TCp/(r))
A EIac’:LLst(Act):)at(aC/a np’(r): S) € R(Tfl(P),S) A 7'[01(1’) NS
A Toe(1) m Act gomm(T s (p), ac’)}, 0);
RCommz(p:s) = if(iSComm(p): {r:Rat | ﬁcg‘rflm(np’(r)) ~ chgiflm (P)
/\isComm(ﬂ:p’(r)) A ﬁl'S\/(TCl(TCP/(T‘))) A EIac’:List(ActE)
nac(r) ~ ACtComm(ﬂ:Ci-éi‘nm (P)’ aC/)
A at(ac’, i (10,(r), T (1)) € R(71(p), $)}, 0);

9.3.16 Process Definition

The mCRL2 language describes the set of process definitions as a system of pro-
cess equations. An equation consists of a process label, a list of process parameters
and a process expression. The system of process equations is defined by PE (Defini-
tion 2.2.10). A process definition is specified as X( V) = p where X € PE and a process

reference is written as X (17;?1)). We have chosen to model this syntax for its flexibil-
ity, i.e., the process parameter updates can be specified in random order, results in a
concise and readable meta notation, and intuitively specifies the variable substitution
inside a process term.

Process Equation System When {X;,...,X,} specifies the set of all process labels
from an mCRL2 specification, then the sort X models the process labels:

sort X =structX;|...|X,;

To model PE we introduce a Process Equation System function PES : X — P that maps
process labels to process terms. When we assume that PE= {X; (V) =p1,...,X,(v,) =
p.}, where v7,..., 7V, denote the process parameters, and p, ..., p, denote the asso-
ciated process terms, then we model the equation system as:

sort X =structX;|...|X,;
map PES:X - P
eqn  PES(X;)=py;

PES(X,) = Pn;



9.3. Modeling Deduction Rules 201

Process References The term X (v,=d;,...,Vv,=d,) expresses a process reference in
the mCRL2 language. A process parameter update (or an assignment) v;=d;,(1 <i <
n) is modeled by sort Q:

sort Q = struct ProcParAss(,,:V, dataexpression:£);
The process reference itself is modeled as:
Def(X, [ProcParAss(vy,d;),...,ProcParAss(v,,d,)])

where X € & is a process label, v; €V is a variable label and d; € £ is a data expression,
for 1 <i < n. Using Def in conjunction with PES specifies a mechanism that assigns
data expressions to local variables and provides a substitution for variables in both
the process terms and data valuations.

Deduction Rules To model {[E)]}U from deduction rule Def; in Table 2.7 and Def,
from Chapter 9.2.1, we interpret the data expressions on the right hand-side of the
assignments. Using function Assignments?:List(Q) x S — S we interpret the values
and update the data valuation:

map  Assignments® : List(Q) x S — S;
Assignments® : Q X § — Argument;
var p:9;
pl: List(Q);
s:S;
eqn  Assignments’(p,s) = argument(,,(p), semg (dataexpression(p),s));
Assignments® ([],s) = [];
Assignments® (p > pl,s) = InsArg(Assignments® (p,s), Assignments® (pl,s));

For deduction rule Def, from Table 2.7 we model o[V — {[?]}U] by computing
the process parameter updates with the function Assignments® for the assignments
TprocParasss (P) and the data valuation s. To update variables in a data valuation we
subsequently remove duplicate variables with the function RemoveArgWithDupVar :
List(Q) x S — S. The auxiliary function RemoveArgWithDupVar’ requires an ordered
list of assignments. Because assignments can be specified in any order, they are or-
dered by the function OrderPP:

map  RemoveArgWithDupVar : List(Q) X S — S;
RemoveArgWithDupVar’ : List(Q) x S — S;
OrderPP : List(Q) — List(Q);

InsertPP : Q x List(Q) — List(Q);

var p,q: 9;

Ip,lq : List(Q);
v : Argument;

vi:S;



202 Chapter 9. Applying the Semantic Bridge

eqn  OrderPP([])=1[];

OrderPP(p > Ip) = InsertPP(p, OrderPP(Ip));

InsertPP(p, [1) = [p];

InsertPP(p,q >1q) = if(p < q,p>q*>lq,q>InsertPP(p,lq));

RemoveArgWithDupVar(lp,vl) =

RemoveArgWithDupVar’(OrderPP(Ip), vD);

RemoveArgWithDupVar'([],vl) = vi;

RemoveArgWithDupVar'(Ip, [1) = [1;

RemoveArgWithDupVar’(p > Ip,v > vl) =

if(mty,(p) &~ 7y,(v), RemoveArgWithDupVar’(Ip, vD),
if(mty,(p) > my,(v), v > RemoveArgWithDupVar'(p » Ip, vD),

RemoveArgWithDupVar’(Ip,v > v1)));

Afterwards we combine the constructed valuations using the function MergeValuations.
If we find a transition relation, the valuation remains unchanged w.r.t. to the input
valuation due to the conjunct 7,.(r) ~ s. Hence we model deduction rules Def; as:

eqn  Rpy (p,s) = iflisgy(p), {r: Ry | at(my (1), 7y (1), 8) € R(PES(7tpg,, (P)), S)
Ao (r)ms A is,(m,(r))},0)
whr S = MergeValuations(Assignments® (T poeparasss (P)>S)s
RemoveArgWithDupVar( TUprocParAsss (P), S ))
end ;

To model deduction rule Def, from Chapter 9.2.1 we have to specify (i) 0[7 —
{[d 1] and (D) q[V — V1.

e To model (i) we specify {[ 4 e with the help of function Assignments®. Then

function CreateVariableSubst models v — {[ d 1}9. Using the data expression
GenFreshVars(GetHighestld(s) + 1, GetVarLabelsFromPP(PE;,;,(p))), we generate
the fresh variables that are required for the assignments. The data expres-

LN
sion MergeValuations(REN,s) merges two valuations such that it models o[ v/ —

d1el.

e To model (ii) we specify q € PE by PES(7pg, , (p)). Fresh variables are modeled by
means of GetVarLabelsFromPP(Ttp, ocparasss((P)), GenFreshVars(GetHighestld(s) + 1,
GetVarLabelsFromPP( Tt p,ocparasss(P)))- The fresh variables are subsequently used

-
in CreateVariableSubst to model v — v’. The substitution is modeled by the
already specified function VariableSubstInProcessTerm. The result is assigned to
SUBST.

By combining (i) and (ii) we model deduction rule Def, as:



9.4. Examples 203

eqn Ry, (p,s) = if(isar(p), {r: Ry, | € R(SussT, MergeValuations(REN, s))
A s (1, ()}, 0)
whr ReN = VariableSubstinValuation(
CreateVariableSubst(GetVarLabelsFromPP( T p,oparasss (P))s
GenFreshVars(GetHighestld(s) + 1,
GetVarLabelsFromPP(PE,,;,(p)))),
ASSignmentsa(ﬂProcParAsss (P), 5))a
SusT = VariableSubstInProcessTerm(
CreateVariableSubst(GetVarLabelsFromPP( T p.ocparasss (P))s
GenFreshVars(GetHighestld(s) + 1,
GetVarLabelsFromPP( Tt p,oparasss(P)))),

PES(7tpg,, (P)))
end ;

9.4 Examples

The dogfooding approach captures the untimed semantics of the mCRL2 language in
(roughly) 1000 lines of mCRL2 code. To validate that the approach can be used to
study the semantics of a language, this section illustrates some of the models that
have been analyzed. The implementation and all of the studied models can be found
in Appendix B.5. The language specific parts are provided in Appendix B.5.1. The
model specific parts are provided in Appendix B.5.2. The various input models are
provided in Appendix B.5.3, where every initialization specifies a separate model.

Figure 9.1 illustrates six examples that were generated using the mCRL2 toolset
(Release 2012, February). Every illustration corresponds to a generated LTS for a
model in the meta notation, for which the mCRL2 representations are provided in
the corresponding captions. An arrow depicts a transition. A node depicts a state.
The initial state is indicated with a doubly lined node. A white colored node with
outgoing transitions marks a non-terminating state, whereas a white colored state
without outgoing transitions marks a terminating state. A gray colored state without
any outgoing transitions marks a deadlock state.

The tools that have been used to generate the pictures are subsequently txt2lps,
Ips2lts and Itsgraph. The first tool reads a textual LPS and stores it in the binary LPS
format. The second tool unfolds an LPS into an LTS. The third tool has been used to
position the states of the LTS and to export the figures.

Figure 9.1(a) Figure 9.1(a) depicts the behavior for the mCRL2 process “T +a; - §”.
The meta notated model that has been used corresponds to:

Alt(Alpha([tau]), Seq(Alpha([Act(a,, [1)]), Deadlock))

2

We assume an empty valuation, i.e., “s = []



204

Chapter 9. Applying the Semantic Bridge

©)

A([ActSem(ay, [1D]) a
\ A
@ t+a;-6
a A(Assem(ay, (B @)D (7)
A([ActSem(ag, [B (false)])])

® X vi—ay(v)eaz(vy)

vi:B

A([ActSem(ay, []),ActSem(ay , [1)])

(9 Tiaylay—ay} (azla;lay)

A([ActSem(ay , [BA (true)])])

®

A([ActSem(as, [BA (true)])])

A([ActSem(ag, [BA (false)])])

(d) Py(v; =true)

(e) Ps=ay-(az |l P3)

{ Al a3])
3095

A([ActSem(ay , [BA (false)])]) e

Ale], 3D alaf,a]) A([a5,a3])

' Ala}d -

: - = 5)
- =72 7=

S 7 TRV A (%)
2 e &1y ,,S/A([zf},)a%/,a;])

» o T 1% ')2//

g ’
»a: as
Al ay,a)) Alleah.a3])

A([ActSem(ay, [B (true)])]) e
A([ActSem(ay, [B (false)])]) °

A([ActSem(aq, [BA (true)])])

() P4(vy =true)

Figure 9.1 Six generated LTSs for different mCRL2 SOS input models



9.4. Examples 205

Figure 9.1(b) Figure 9.1(b) illustrates the behavior for the mCRL2 process “ Y v; —
B
a,(v1) ¢ as(v;)”. The meta notated model that has been used corresponds to:

Sum([By,(v,)], Condy(Ey (By(v1)),
Alpha([Act(ay, [Ey(By(v1))]D]), Alpha([Act(as, [y, (By(v1))])])))

We assume that the initial data valuation is empty.

Figure 9.1(c) Figure 9.1(c) shows the LTS for the effect of a communication. We
consider the native mCRL2 model “T'y4,|q,.q,}(@2]a;1|a3)” that synchronizes the multi-
action a,|a, into the a; action. The meta notation that we use is :

Comm([communication([a,, a,],a;)],Alpha([Act(a,, [1),Act(ay, [1),Act(as,, [1)]))

For generating the state space, we assume the initial data valuation to be empty.

Figure 9.1(d) The effect of local variables (i.e., the assignment of values to process
parameters) is illustrated in Figure 9.1(d) for the native mCRL2 process:

proc  P;(vi:B) = a;(v;) - (Po(v; = false) - az(vy));
Py(v:B) = ay(vy);

The meta notation is defined as:

eqn  PES(P,) = Seq(Alpha([Act(ay, [£y,(By,(v1))]]),
Seq(Def (P, [ProcParAss(By,(v;), EA(B, (false)))]),
Alpha([Act(as, [, (B, (v1))1D1));
PES(P,) = Alpha([Act(ay, [, (By,(v1))]D]);

The initial model that is provided is “P;(v; = true)” is in the meta notation reflected
by “P; ([argument(B,,(v,), B, (true))])”. Initially we assume an empty data valuation.
Observe the value changes of the Boolean variable v; in the data parameters of the
actions a;, a,, and as.

Figure 9.1(e) Figure 9.1(e) shows the behavior for the recursive process definition
of the native mCRL2 process “P; = a; - (a, || P;)”. The process allows more concurrent
behavior every time the recursion is unfolded. For presentation purposes we have
omitted the labels from the transitions. The corresponding meta model is:

eqn  PES(P3) = Seq(Alpha([Act(ay, [1)]), Par(Alpha([Act(ay, [1)]), Def(Ps, [1)));

The initialization is provided through the mCRL2 process term “P;” or, in the meta no-
tation, “Def(P;, [])”. It is a valid mCRL2 specification but since the process introduces
more concurrency at every recursion, it can not be linearized by the toolset. That is,
to linearize an mCRL2 specification it must be either in the pCRL format [RGZW02]



206 Chapter 9. Applying the Semantic Bridge

a, (false)

a, (true)
Figure 9.2 Generated LTS for the mCRL2 process P,(v{:B) =a;(v;)-P4(—v1)

or comply to the LPS format. Since the specification is none of the above, it can-
not be used as input nor can we generate the corresponding state space. If we use
the technique described in [SRW11b], we can generate the state space, because our
framework produces models in the LPS format.

The model unfolds infinitely and we observe an exponential (unbounded) growth
in computation time (and memory usage) to calculate the transitions. Therefore we
only show the corresponding transitions for the first five states!.

Figure 9.1(f) Figure 9.1(f) shows the recursive mCRL2 process:
Py(vi:B) = a;(v1) - P4(—vy)

The process performs the action a; in which it shows the value of the Boolean variable
v;. After performing the action, we negate the value for variable v; and perform
the process again. The state space for the native mCRL2 specification is depicted in
Figure 9.2. We assume that v; is initially true.

Now, when we transform this process term into the meta notation we write:

eqn  PES(P,) = Seq(Alpha([Act(ay, [£,(By,(v))DD),
Def(Py, [ProcParAss(By,(v1), €,y (Bo(neg), £y (By(v1)))D);

For the state space of the meta notation model, we witness a non-terminating path
(illustrated by a dotted line). If we compare the state spaces, we clearly see that the
semantics between the two models deviates. The difference is caused by the gener-
ation and subsequently renaming of the fresh variables in a process definition in our
approach, while the reuse of variables is enforced in the implementation. Investiga-
tion shows that the difference is caused by the generation and subsequently renaming
of the fresh variables in a process definition. The mCRL2 semantics states that every
unfold of a process definition introduces a (fresh) variable. This means that we will
never visit a previous visited state for which the process term and the data valuation
are identical.

IFor illustration purposes we added a 67 state, and renamed the transition labels A([ActSem(ay, [1)])
and A([ActSem(ay, [1)]) to aj and af respectively.



9.5. Discovered Issues 207

Missing operator Added missing operator
mn(Vu{t}) #0, mn(Vu{r}) #0,
(Allow,) (p,o) —>n{1(p ct ) _ | (allow,) (p,o) — (p,o 2 :
(Vy(p),o) — (p",0") (Vy(p),o) — (Vy(p),0")

Table 9.1 Example of a missing operator in a deduction rule

9.5 Discovered Issues

Dogfooding the mCRL2 language forced us to closely look at the defined formal se-
mantics. Although the language is formal, the semantic definitions still contained
ambiguous behavior. To illustrate, the original specification states: “let there be a
fresh variable d’”. Does it mean that d’ is a unique fresh variable or do infinitely
many fresh variables correspond to d’? We assumed the first since it defines behavior
that can be (exhaustively) simulated. The second option would correspond to infinite
branching behavior for every freshly introduced variable.

Dogfooding also led to the definition of a semantic multi-action equivalence class.
The original semantics specifies a multi-action as a collection of semantic actions. It
assumes that the semantic multi-action is an equivalence class, however this is never
explicitly stated, but is required for the defined functions on the inference rules. The
statement has been made explicit in Chapter 2.2.

Dogfooding the formal semantics revealed semantic issues and implementation de-
viations. Although the semantics has been considered finalized since September 2009,
we still discovered errors. These errors include simple oversights in the documenta-
tion such as duplicate deduction rules (e.g., for ||) and a missing deduction rule for
the parallel operator. We indicated that seven auxiliary operators were missing from
the deduction rules. One of them is illustrated in Table 9.1.

Furthermore, we uncovered two deviations between the semantics and its imple-
mentation. The first deviation has been discussed in Chapter 9.4, where an iteration
introduces infinite behavior. The second semantic deviation is illustrated by the fol-
lowing example and the original definition for deduction rule:

weMyp,
(p,o[v—w]) - ,(p,0")

(Zl;p, o) — ,(p,0")

(Sum,)

Under this assumption, we consider the following mCRL2 process:
proc P =) a(d)-b(d);
d:B

The process selects a Boolean value and assigns it to the variable d, and performs the
actions a(d) followed by b(d). We define process Q as:



208 Chapter 9. Applying the Semantic Bridge

proc  Q = a(true) - b(true)
+ a(false) - b(false);

Note that P and Q are strongly bisimilar, thus P || P € Q || Q. If we specify the mod-
els in both the native representation and the meta notation, and generate their state
spaces, the state spaces must be (strongly) bisimilar. However, when we performed
the bisimulation check™ we observed that the state spaces where not strongly bisim-
ilar. The counter example showed that P || P could perform the actions a(false) -
a(true) - b(true) - b(true), whereas Q || Q did not. The cause was related to the as-
signment of values to binder variables. If a value was already assigned to a binder
variable, the selected variable was overwritten in the valuation. Because of the inter-
leaving behavior of P and the sum operator usage, it resulted in undesirable behavior.
To repair the undesirable behavior, we redefined deduction rule Sum,.

Chapter 8.3 proves the isomorphic relationship between the formally engineered
models and the behavior described by the native models for rules in the De Simone-
format. When we assume that other SOS formats preserve the same relationship, we
see that the proven relationship is stronger than the one that can be guaranteed by the
LPS-tools in the mCRL2 toolset. These tools (including the linearization of an mCRL2
specification) only guarantee the behavioral equivalence for strong bisimulation (un-
less stated otherwise). Hence, native mCRL2 models may depict different state spaces
than models that have been generated with the semantic engineering approach.

9.6 Implementation

The implementation of the semantic engineering approach creates for every deduc-
tion rule a separate data equation. Thus, if a formal language has many deduction
rules, the transformation results in a (large) number of data equations. Because the
approach is applied straightforwardly, the resulting models are not optimized. Hence,
we were not yet able to explore the state spaces for models like the ABP [BSW69].

The limited model exploration can be devoted to several reasons. Firstly, many
data equations specify duplicate rewrite steps. Rewriting is performed without any
caching. Hence, the same rules are rewritten multiple times for the same input. Take
the mCRL2’s parallel operator for example: Pary, ..., Parg in Table 2.4. The premises
of the eight deduction rules share computations that are individually rewritten. The
performance could be improved by rearranging the computations, however at the loss
of the readability and traceability w.r.t. the deduction rules.

Another reason concerns the specification of the deduction rules. To compute the
set of transition relations, all information should be available prior to computing the
transitions. Any modification that needs to be applied on a transition, after it has
been computed is expensive. To illustrate, we refer to deduction rule Parg in Table 2.4.
Although it seems as a trivial task to resolve and substitute double occurring variables,
it is a rather expensive task, because we first compute the transition relations and then

**tool: Itsconvert -ebsim



9.7. Related Work 209

resolve the valuation, for which many (needless) rewriting steps are performed. To
illustrate, we conducted a couple of tests in which we removed certain deduction
rules. By only removing deduction rule Parg, the state space generation increased to
700 states per minute rather than 50 states seen prior.

The third reason concerns the implementation of the rewriter. The rewriter operates
on abstract terms that represent all functions, variables and values. This applies to
the complex data structures, but also to Booleans and numbers'". Therefore whenever
an operation is performed on such a basic sort, it is handled by the mCRL2 rewrite
engine, and not directly by the (optimized) machine specific instructions. Since the
computations are executed on a higher level, performance is lost.

9.7 Related Work

Dogfooding is applied in (ordinary) software development for developing new, or ex-
tending existing (software) products. Examples are found in the argument of compil-
ers [Ter97], where bootstrapping is applied in compiler construction. Other examples
include the Eclipse framework [Haa] that develops plug-ins for the extension of the
Eclipse framework. Another considered example is the use of editors like Emacs/Vi.
Here, the editors are used to write customizations for the editors themselves. Wolfram
Research states [McL07] that (parts) of their web sites, applications, documentations,
and test and build processes are driven by the Mathematica Language.

Practicing these techniques in formal software engineering, especially in the area
of formal languages and model checkers, is uncommon. Especially, a model checker
that eats and interprets the formal semantics of its own language. We believe that our
dogfooding approach is unique and, in that sense, the first of its kind. However, it still
leaves the question, are their alternative approaches? To the best of our knowledge,
Maude [EMO02] would be the only candidate that could directly express the SOS of
the mCRL2 language. Maude is a high-level language and high-performance system
supporting both equational and rewriting logic and is used for, and applied to, a wide
range of applications. Its simple and expressive logic allows the representation of
many models of concurrent and distributed systems, including forms of SOS.

To illustrate, we briefly list some of the work that has been carried out using Maude.
In [BHMMO2] the authors translate Modular SOS (MSOS) [Mos04a, Mos04b] to the
Maude rewriting logic and prove the transformation correct. In [BV0O7] the authors
model GSOS/0SO0S rules in the Maude system, allowing them to execute Ordered-
SOS specifications. The work of [HHVOMO7] implements Eden (the parallel exten-
sion of the functional language Haskell [HHJWO07]) in Maude. More recent work
[RRH10] implements the semantics for the TCRWL calculus and the formalization
of AADL in [OBM10]. Based on these, and other successful experiments, we believe
that the semantics of the mCRL2 language can be implemented using Maude. As this
route is still open, we consider the alternative implementation to be future work.

"The mCRL2 language uses mathematical numbers which are not restricted by any machine constant.



210 Chapter 9. Applying the Semantic Bridge

9.8 Conclusions

This chapter shows the process of dogfooding the mCRL2 language to its own toolset,
despite: “Engineers who use their own company’s tools exclusively, tend to propagate
the bad aspects of their tools because they might not even realize an alternative ap-
proach exists. They often fail to either understand or appreciate the good points of
other companies’ tools. Furthermore, it also encourages the Not Invented Here syn-
drome [Har06]".

The semantic approach illustrates that the mCRL2 formalism can specify and simu-
late the Structural Operational Semantics (with a given model) of its own language.
To succeed, the TSS needs to be an mCRL2-restrictive TSS (Definition 8.2.1), and the
deduction rules (along with auxiliary and supporting functions) are captured by sorts
and data equations. For the computational feasibility, it is required that the data
equations specify a finite rewrite sequence. Moreover, the enumeration over dense
domains and functions need to be avoided. The transformation of the language con-
cepts and their formal semantics are a non-trivial task. Hence we outline and motivate
the underlying design and modeling decisions. The application of the approach is il-
lustrated by examples, their generated state spaces, and discovered mismatches in the
definition, implementation and specification of the mCRL2 language.

The semantics of the mCRL2 language is rather rich. Hence, we are confident that
other (formal) languages, such as CSP [Hoa78], CIF [BRSR07], AsmL [B6r98] and
POOSL [vdPV97] can also be subjected to the approach. The framework can also be
used to formalize and validate the behavior for various domain specific languages.

The integration into language workbenches is considered as a future activity. A lan-
guage workbench could support the definition of signatures and the associated SOS
and include an automated transformation from deduction rules to data equations.
The latter nearly constitutes an one-to-one mapping when considering the language
specific parts of our mCRL2 implementation. Such a tool is useful, since a manual
implementation is tedious, time consuming and prone to errors. The conversion from
the syntactic instance of a model to its syntactic meta notation could be automated.
Because the semantic interpretation is not bound to a single language, it theoreti-
cally allows the study of compound concepts from different formal languages within
a single mCRL2 specification. Another direction could include the heterogeneous
composition of native mCRL2 models and semantic models from other languages.

This work can be extended by including the timed fragment of the mCRL2 language.
As a direct interpretation of the dense time domain would pose all kinds of problems,
it might be worthwhile to consider an approach that partitions the dense domains into
a discrete/non-dense domains. Considering these partitioning rules could be included
as a part of the formal semantic definition.

In conclusion, we like to emphasize that our approach can be applied to, and im-
plemented in, other languages and toolsets, if they support the definition and com-
putation of set comprehensions, deal with quantifiers, and support a mechanism to
systematically perform transitions (i.e., they model an LPS).



e 1 0)

A Reflection on the Semantic
Bridge

10.1 Introduction

The second part of the thesis describes a method to semantically engineer models
suitable for model checking by systematically transforming the semantics of a for-
mal language. The first chapter of the second part illustrates the formalization of an
informal language. The second chapter describes the kernel of the semantical engi-
neering approach. The third chapter demonstrates the capability of the approach by
transforming the semantics for a formal general purpose language.

In essence, the approach encompasses a transformation that takes a Transition Sys-
tem Specification (TSS) and produces an LPS. The data specification of the LPS de-
scribes the transitions that are valid for the deduction rules. When a model is pro-
vided, transitions can be computed using the data specification and the rewrite engine
that supports the mCRL2 toolset. The LPE within the LPS serves as a transition gen-
erator for the computed transition relations.

This chapter elaborates on the merits and the encountered restrictions while apply-
ing the semantic bridge. We elaborate on the correspondence relation between the
behavior defined by the formal abstract models and the exhibited behavior during the
analysis in Chapter 10.2. The incorporated restrictions are discussed in Chapter 10.3.
The suitability of the approach is described in Chapter 10.4.

10.2 Model Correspondence

The behavior described by the LTS of an original model and a semantically engineered
model, for which the semantics complies to the De Simone format, are isomorphic

211



212 Chapter 10. A Reflection on the Semantic Bridge

(Chapter 8.3). Chapter 9 shows that we can model and simulate rule formats that
are more complex. Hence, we believe that many rule formats can be modeled in a
similar fashion. When the modeled deduction rules can be expressed in the mCRL2
syntax, and they can be computed by the underlying rewrite mechanism, we believe
that it is possible to generate an LTS that captures the execution behavior of a model.
We also believe that the behavior expressed by models of other format rules, and the
behavior expressed by their semantically engineered models, are isomorphic as well.
More (empirical) research is required to support these presumptions.

The semantical engineering approach establishes a close relation with native mod-
els in the (abstract) syntax. Although it appears that the state information is invisible
to an observer, it can be made public by adding additional (self loop) transitions: the
LPS stores the state information in its process parameters. State information can be
made visible in a similar way as we have seen with predicates (Chapter 8.6). Exposing
the state of the model can provide design engineers additional and helpful informa-
tion about the conducted analysis (e.g., the state in which a system deadlocks).

As we already explained in Chapter 6, it is difficult to relate the results of an analysis
from hand crafted verification models back to the models used by engineers. Espe-
cially, when ad-hoc abstraction techniques are applied. As the semantical engineering
approach is (i) free from any abstraction techniques and (ii) directly operates on the
abstract language, engineers should be able to understand the models that are used
during the analysis.

In Figure 10.1, we illustrate the relationship between the different (meta)-models.
The concrete syntax models at the top-left are created by the design engineer. The
abstract syntax models at the top-middle are derived from the concrete models. To
ensure that the models are syntactically sound, they must correspond to the syntax’s
signature that is explicitly defined by the TSS. The abstract models that serve as input
for the formal analysis are transformed into one or more process parameters of the
LPS. The transformation of the SOS deduction rules into data equations is denoted
at the bottom of the figure. The processable semantical engineering route is repre-
sented by the solid black arrows. The inverse way of the engineering route, the route
that relates the analysis model to the original model, is represented by the dotted
arrows. Based on the conducted case studies, we believe that the route from the orig-
inal model to the analysis model can be automated. Although we have no empirical
evidence, we believe that it can also be done for the inverse route.

10.3 Restrictions

The execution of the semantical engineering approach heavily depends on the un-
derlying rewriting technology of the mCRL2 toolset. Therefore the modeling has to
be done in a particular style to ensure computational feasibility. To ensure that the
models can be analyzed and/or executed, we here state the encountered restrictions:

1. Specifications must be mCRL2-restrictive TSS (Definition 8.2.1).



10.3. Restrictions 213

Concrete 4 - =1 Abstract 4 """ - -1 Initialisation =
Syntax > Syntax Process @]
Models Models > Parameters E

%]
B
[[I Q.
&
Signature Deduction > Data 2
Syntax Rules Equations =
Transition
System Specification

Figure 10.1 Relating the (meta)-models in the semantical engineering ap-
proach

2. Deduction rules (along with auxiliary and supporting functions) must be ex-
pressible by sorts and data equations.

3. Rewrite rules must be terminating.

4. Enumerations over dense domains (e.g., R) and functions need to be avoided.

To fulfill item 1, the signature of a process term must have a finite set of symbols
and a finite set of action labels. If we use a language that does not comply to this
requirement, it can become impossible for the underlying rewriter to enumerate and
find all valuations that satisfy a solution. Moreover, the TSS must specify a finite
set of deduction rules and must have a (strict) stratification [MRGO7], e.g., when
dealing with negative premises. Since every deduction rule corresponds to a single
data equation, and the set of mCRL2 data equations is required to be finite, the set of
deduction rules must be finite as well.

For item 2, we express all the concepts of a formal language in sorts, data expres-
sions and data equations that meet the syntactic requirements of the mCRL2 lan-
guage. This means that some of the widely accepted mathematical syntax is molded
into mCRL2 notations. Examples can be found in the notation of set comprehensions,
the specification of tuples, or the way in which term substitutions are performed.
Hence, some notations may deviate from typical mathematical notations.

To comply to item 3 all rewrite rules on (open) terms require a rewrite strategy
that rewrites an expression in a finite number of steps. This means that any recursive
(non-guarded) rewrite rule can pose potential problems. This especially holds for the
rewrite rules that are used to compute set comprehensions. To illustrate the problem,
assume that function g:A — 2 defines a set comprehension, f:A — B is a Boolean



214 Chapter 10. A Reflection on the Semantic Bridge

function, h:A — A denotes a function on A and we define g as:

gp)={a:A| f(p)A ae€ g(h(p))}

Since the current rewrite strategies in the mCRL2 toolset assume no order, it is pos-
sible that a € g(h(p)) is rewritten prior to f(p), which results in an infinite sequence
of rewriting steps. Hence, we recommend that the computation of finite functions is
performed prior to the (possible) recursive ones. Provided that f can be computed
independently from the body of the set comprehension, we introduce a guarding if
construction for which f must hold prior to rewriting the body. So we alternatively
write:

g(p) =if(f (p),{a:A | a € g(h(p))}, 0)

The rewrite rules specify that the condition from if is rewritten prior to its branches.
Hence, we force a rewrite sequence that is fixed. This technique has been applied in
Chapter 9 to determine whether a term is of a certain form.

Restriction item 4 ensures that the resulting mCRL2 models are analyzable. As
already pointed out in the previous section, enumeration over dense domains between
any two different values, results into an uncountable number of solutions. Also the
enumeration over functions is not supported. Therefore we advise to only use dense
domains and functions if the enumeration over them can be avoided. If either one is
used, without any post-processing, it renders an (exhaustive) analysis impossible.

10.4 Suitability

An (informal) DSL’s syntax is defined through some grammar or meta-model. The
semantics of a DSL is however implicitly defined in a translation to another (infor-
mal) language or implemented in some execution engine or interpreter. Hence, we
exhibit unexpected behavior during the execution of these models. To combat these
abnormalities, we could formalize the language. However for an industrial DSL this
is a challenging task. Particularly when considering the operational impact of chang-
ing the existing semantics. If one formalizes a language, as shown in Chapter 7, and
applies the engineering route, from Chapter 8, an engineer can study the language
and reason on the executed behavior. So if one defines the DSL’s semantics through
SOS, we are able to aggregate and compose terms and study the behavior of com-
posed terms in isolation. The result is a language definition where the DSL’s abstract
and concrete syntax are formally related to its static and dynamic semantics. Our
approach provides a handle to analyze different aspects, e.g., throughput and safety,
that are closely related to the executed behavior. This also facilitates means, to study
the impact of changing the semantics for particular language constructs. The use
of separate operators can limit the regression and qualification impact in an opera-
tional context. Recall that in Chapter 7, we have added complementary operators to
disambiguate the language. The proposition of these operators, along with an expla-
nation on the disambiguated behavior, was supported by the semantical engineering
approach from Chapter 8.



10.4. Suitability 215

10.4.1 Language Prototyping

The approach is suitable for engineering or prototyping a behavioral DSL or a formal
language. As demonstrated in previous chapters, the semantic bridge is not bound to
a particular language. In fact, for any behavioral language (for which the behavior
can be expressed in a TSS under the modeling restrictions), we argue that it is possible
to define a semantic bridge, transform the models and analyze its behavior.

Language prototyping requires a high degree of flexibility, because language con-
cepts can rapidly change. As the changes are modeled with relatively low effort by
an engineer, the associated behavior can easily be studied and explored. In turn, this
would reveal mistakes between the engineer’s intended semantics and the DSL’s de-
fined semantics more easily, since the approach facilitates an automated analysis for
concrete models.

When a language stabilizes one can choose to implement the deduction rules into
code, instead of modeling it in a modeling environment. If one implements the deduc-
tion rules (directly) into code, it facilitates the execution of a model on a dedicated
system or an architectural platform. If one chooses to provide a native implemen-
tation, one could use the semantic bridge as a safeguard, to determine whether the
executed transitions by the implementation also appear as transitions in the model.

10.4.2 Integration into Development

The work of [Delll] has been performed to test the suitability of the semantical
engineering approach within an industrial setting. Here, model driven engineering
techniques are used to support the evolution and maintenance of a DSL. Build on top
of the starting point of the semantical engineering approach i.e., the formal abstract
syntax and the transformed set of deduction rules, the author transforms the con-
crete syntax into the required formal abstract syntax, by means of a model-to-model
transformation in a prototype model driven engineering environment.

By relatively little effort, the author integrates the semantic bridge into an actual
development trajectory. Although we deal with a prototype, we believe that the ap-
proach can be made more mature such that it can be incorporated into a wider set of
development trajectories. By establishing such an integration, design engineers could
fabricate their own formal languages more easily.

10.4.3 Separation of Concerns

The semantical engineering approach provides a separation of concerns for the de-
sign, the use and the analysis of a formal language. Here we identify three concerns.
Firstly, the semantics and syntax are separated. Although syntax and semantics
are tightly related, they can be developed independently. That is, a language engi-
neer can develop or change the semantics for a piece of syntax compositionally and
independently of other language constructs, in a clear and a precise manner.
Secondly, when all syntactic elements have formal semantics, and the elements can



216 Chapter 10. A Reflection on the Semantic Bridge

be composed compositionally, it offers design engineers the possibility to experiment
and independently study the model’s behavior. While a design engineer can freely
compose terms, a language engineer can regulate the notions that are made public.
Thirdly, the analysis engineer can focus on the verification of properties. This task
can be carried out independently from other engineering disciplines. The engineer re-
sponsible for the verification can optimize the resulting models and apply the required
manipulations and/or abstractions such that properties are successfully verified.

10.4.4 Maintainability

To facilitate release management, companies typically have some sort of version con-
trol to separate releases and development branches. During development interfaces,
systems, components and modules change over time. When parts are not under ver-
sion control, it results in an additional integration effort. Therefore the amount of
resources that are required to preserve a mapping, indicate a maintenance degree.
Since maintenance is equally important as development, it should not be overlooked.

Because the design of a language, the design of models and the transformation
from a specification environment to an analysis environment can be automated, we
believe that the semantic bridge can be incorporated into a release management sys-
tem. Simply because no more ad-hoc transformations are applied, changes to the
individual components (i.e., the language, the model and the transformation) can all
be kept local. The implementation of the changes can be made processable. Hence,
the semantic bridge can be perceived as processable semantic engineering route. If
we compare the maintainability effort for the semantic approach to the traditional or
ad-hoc bridges (as discussed in the first part of the thesis), we argue that the semantic
approach requires fewer resources when fully matured.

10.4.5 Reusability

It is not unthinkable that different languages cover the same semantic definitions by
different abstract notations or that abstract notions with the corresponding semantics
are identical. Since SOS’ deduction rules are defined in a compositional and inde-
pendent manner, and the semantic bridge treats them similarly, we believe that the
semantic bridge can be used within a component-based framework for the design, the
specification and the implementation of programming and behavioral domain spe-
cific languages. This means that if notions are shared between different languages, it
should be possible to reuse those parts for which the syntax and semantic specifica-
tions are identical. A similar point of view is reflected in [dBIMO06].

Moreover, as different languages are typically developed independently by different
people at different times, the deduction rules can act as a platform, where different
engineers can study and reuse the work that has been performed by others. As a re-
sult, it can lower the technological diversity during the realization of a new language.
As the diversity can be kept to a minimum, it should have a positive impact on the
reusability and maintainability of languages.



e 11

Conclusions

This thesis presents several techniques for engineering formal behavioral models.
Formal behavioral models are important, because they are used to unambiguously
study the behavior of a system, piece of software or protocol. In conjunction with
modal properties, these models can be subjected to formal verification that determines
whether the models possess the desired properties. Unfortunately, many formalisms
are informally defined or provide no suitable techniques to formally verify models.
Hence, it is important that these models can be transformed to models that facilitate
these analysis. Thereto we have surveyed the following two research questions:

I “What are practiced methods to create formal behavioral models, suitable for verifi-
cation?”, and

II “Can we systematically administer formal techniques to translate behavioral models
into a formalism that facilitates formal verification?”

11.1 Contributions

The first research question is investigated by Part I of the thesis. Part I illustrates
several ad-hoc modeling techniques that are commonly practiced to derive formal
models from (in)formal specifications. Models that are constructed using these ad-
hoc modeling techniques belong to the class of syntactically engineered models.
Chapter 3 presents a comparison case study that examines the expressiveness of
different languages. Here the mCRL2 specification language is compared to the lan-
guages TLA+ [Lam02], Bluespec [HAO0O], Statecharts [Har87], and ACP [BK84]. The
comparison is carried out for the models that are constructed for the 2 x 2 switch
buffer [Blu05], according to a set of system descriptions. The case study shows that
the mCRL2 language is suitable to model these descriptions. In addition, the case

217



218 Chapter 11. Conclusions

study also shows that the constructed models can be verified with the help of the
accompanied mCRL2 toolset.

Chapter 4 illustrates the transformation from a software implementation to a formal
model. The software originates from a system used to print Printed Circuit Boards.
The controller is implemented by a third party. The formal model is subsequently
verified for having various safety properties. Because software implementations are
in general too complex to be analyzed directly, the method abstracts from the values of
all program variables. The abstraction results in an over-approximation with respect
to the original behavior, for which only the interface calls between the processes and
the non-deterministic choices in the bodies of the procedures remain. The models are
specified in the mCRL2 language and model checked with its toolset.

Chapter 5 demonstrates the denotational transformation between two formal lan-
guages. Here, the Chi 2.0 language is translated into the mCRL2 language. The
transformation is defined because the toolset that is associated with the Chi 2.0 lan-
guage is only suitable for the simulation of hybrid systems and provides no native
means for conducting verification. The non-trivial transformation scheme translates
syntactic notions into correlating mCRL2 notations.

Chapter 6 explains how verification results can be visually disseminated to various
disciplines. The solution integrates formal methods with the physical designs from
industrial systems. By combining the physical designs with a trace from the formal
model, we are able to animate the behavior of a system. The dissemination is accom-
panied with an exploratory industrial case-study that models the behavior of a wafer
dryer facility. The behavior has been modeled in the mCRL2 language and subse-
quently been model checked for deadlocks. Since the counter examples are difficult
to understand by other disciplines, they are animated through the physical designs of
the dryer facility.

The aforementioned model transformations are all performed ad-hoc and require
some form of human ingenuity in order to succeed. Simultaneously, the same human
ingenuity can potentially introduce undesired or unintended behavior which may stay
unnoticed.

The observations made in the ad-hoc methods, pose the second research question.
This question is answered in Part II by introducing a model-to-model transformation
that is more rigorous. The technique that is proposed and demonstrated takes the
formal semantics of a language, converts the semantics to a set of functions and ex-
ecutes models with the help of these functions. Models that are constructed in this
way belong to the class of semantically engineered models.

Many behavioral specification languages are informally defined. Frequently, the
behavior is captured by some informal description or specified through some inter-
preter. If one wants to semantically engineer models, on needs to formalize a lan-
guage first. Hence, Chapter 7 presents the formalization of an industrial domain
specific language, called TRECS [Nie04]. The result of the formalization is captured
by a Transition System Specification (TSS) [Gro93, BG96], for which the (dynamic)
semantics are expressed by Structural Operational Semantics (SOS) deduction rules.
By formalizing the language in a compositional way, we show that it is possible to



11.2. Future Work 219

assign a formal semantic description, even for a language that is used in an industrial
setting. During the formalization we discovered several ambiguities, that have been
resolved by taking informed choices.

Chapter 8 describes the kernel of the approach to semantically engineer models.
Here we take a TSS and transform it into a restricted mCRL2 specification, namely
a Linear Process Specification (LPS). The signature of a process term is transformed
into a structured sort, the deduction rules are modeled as a set of data equations,
and the transition relations are modeled by different actions. The transformation
is explained for deduction rules that are in De Simone rule format. The resulting
mCRL2 specifications can be directly analyzed with the mCRL2 toolset.

Chapter 9 demonstrates the applicability of the approach by taking the TSS that be-
longs to the untimed fragment of the mCRL2 language. Since the behavior is manually
implemented in the underlying toolset, it is impossible to guarantee that the imple-
mented semantics corresponds to the specified operational semantics. To validate that
the semantics corresponds, we directly take the SOS deduction rules and transform
them into mCRL2 data equations. Thus we basically feed the mCRL2 toolset its own
formal language definition. We elaborate on the underlying design decisions for mod-
eling the syntax and semantics into an mCRL2 specification, describe the transforma-
tion of the deduction rules, and illustrate the experiments that have been conducted.
Despite its formal characterization, thorough study and broad use in many areas, the
semantic dogfooding approach revealed a number of (subtle) differences between the
mCRL2’s intended semantics, the defined semantics and implemented semantics.

Chapter 10 reflects on the method that semantically engineers models. We state
the potential benefits and the implied restrictions.

All of the work that is described in this thesis has been performed as work for the
TWINS: Optimizing Software Hardware Co-design Flow for Software Intensive Systems”
project or has been carried out in the “Kenniswerkingsregeling” project “LithoSysSL”.
The results are presented in a number of (scientific) publications:

[GKM*08, SSR08a, SSRO8b, MSW09, SR09, SRG09, SSR09, SRG10,
GKS*11, SRGW11, SRW11la, SRW11b, SWR*11a, SWR*11b, SRWG12]

11.2 Future Work

The technique to syntactically engineer models is often used to create formal models
for feasibility studies, sanity checks on designs, reverse model engineering, and ad-
hoc modeling approaches in general. Although the technique is practiced in industry,
it often does not seamlessly connect to the development process; it requires ingenu-
ity. The technique to semantically engineer models requires less ingenuity during the
transformation, but more language engineering effort. When applied, it offers a more
processable way of working and better integration with existing industrial designs for
specifying behavior. Although the semantical engineering approach looks promising,
scalability and computability still require investigation.

The semantic engineering approach focuses on the application of the method, rather



220 Chapter 11. Conclusions

than the optimizations that can (and should) be explored to verify large industrial sys-
tems. In all of the shown examples, we directly transform the deduction rules into
corresponding data equations. Because the underlying rewriter of the mCRL2 toolset
does not facilitate any form of caching, every deduction rule is completely and sepa-
rately computed, even when the same sequence of rewriting steps can be shared. In
some cases this may result in an (hyper)exponential growth on the number of rewrit-
ing steps that are (supervacaneously) performed. To eliminate these hurdles, we need
to develop (founded) techniques that increase the scalability by applying different
rewrite strategies, rearrange/merge computations, and/or use axioms to normalize
terms.

Finally, we want to consider the computability of deduction rules. As deduction
rules can practically specify all forms of mathematics (e.g., even undecidable clauses),
boundaries must be investigated, defined and set. This may include research in the
field of (higher-order) rewrite systems, deduction rules that can be translated and
accepted by rewrite systems, the applicability of the approach by other formalisms, or
semantic extensions that incorporate time, probabilistics, and continuous behavior.



Appendix

Proofs

A.1 Correspondence Relation Between Chi 2.0 and mCRL2
Specifications

The denotational translation from Chapter 5 transforms a Chi 2.0 model into an

mCRL2 model. The correspondence relation between the different models is ex-

plained here. We provide the relation through the structure of the LTSs, modulo

the order of the actions in the multi-action.
Let @ : Timey X R — Timey, be:

h &d é lf(d ~ O’ timeH(TCtime(h), ﬂ:counter(h) + 1)> timeH(ﬂtime(h + d): O))

Then the transition relations between the formalisms is explained in Appendix A.1.1
and Appendix A.1.2.

Remark A.1.1. The correspondence relation is provided without proof. The transla-
tion is provided to demonstrates that a compositional transformation for a subset of
the Chi 2.0 language is feasible. Providing the proof that the above relation holds is
considered as future work.

A.1.1 Relating Chi 2.0 to mCRL2
Assume that i, ((p,0,E)) =X and F,;; ({(p’,0’,E)) =X".

Action transitions

Actions: Chi 2.0 action transitions that are labeled with an action [ which origi-
nates from the set of basic action labels, i.e., | € L., are related to mCRL2 action

221



222 Appendix A. Proofs

transitions in the following way:

o,LW,0’
LWe' o,
El-{p,o0) — (p’,0') =
Elc,c’:N
. i [v] 7
omune(o(time) |, _comE Il
W]y o, Oy (0 (W)l coM s (0 (time),c')

timey (o’ (time),c’) X'

Communicating actions: Chi 2.0 action transitions that are labeled with an action
h which originates from the set of successful communication actions, i.e., h € H, relate
to mCRL2 action transitions in the following way:

o,h!?x,W,o’
—

ElF{p,o)
EIc,c’:NEIW’,W”EV

(p',0") =

comﬁme(a(timexc)\\vepd_ comf3 (o (7)) lcomm (x)|
C

diff(W)\|diff(W™)| | com[M],(U’(v))lcomﬁme/(U’(time),c’)

vedom(a”) mem’

7
/)X

timey (o’ (time),c

where W =W/ uw”

Internal actions: Chi 2.0 action transitions that are labeled with an internal action
7, which do not originate from an hidden communication, are related to mCRL2
action transitions in the following way:

ElF{ ,O')O’T’—mfr (p’,0"y >
3 N

c,c’

comine(o(time). )|, coml @@
I1sc

vl (5
vEdonl(J’)Commem’ (@'(v)) ‘Comlime

/(o' (time),c’)

diff (W)

timey (o’ (time),c’) X'

Chi 2.0 action transitions that are labeled with an internal action 7, which originat-
ing from an hidden communication, are related to mCRL2 action transitions in the
following way:

T, W0’
ElF(p,0) "= (p',0") =
Eln:NHW’,W”EV
comﬁme(o(time),c)l{VEDd_ comlI (o (W))|diff (W")|diff (W)

Vedam(g,)comg‘;ﬂl(U’(V))lcomﬁme/ (o’ (time),c’)

/
X /)X

timey (o’ (time),c

where W =W/ uw”



A.1. Correspondence Relation Between Chi 2.0 and mCRL2 Specifications 223

Continuous behavior

The continuous behavior for a Chi 2.0 specification, i.e., the progression of time, is
related to an mCRL2 idle transition in the following way:

£,0,(61,0;,6,)
—_—>

El- <p’ O') <P/, OJ) = 3c:N X "~ timey (o (time),c)®t

A.1.2 Relating mCRL2 to Chi 2.0

To relate the behavior of an mCRL2 specification to a Chi 2.0 specification, we assume
that if we perform an mCRL2 transition from a state, it relates to a state in a Chi 2.0
specification. We assume that every mCRL2 p is related to Chi 2.0 model p, via
function 771, i.e, V, 3, F ~!(p) = p,,. Furthermore, we assume that for the modeled
discrete model variables Vg5 the condition Vycpio € dom(o) holds.

Action transitions

Actions: An mCRL2 action transition that models the behavior of an [ € L. la-
beled action transition, is in twofold related to a Chi 2.0 action transition:

e no counter reset of the hybrid time, i.e., c > 0

comne(t.e=DI|,_,  coml ()l
diff (W) stmcmcomﬂ,(w')|comdme,(f,c)
/ /
(P: U) timey(t,c’) (p , O )
=
ElE:Eap,,p; Pyroe

O'X,I,W,O'; , ,
ElF (px;o-x> - <px;o-x>
— w2 coml
where Ve, . 0,(v)=w=com_ "} (w)

A mem
and Ve, ,,0,0)=w'= comr[gﬂ,(w’)
and o, (time) = a; (time)

. A
and o,(time)=t

e a counter reset of the hybrid time:

. vl
0Meime (£ |, gormery ©Momem WL
: vl 7 ’
diff(W))| vEdom(g,)commem,(w )|comy, (t7,0) .y
(P, U) timey(t’,0) (p , O )
=
ElEzf,'Elpl,p; :Ppmczld:R>°39",95,9,:T»—>valah

d,0,,(6,,6:,6,) o LW,

X
El- (p)(:o.)(> i <p;(:o-;) - <P;{;O';/)



224 Appendix A. Proofs

where V.o, o 0,(v)= a’ )
A
and Ve . 0,(V)=w= comr[r[lgl(w)
and Vey, ,0,(0)=w'= comr[r[lgn (w")

and d=t—t

and o, (time)= U;(time)
. A

and o, (time)=t
. A

and O';(tlme) =t

Communication: An mCRL2 action transition that models the successful commu-
nication of a value e over channel h € H is in twofold related to a Chi 2.0 action
transition:

e no counter reset of the hybrid time, i.e., c >0

coml”] (w)lcommyy (el

comne(t.c=D| ., comfi)

diff(W")|diff (W) com®D (w")comyes (£,6)
vEVMCRL2 mem’ / /
(p,O') timey(t,c’) (p O )
=
Ip:e le,p; “Pproc
o‘l,h!?e,W,(r; , ,
ElF <px’o-x> — (PX;O'X>>
where Vo, o o,(V)=w= comrg‘gl(w)
, A
and Ve, ,,0,0)=w'= commzﬂ1 (w")

and o, (time)= crx(tlme)
. A
and o, (time)=t
A
and crl,Ah!?e = commpj(e)
and W=w'uw”

e a counter reset of the hybrid time:

COMyime (t,€))] com[l’] (W)lcommygy (e)

vEVmCRL2 mem
afr Al L, om0 com,ue (¢,0) o
(P, 0) timey(t’,0) (P , O )
=
ElE:SEI Eld R>°E|9 ,0,,0,: T —valy,

PysPy Poroc
/ !
d,0,,(6,,,6;,6,) , o .h?e,W,o7 , ”

El- (px:o-x> i (pxao.x> - (PX:O'X)



A.1. Correspondence Relation Between Chi 2.0 and mCRL2 Specifications 225

where Vo, o o,(v)= o’ v)
A
and Ve 0,(V)=w= comn[lgl(w)
, A
and ‘v’vevmcmo;’(v) =w' = commem ,(w)

and d=t—t
and o, (time)= O';(time)
. A
and o, (time)=t
. A
and O';’(tlme) =t
A
and o,,h!?e =commyy;y(e)
A / 4
and W=W'uUw

Internal actions: Relating mCRL2 action transitions to Chi 2.0 internal transitions.
An mCRL2 action transition that models an internal action is in fourfold related to a
Chi 2.0 action transition:

e no counter reset of the hybrid time, i.e., ¢ > 0, and the internal action does not
originate from a successful communication.

O™ DT (w)ldiff (W)

mem

V]]
vevaRcho mem! ,(w)lcomyer (£,6)

(p’ U) timey(t,c") (P/: OJ)
=

EIE:c‘,'EI

PPy Pproc
o,,T,W,0

ElF(p,,0,) "— "(p},0%)

A
where Vo, . o,(V)=w —comn[l‘égl(w)

and Vey, ,,0,0)=w'= comr[r[lgg1 (w")
and o, (time)= ax(tlme)

. A
and o,(time)=t

e no counter reset of the hybrid time, i.e., ¢ > 0, and the internal action originates
from a successful communication.

]
VEVmCRL2 oM e (W)

com™, (w’ )lcomypes (£,6)

afw |, comlD
m ro
(P,U) timeg(t,c") (p , O )
=

Iped

P;,,P,, proc
!
G'X,T,W,O'

El- <px:o-x> - (p;{:o-;,):



226 Appendix A. Proofs

A
where Ve, o o,(V)=w= comr[r[l‘gl(w)

A
and Vey, ,,0,0)=w'= comr[r[lgi,(w’)
and o, (time) = ag(time)
. A
and o,(time)=t
A
and W=w/'uw”

e a counter reset of the hybrid time and the internal action does not originate
from a successful communication.

coml’D (w)|diff (W) com[[v]],(w’)lcomﬁme/(t’,o)

comy;; t,c
time (£,6) vedom() mem vedom(a’) mem'

(p; U) timey(t’,0) (P/: OJ)

=
g6 3p, ) o It 30,,0,,0,: Tvaty,
T,W,o”,

d,0,.(6,,6,,6,) Nty
E - (pl,ax) — (p)(’o.x) - (px’o-x)

where Vo, . o,()= O';{ )

A

and Ve 0,(V)=w= comr[r[l‘e’g(w)
A

and  Vey, 0,0 =w'= comr[r[lzg,(w’)

and d=t"—t
and o ,(time) = O’; (time)

. A
and o ,(time)=t

. A
and o;’(tlme) =t

e a counter reset of the hybrid time and the internal action originates from a
successful communication.

COMyime(£,€)]

diff (W)

[[v] i 4
vy OB VI

com™7

e M (oM (£',0)
m

(P’ O-) timey(t’,0) (P/, OJ)

=
ElE:SElpl,p;{:Ppmczld:]R>0El9,,,95,9r:'7'»—>valah

d,0,,(0,,6;,6,) , 0T W07, , P

Elb(p,,00) " (p,,0)) "— "{p,,0)



A.2. Correspondence Relation between TSS and LPS

where

Idle transitions

and

and
and
and

and
and

and

VVEVmCRLZUZ (V) = G;( (V)

A
VVEVmCRLzaX (V) =w :ACOTHI[IEQEI(W)
VvevaRLZO.;C/(V) =w'= Comr[r[lzg’(wl)
d=t'—t
o, (time) = O'; (time)

. A
o,(time)=t

. A
O';’(tlme) =t

A
w=w' uw”

227

mCRL2 idle transitions, i.e., the progression of time, are related to the continuous

behavior for a Chi 2.0 specification in the following way:

where
and
and
and

and

A.2 Correspondence Relation between TSS and LPS

(p1 O')’\/}t

=

39,,,95,9,:7'»—>valahElpx:PpmczlE:E E Ik <p)po-x>

VVGVmCRLZO-X(V) = O-;( (V)
A
VeV @y (V) =0(v)

o, (time) 2 o(time)

. A
a;(tlme) =t

d 2 t — o(time)

A.2.1 Labeled Transition System Associated with a Linear Process

Specification

This subsection describes how a Labeled Transition System (LTS) can be associated
with a Linear Process Specification (LPS) [Mon05].

Definition A.2.1 (Labeled Transition System). A Labeled Transition System (LTS) is
a triple (S, L, —,s,) where:

e S is a set of states,

e [ is a set of labels,

e — C S x L xS is a transition relation,



228 Appendix A. Proofs

e 5o €S is the initial state.

An LPS describes a transition relation through the following Transition System
Specification (TSS). The signature of the transition system specification is left im-
plicit. The only deduction rule is the following

=ci(d,e;) =true

X(d) 9 X (gi(d, e))

where |= ¢;(d, e;) indicates that the Boolean expression c;(d, e;) must be derivable
equal to true.

The LTS associated with closed term X (p) with p a closed term of sort P is that part
of the transition relation described by the LPS for X that is reachable from X (p).

A.2.2 Labeled Transition System Associated with a Transition Sys-
tem Specification

[GV92] clearly defines how a transition relation is defined through a Transition Sys-
tem Specification (TSS). The Labeled Transition System (LTS) associated with a closed
term p € C(X) is obtained by considering that part of the transition relation described
by the TSS that is reachable from p.

A.2.3 Lemmas

Lemma A.2.2. Forall x €V, t € T(X), and substitutions S: V — T (%)
x €vars(t) = pi(S()) =S(x)
Proof. By induction on the structure of term t.

e t is a variable. In case t = x we have u!(S(t)) = u}(S(t)) = S(x). The case
where t is a variable different from x cannot occur as x & vars(t).

e tis of the form f(t;,...,tqs)) for some f € X and ty,..., tq) € T(X). Since
x €vars(t), we have x evars(t;) for some i such that 1 <i <ar(f). By induction
hypothesis we obtain u/(S(t;)) = S(x). Note that since x € vars(t;) we have the
equation pu (S(t)) = uy(m;(S(t))). Since m;(S(t)) = m;(S(f (t1,.- -, tarsy))) =
7, (S(81),-.. .St ) =5(t;), we then also have i (S(6)) = i (m (S(6))) =
ul(S(t;)) = S(t;), which was to be shown.

O
Lemma A.2.3. For all t € T(%), and substitutions S: V — T(X)

a'(S(t)) =true



A.2. Correspondence Relation between TSS and LPS 229

Proof. By induction on the structure of term t.
1. t is a variable, say x. Then o(S(t)) = o*(S(x)) = true.

2. t is of the form f(ty,...,tas)) for some f € ¥ and ty,..., tep) € T(X). By

induction hypothesis we have o' (S(t;)) = true for all i such that 1 <i <ar(f).
ar(f)

Then o*(S(6)) = is; (f (t1, -, b)) A A\ TGRS (E1s - targs)))) = trize A
i=1

ar(f)
N\ o'i(S(t;)) = true.

i=1

O

Lemma A.2.4. For all t € T(X) and p € C(X) such that o*(p). If u'(p) = S(x) for all
x €vars(t), then S(t) = p.

Proof. By induction on the structure of term t. Assume that u!(p) = S(x) for all
x €vars(t).

1. tisavariable, say x. Since u(p) = S(x) by assumption, and u' (p) =ul(p)=p
we have S(t) = S(x) = u’(p) =p.

2. tis of the form f(ty,..., tys)) for some f € X and ty,..., ty(r) € T(X).
From o‘(p) it follows that o'i(7;(p)) for all 1 <i < ar(f).
From the assumption that u’ (p) = S(x) and the fact that u (p) =

(p) = uli(m;(p)) for those t; in which x occurs it follows that u'i(r;(p)) =
S(x) for all variables x € vars(t;). Hence, by induction hypothesis we have
S(t;) = m;(p) for all 1 < i < ar(f). Then we have, S(t) =S(f (ty,..., ta)) =
F(S(t1), -+, S(tarsy)) = f(m1(P), -+ ar(s)(P)) = p. Note that we have used
that is;(p) implies f(7,(p),..., Tars)(p)) = p for all p € C(X). This is easily
proven by induction on the structure of p.

O

A.2.4 Proof of the Correspondence Theorem

Theorem A.2.5. Let (X, D) be an mCRL2-restrictive TSS in the De Simone format.
Then for every p € C(X), the LTS associated with p and the LTS associated with X (p) are
isomorphic.

Proof. Obviously, it suffices to show that for all p,p’ € C(X) andl € A

Loy

p—p = relation(l,p”) € R(p) e

and
relation(l,p’) € R(p) = p L’Pl 2)



230 Appendix A. Proofs

since relation(l,p’) € R(p) iff X (p) #X (p’) follows directly from the semantics of an
LPS.
We give a proof for equation 1. We prove this part by induction on the depth of

the proof tree of p LN p’. Now assume that the last step in this proof tree is the
application of deduction rule d € D of the form

l; .
{xi—yliel}

[Cond,]
f(xl,...,xar(f)) d

L;
and let S be a substitution such that S(f (x1, ..., Xes))) =p, S(t) =p’, S(x;) —S(y;)
foralli € I, and Cond,.

1. iSf(P) = iSf(S(f(x1, e ;xar(f)))) = iSf(f(S(xﬂ: . -':S(xar(f)))) = true
2. o'(p’) = o'(S(t)) = true. The last step is due to Lemma A.2.3.

3. e Cond, holds for the labels of the premises and the label for the conclusion.

e For every i € I with y; € vars(t): u;_(p’) = ,u; (S(t)) = S(y;) according to
Lemma A.2.2.

Note that 71;(p) = 7;(S(f (x1, - -+, Xar(5)))) = T (f (S(x1), -+ -, S(Xar(sy))) =
S(x;). By induction hypothesis, for each i €I, relation(l;,S(y;)) € R(S(x;)).
Therefore,

/\yi € vars(t) = relation(ll-,,u;i (")) € R(w;(p))

i€l

e Foreveryi el with y; €vars(t), by induction hypothesis, relation(l;,S(y;)) €
R(S(x;)). As before S(x;) = m;(p). Therefore,

/\ y; € vars(t) = 3, relation(l;,z;) € R(m;(p))

iel
4. For every j such that 1 < j <ar(f) and j €I and x; € vars(t) we have
b (p1) = py (8(£)) = S(x;) = 7;(p)
using Lemma A.2.2. Therefore,

Nxjevars) =y (0)=m()
el

From this we can conclude that relation(l,p’) € R;(p) and therefore also relation(l,p’) €
R(p).



A.2. Correspondence Relation between TSS and LPS 231

Next we prove equation 2 by induction on closed term p. Assume that X (p) Lx (.
Then this must be due to the fact that relation(l, p’) € R(p). By definition this means
that there exists a deduction rule d € D such that relation(l, p’) € R4(p).

As d is a deduction rule in De Simone format, iff it is of the form

l; .
i —yiliel}
f(Xl,. ..,Xar(f))

From the definition of R, it follows that there exist q;, for i € I with y; & vars(t)
such that relation(l;,q;) € R(7;(p)). Now, define a substitution S such that

[Cond,]

* S(x;) = m(p) for 1 <i <ar(f),

e S(y;)= uii(p’) for i € I such that y; € vars(t),

o S(y;) =gq; for i €I such that y; &€ vars(t).
Now we can establish the following facts:

1. Cond, holds for the labels of the premises and the label for the conclusion.

2. S(f(xl’ s ’xar(f))) = f(s(xl): LR ’S(xar(f))) = f(ﬂ:l(p)’ cees nar(f)(p)) =p. The
last step follows from is;(p) (since relation(l,p’) € Ry(p)).
3. From relation(l, p’) € R4(p) it follows that ufcj(p’) = m;(p) =S(x;) for all 1 <

j < ar(f) such that j € I. By definition of S, for i € I and y; € vars(t), also
u;_(p’) =S(y;). Therefore, as o*(p) also follows from relation(l, p") € R;(p), by
Lemma A.2.4 we have S(t) =p’.

4. From relation(l, p’) € R4(p) it follows that relation(li,u;(p’)) € R(m;(p)), for
i €I and y; € vars(t) and relation(l;,q;) € R(wt;(p)), for i € I and y; & vars(t).

1.
By induction we then have 7;(p) —l>u;(p’), for i € I and y; € vars(t) and

T i>qi, fori el and y; €vars(t). Since 7;(p) =S(x;) and u;_ (p")=S(y,), the
premises of the deduction rule d are all derivable.

We can conclude that p LN p. O



232 Appendix A. Proofs



s D

Appendix

Models

This chapter presents the (disclosed) mCRL2 source code models that have been used

in this thesis.

B.1 2x2 Switch Models

This section presents the mCRL2 source code models for the 2x2 switch from Chap-
ter 3. We present the models for the simplified switch (Chapter B.1.1), the original
switch (Chapter B.1.2) and the modified switch (Chapter B.1.3).

OOV WN -

B.1.1 The Simplified Switch

%

% Sorts

Q/” —

sort Bit = struct b0 | bl;
Packet = struct Pkg(data: Data);
Data = struct dO | dil;

map dest : Packet —> Nat;
eqn dest(Pkg(do))

0;
dest (Pkg(dl)) 1;

%

% Constant for size of FIFO queues
%
map cap: Pos;
eqn cap = 3;

%

% Action declarations

%

act send: Nat#Nat#Packet;
recv: Nat#Nat#Packet;

com: Nat#Nat#Packet;

233



OO W

234 Appendix B. Models

grant: Nat#Nat#Packet;
free: Nat#Nat#Packet;

% Remove element from OutputFIFO
send_ext: Nat#Packet;

% Add element to InputFIFO
recv_ext: Nat#Packet;

proc InputFIFO(ID: Nat, c: List(Packet)) =
% Packet with different destinations must be send simultaneous from
% different InputFIFOs
sum n: Nat. sum p: Packet.
((n != ID) && (p !'= rhead(c)) && (c !'= []))
—> send (ID, dest(rhead(c)), rhead(c)) | free(n, dest(p), p)
InputFIFO (ID, rtail(c))
% Grant prioritization to InputFIFO processes that have a lower rank ID,
% but have the same destination
+ sum n: Nat.
((n < ID) & (c !'= [1))
—> grant(n, dest(rhead(c)), rhead(c)) . InputFIFO(ID, c)
% Take prioritization over InputFIFO processes that grant communication,
% which have a higher rank ID and have the same destination
+ (¢ != [ —>
send (ID, dest(rhead(c)), rhead(c))
InputFIFO (ID, rtail(c))
% Grant communication to all other InputFIFO processes
+ sum n,m: Nat. sum p: Packet. (¢ == [])
—> grant(n, m, p) . InputFIFO(ID, c)
% Fill InputFIFO with packets
+ (#c < cap) —> sum p: Packet. recv_ext(ID, p) . InputFIFO(ID, p |> c);

proc OutputFIFO(id: Nat, c: List (Packet)) =
% Fill OutputFIFO with packets if not over capacitated
(#c < cap) —> sum org: Nat. sum p:Packet. recv(org, id, p)
OutputFIFO(id, p |> ¢)
% Remove packets from OutputFIFO
+ (¢ !'= []) — send_ext(id, rhead(c)). OutputFIFO(id, rtail(c));

init
block ({send, recv, grant, free},
comm({send | recv | free —> com},
comm({send | recv | grant —> com},

InputFIFO (0,[]) ||

InputFIFO (1,[]) ||

OutputFIFO (0,[]) |

OutputFIFO (1,[])

)
);

B.1.2 The Original Switch

%
% Sorts
%Ii
sort Bit = struct zero | one;
Packet = struct Pkg(bl: Bit, i: Bool);
map dest : Packet —> Nat;
var i: Bool;
eqn dest(Pkg(zero, i)) = 0;
dest (Pkg(one, i)) = 1;

%
% Constant for size of FIFO queues
%




B.1. 2x2 Switch Models

map cap: Pos;

eqn cap = 3;

%

% Action declarations
%

act inc;

act send: Nat#Nat#Packet;
recv: Nat#Nat#Packet;
com: Nat#Nat#Packet;
grant : Nat#Nat#Packet;
free: Nat#Nat#Packet;

% Remove element from OutputFIFO
send_ext: Nat#Packet;

% Add element to InputFIFO
recv_ext: Nat#Packet;

proc InputFIFO(ID: Nat, c: List(Packet)) =
% Packet with different destinations must be send simultaneous from
% different InputFIFOs

sum p: Packet.

(c!=1[D

—> (((i(p) != i(rhead(c)) || (i(p) == i(rhead(c))) && !i(p))

&& dest(p) != dest(rhead(c))) —
(sum n:Nat. (n != ID)
—> send (ID, dest(rhead(c)), rhead(c)) | free(n, dest(p), p)
InputFIFO(ID, rtail(c)))
+ 1((i(p) != i(rhead(c)) || (i(p) == i(rhead(c)))
&& 'i(p)) && dest(p) !'= dest(rhead(c))) — (
% Grant prioritization to InputFIFO processes that have
% a lower rank ID and are both interesting
sum 1: Nat.(1l < ID)
—> grant(l, dest(p), p) . InputFIFO(ID, c)
% Take prioritization over InputFIFO processes that grant
% communication which have a higher rank ID and are both
% interesting
+ send (ID, dest(rhead(c)), rhead(c))
InputFIFO(ID, rtail(c))
)
)
% Grant prioritization to InputFIFO processes that have a lower rank ID,
% but have the same destination
+ sum n: Nat.

sum j: Bool. % The value "interesting'" is not important

((n < ID) & (c != []) &k !i(rhead(c)))

—> (grant(n, dest(rhead(c)), Pkg(bl(rhead(c)), j)) . InputFIFO(ID, c))
% Take prioritization over InputFIFO processes that grant communication,
% which have a higher rank ID and have the same destination
+ (c!= [ =

(send (ID, dest(rhead(c)), rhead(c))
InputFIFO (ID, rtail(c))
)
% Grant communication to all other InputFIFO processes
+ sum n: Nat. sum p: Packet. (¢ = [])
—> (grant(n, dest(p), p ) . InputFIFO(ID, c))
% Fill InputFIFO with packets
+ (#c < cap) —> (sum p: Packet. recv_ext(ID, p) . InputFIFO(ID, p |> c));

proc OutputFIFO(id: Nat, c: List (Packet)) =
% Fill OutputFIFO with packets if not over capacitated
(#c < cap) —> sum org: Nat. sum p: Packet.
(li(p) > recv(org, id, p) . OutputFIFO(id, p |> ¢)
+ i(p) = inc | recv(org, id, p) . OutputFIFO(id, p |> c¢)
)

235



OO Dh WN

236 Appendix B. Models

% Remove packets from OutputFIFO

+ (c != []) —> send_ext(id, rhead(c)) . OutputFIFO(id, rtail(c));

proc Input(i: Nat, c: List(Packet)) =
(#c < cap) —> sum p:Packet. recv_ext(i,p) . Input(i, p |> ¢)

+ (¢ != []) —> sum p:Packet.
((dest(p) != dest(rhead(c))) && ('i(p) || !i(rhead(c))))
—> sum n:Nat. (n != i)

—> send (i, dest(rhead(c)), rhead(c)) | free(n, dest(p),p)
Input(i, rtail(c))

+ (¢ !'= []) — send(i, dest(rhead(c)), rhead(c)) . Input(i, rtail(c))
+ (¢ = []) —> sum n,m: Nat. sum p: Packet. grant(n,m,p) . Input(i,c)

+ ((c '= []) && i(rhead(c))) —> sum p:Packet.
((dest(p) = dest(rhead(c))) || i(p))
—> sum n:Nat. (n < i) —> grant(n, dest(p), p) .Input(i,c)

+ ((c !'= []) & !i(rhead(c))) —> sum p:Packet. (bl(p) = bl(rhead(c)))
—> sum n:Nat. (n < i) —> grant(n, dest(rhead(c)),p) . Input(i, c);

init

block ({send, recv, grant, free},

comm({send | grant |recv —> com},

comm({send | free | recv —> com},
Input (0,[]) ||
tnput (1,[1) ||
OutputFIFO (0,[]) ||
OutputFIFO (1,[])

))

)s

B.1.3 The Modified Switch

%
% Sorts
1%7
sort Bit = struct zero | one;

Packet = struct Packet(bl: Bit, i: Bool);

map dest : Packet — Nat;

var i: Bool;

eqn dest(Packet(zero, i)) = 0;
dest (Packet(one, i)) = 1;

%
% Constant for size of FIFO queues
%
map cap: Pos;
eqn cap = 3;

%
% Action declarations
%
act inc;
act send: Nat#Nat#Packet;

recv: Nat#Nat#Packet;

com: Nat#Nat#Packet;

grant: Nat#Nat#Packet;

free: Nat#Nat#Packet;

% Remove element from OutputFIFO

leave: Nat#Packet;

% Add element to InputFIFO

enter: Nat#Packet;

proc InputFIFO(ID: Nat, c: List(Packet)) =

% Packet with different destinations must be send simultaneous from



B.1. 2x2 Switch Models

% different InputFIFOs
sum p: Packet.
(c!'=1[D
— ( ((i(p) != i(rhead(c)) || (i(p) = i(rhead(c))) && !i(p))
&& dest(p) != dest(rhead(c))) —> (sum n:Nat. (n != ID)
—> send (ID, dest(rhead(c)), rhead(c)) | free(n, dest(p), p)
InputFIFO (ID, rtail(c)))
+ 1((i(p) != i(rhead(c)) || (i(p) == i(rhead(c))) && !i(p))
&& dest(p) != dest(rhead(c))) —> (
% Grant prioritization to InputFIFO processes that have
% a lower rank ID and are both interesting
sum 1: Nat.
(1 > ID)
—> grant(l, dest(p), p) . InputFIFO(ID, c)

% Take prioritization over InputFIFO processes that
% grant communication which have a higher rank ID and
% are both interesting

+ send (ID, dest(rhead(c)), rhead(c)). InputFIFO(ID, rtail(c))

)
)
% Grant prioritization to InputFIFO processes that have a lower rank
% ID, but have the same destination
+ sum n: Nat.
sum i: Bool. % The value "interesting" is not important
((n < ID) && (c != []) &% !i(rhead(c)))

—> grant(n, dest(rhead(c)), Packet(bl(rhead(c)),i)) . InputFIFO(ID, c)
% Take prioritization over InputFIFO processes that grant communication,

% which have a higher rank ID and have the same destination

+ (c !'= []) — send(ID, dest(rhead(c)), rhead(c)) . InputFIFO(ID, rtail(c))

% Grant communication to all other InputFIFO processes
+ sum n,m: Nat. sum p: Packet. (¢ == [])
—> grant(n, m, p) . InputFIFO(ID, c)
% Fill InputFIFO with packets
+ (#c < cap) —> sum p: Packet. enter(ID, p) . InputFIFO(ID, p |> c¢);

proc Input(i: Nat, c: List(Packet)) =
(#c < cap) —> sum p:Packet. enter(i,p) . Input(i, p |> ¢)
+ (¢ !'= []) —> sum p:Packet. ((dest(p) !'= dest(rhead(c))) &&
(ti(p) || !i(rhead(c)))) —
sum n:Nat. (n !'= i)
—> send (i, dest(rhead(c)), rhead(c)) | free(n, dest(p),p)
. Input(i, rtail(c))
+ (¢ !'= []) — send(i, dest(rhead(c)), rhead(c)) . Input(i, rtail(c))
+ (¢ = []) —> sum n,m: Nat. sum p: Packet. grant(n,m,p) . Input(i,c)
+ ((c '= []) & i(rhead(c))) — sum p:Packet. (
(dest(p) == dest(rhead(c)))) —
sum n:Nat. (n < i) —> grant(n, dest(p), p) . Input(i,c)
+ ((c !'= []) && i(rhead(c))) — sum p:Packet. (
(dest(p) != dest(rhead(c))) && i(p))
—> sum n:Nat. (n > i) —> grant(n, dest(p), p) . Input(i,c)
+ ((c '= []) && !i(rhead(c))) —> sum p:Packet. (bl(p) = bl(rhead(c)))
—> sum n:Nat. (n < i) —> grant(n, dest(rhead(c)),p) . Input(i, c);

proc OutputFIFO(id: Nat, c: List(Packet)) =
% Fill OutputFIFO with packets if not over capacitated
(#c < cap) —> sum org: Nat. sum p: Packet.

(li(p) = recv(org, id, p) . OutputFIFO(id, p |> ¢)
+ i(p) — inc | recv(org, id, p) . OutputFIFO(id, p |> ¢)
)

% Remove packets from OutputFIFO

+ (¢ !'= []) — leave(id, rhead(c)) . OutputFIFO(id, rtail(c));
init
block ({send, recv, grant, free},

237



99
100
101
102
103
104

106

O OO UT A WN -

238 Appendix B. Models

comm({send | recv | grant —> com},
comm({send | recv | free —> com},
Input (0,[]) ||
Input (1,[]) ||
OutputFIFO (0,[]) ||
OutputFIFO (1,[])
))
)3

B.2 Translated Chi 2.0 Models

This section presents the four mCRL2 source code models for the Chi 2.0 examples
that have been constructed using the translation from Chapter 5.

B.2.1 Guarded Action Update Example

sort ChiLabelsBasic = struct a ;

sort Variables = struct time;

sort TimeSort = Nat;

sort Htime = struct htime(pi_time: TimeSort, pi_counter: TimeSort);

act a;
act ctau;
act SendAbsTime, RecvAbsTime, CommAbsTime,
SendAbsUpdTime, RecvAbsUpdTime, CommAbsUpdTime: Htime;
SendMem_s, RecvMem_s, CommMem s : Bool;
SendUpdMem_s, RecvUpdMem_s, CommUpdMem s : Bool;
chng: Set(Variables);

map Urgent_G: ChilLabelsBasic —> Bool;
eqn Urgent_G(a) = true;

proc ProcTime(t: Htime) = sum t’: Htime. pred_htime(t, t’)
—> SendAbsTime(t) | RecvAbsUpdTime(t’). ProcTime(t’);

map pred_htime: Htime#Htime —> Bool;

var t, t’: Htime;

eqn pred_htime(t, t’) = (t’ = htime(pi_time(t), pi_counter(t)+1)) ||
(pi_time(t’) > pi_time(t) && pi_counter(t’) = 0);

proc ProcChi =
sum t: Htime. sum t’: Htime.
((lambda time’: TimeSort, time: TimeSort, predicate: TimeSort —> Bool.
(predicate (time’) &&
if (Urgent_G(a),
forall x: TimeSort. time <= x && x < time’ => !(predicate(x)), true)))
(pi_time(t’), pi_time(t), (lambda time: TimeSort. time >= 1))) —
(RecvAbsTime(t) | a | chng({time}) | SendAbsUpdTime(t’));

init hide ({ctau},
allow ({CommAbsTime | a | chng | CommAbsUpdTime,
CommAbsTime | ctau | chng | CommAbsUpdTime

},
comm({ SendAbsTime | RecvAbsTime —> CommAbsTime,
SendAbsUpdTime | RecvAbsUpdTime —> CommAbsUpdTime,
SendMem_s | RecvMem_s —> CommMem s,
SendUpdMem_s | RecvUpdMem_s —> CommUpdMem s

5



46

O OO UT A WN

B.2. Translated Chi 2.0 Models 239

ProcTime (htime (0, 0)) || ProcChi)));

B.2.2 Alternative Composition Example

sort ChiLabelsBasic = struct a | b;

sort TimeSort = Nat;

sort Variables = struct s | time;

sort Htime = struct htime(pi_time: TimeSort, pi_counter: Nat);

act a, b;

act ctau;

act SendAbsTime, RecvAbsTime, CommAbsTime,
SendAbsUpdTime, RecvAbsUpdTime, CommAbsUpdTime: Htime;
SendMem_s, RecvMem_s, CommMem s: Bool;
SendUpdMem_s, RecvUpdMem_s, CommUpdMem s: Bool;
chng: Set(Variables);

map Urgent_G: ChilLabelsBasic —> Bool;
eqn Urgent_G(a) = true;
Urgent_G(b) = false;

sort ChiProcessTerm =
struct ChiAlt(p_1: ChiProcessTerm, p 2: ChiProcessTerm)
| ChiActionUpdate (pi_guard: Bool#Bool#TimeSort —> Bool,
pi_a: ChiLabelsBasic,
pi_chng: Set(Variables),
pi_r: Bool#Bool#TimeSort —> Bool);

map CompMaxDelay: ChiProcessTerm#TimeSort#Bool —> TimeSort;

var p_1, p_2: ChiProcessTerm;
u: Bool#Bool#TimeSort—> Bool;

TimeSort;

, s’: Bool;

Set (Variables);
r: Bool#Bool#TimeSort — Bool;

eqn CompMaxDelay(ChiAlt(p_1, p_2), t, s) =

min (CompMaxDelay(p_1, t, s), CompMaxDelay(p_ 2, t, s));

% Shortcut (Max time in model is 1000)
CompMaxDelay (ChiActionUpdate (u, a, w, r), t, s)
CompMaxDelay (ChiActionUpdate (u, b, w, r), t, s)

fen

if (Urgent_G(a), 2, 1000);
if (Urgent_G(b), 1, 10);

proc ProcTime(t: Htime) = sum t’: Htime. pred_htime(t, t’)
—> SendAbsTime(t) | RecvAbsUpdTime(t’). ProcTime(t’);

map pred_htime: Htime#Htime —> Bool;

var t, t’: Htime;

eqn pred_htime(t, t’) = (t’ = htime(pi_time(t), pi_counter(t)+1)) ||
(pi_time(t’) > pi_time(t) && pi_counter(t’) = 0);

proc ProcMem(s: Bool) =
sum s’: Bool. SendMem_s(s) | RecvUpdMem _s(s’) . ProcMem(s’)
+ SendMem_s(s) | CommUpdMem s(s ) . ProcMem(s )
+ sum s’: Bool. CommMem s(s) | RecvUpdMem_s(s’) . ProcMem(s’)
+ CommMem s(s) | CommUpdMem s(s ) . ProcMem(s );

glob dc: Bool;
proc ProcChi =
sum t: Htime. sum t’: Htime. sum vl: Bool. sum wl: Bool.
(pi_time(t’) — pi_time(t) <=
CompMaxDelay (
ChiAlt (



OV WONOUThA WN =

—

240 Appendix B. Models

ChiActionUpdate (
lambda v1: Bool, s2: Bool, time: TimeSort. time >= 2, a, {},
lambda v1: Bool, s2: Bool, time: TimeSort. true),

ChiActionUpdate (
lambda v1: Bool, s2: Bool, time: TimeSort. time <= 10 && time >= 1, b, {s},
lambda v1: Bool, s2: Bool, time: TimeSort. s2 = false)),

pi_time(t), vl)) —>
comm {RecvAbsTime | RecvAbsTime —> RecvAbsTime,
SendAbsUpdTime | SendAbsUpdTime —> SendAbsUpdTime,
RecvMem_s | RecvMem_s —> RecvMem_s,
SendUpdMem_s | SendUpdMem_s —> SendUpdMem s},
(sum t: Htime. sum t’: Htime. sum wl: Bool.
((lambda v1: Bool, time’: TimeSort, time: TimeSort,
predicate: Bool#TimeSort —> Bool.
(predicate (vl, time’) &&
if (Urgent_G(a),
forall x: TimeSort. time <= x && x < time’ => !(predicate(vl, x)),
true)))
(dc, pi_time(t’), pi_time(t), (lambda vl: Bool, time: TimeSort. time >= 2))) —>
( RecvAbsTime(t) | a | chng({time})
| SendAbsUpdTime(t’) @pi_time (t’)
) | RecvAbsTime(t) | SendAbsUpdTime(t’))
+ (sum t: Htime.sum t’: Htime. sum wl: Bool.
((lambda v1: Bool, time’: TimeSort, time: TimeSort,
predicate: Bool#TimeSort —> Bool.
(predicate(vl, time’) &&
if (Urgent_G(b),
forall x: TimeSort. time <= x && x < time’ => !(predicate(vl, x)),
true)))
(dc, pi_time(t’), pi_time(t),
(lambda v1: Bool, time: TimeSort. time <= 10 && time >= 1)) &&
(lambda wl: Bool, time’: TimeSort, time: TimeSort,
predicate: Bool#TimeSort —> Bool.
(predicate (wl, time’)))
(wl, pi_time(t’), pi_time(t),
(lambda wl: Bool, time: TimeSort. wl = false))) —
( SendUpdMem_s(wl) | RecvAbsTime(t) | b | chng({s, time})
| SendAbsUpdTime(t’) @pi_time(t’)
) | RecvMem_s(v1) | RecvAbsTime(t) | SendAbsUpdTime(t’)));

init hide ({ctau},
allow ({CommAbsTime | CommMem s | a | chng | CommUpdMem s | CommAbsUpdTime,
CommAbsTime | CommMem s | b | chng | CommUpdMem s | CommAbsUpdTime,
CommAbsTime | CommMem s | ctau | chng | CommUpdMem s | CommAbsUpdTime,

comm({ SendAbsTime | RecvAbsTime —> CommAbsTime,
SendAbsUpdTime | RecvAbsUpdTime —> CommAbsUpdTime,
SendMem_s | RecvMem_s —> CommMem s,

SendUpdMem_s | RecvUpdMem s —> CommUpdMem s

1,
ProcMem (true) || ProcTime (htime (0, 0)) || ProcChi)));

B.2.3 Parallel Composition Example

sort ChiLabelsBasic = struct a | b;

sort TimeSort = Nat;

sort Variables = struct s | time;

sort Htime = struct htime(pi_time: TimeSort, pi_counter: Nat);

act a, b;
act ctau;



B.2. Translated Chi 2.0 Models

act SendAbsTime, RecvAbsTime, CommAbsTime,
SendAbsUpdTime, RecvAbsUpdTime, CommAbsUpdTime: Htime;
SendMem_s, RecvMem_s, CommMem s: Bool;
SendUpdMem_s, RecvUpdMem s, CommUpdMem s: Bool;
chng: Set(Variables);

map Urgent_G: ChiLabelsBasic —> Bool;
eqn Urgent_G(a) = true;
Urgent_G(b) = false;

proc ProcTime(t: Htime) = sum t’:Htime. pred_htime(t, t’)

—> SendAbsTime (t)

map pred_htime: Htime#Htime —> Bool;
var t, t’: Htime;
eqn pred_htime(t, t’) = (t’ = htime(pi_time(t), pi_counter(t)+1)) ||

(pi_time(t’) > pi_time(t) && pi_counter(t’) = 0);

proc ProcMem (s
sum s’: Bo
+
+ sum s’: Bo
+

glob dc: Bool;
proc ProcChi =
allow (

{

RecvMem_s
RecvMem_s
RecvMem_s

RecvMem_s
RecvMem_s
RecvMem_s

}

: Bool) =

ol . SendMem s(s)
SendMem_s(s)
ol . CommMem s(s)
CommMem _s(s)

SendUpdMem_s
SendUpdMem_s
SendUpdMem_s

SendUpdMem_s
SendUpdMem_s
SendUpdMem_s

RecvUpdMem_s(s’) . ProcMem(s’)
CommUpdMem s(s ) . ProcMem(s )
RecvUpdMem_s(s’) . ProcMem(s’)
CommUpdMem s(s ) . ProcMem(s );

RecvAbsTime | a | chng | SendAbsUpdTime,
RecvAbsTime | b | chng | SendAbsUpdTime,
RecvAbsTime | ctau | chng | SendAbsUpdTime,

RecvAbsTime | a | chng | SendAbsUpdTime,
RecvAbsTime | b | chng | SendAbsUpdTime,
RecvAbsTime | ctau | chng | SendAbsUpdTime,

RecvAbsTime | a | chng | SendAbsUpdTime,
RecvAbsTime | b | chng | SendAbsUpdTime,
RecvAbsTime | ctau | chng | SendAbsUpdTime,

RecvAbsTime | a | chng | SendAbsUpdTime,
RecvAbsTime | b | chng | SendAbsUpdTime,
RecvAbsTime | ctau | chng | SendAbsUpdTime

comm ({RecvAbsTime | RecvAbsTime —> RecvAbsTime,

SendAbsUpdTime | SendAbsUpdTime —> SendAbsUpdTime,
RecvMem s | RecvMem s —> RecvMem s,
SendUpdMem_s | SendUpdMem s —> SendUpdMem s,

chng | chng — chng},

(

sum t: Htime. sum t’: Htime.

( (lambda v1

: Bool,

time ’: TimeSort,

time: TimeSort,

(dc, pi_time(t’),
(lambda v1:Bool,
(RecvAbsTime (t)

predicate : Bool#TimeSort —> Bool

(predicate(vl, time’) && if(Urgent_G(a),
forall t’’:TimeSort . time <= t’’ && t’’ < time’
=> !(predicate(vl, t’’)), true)))

pi_time(t),
time: TimeSort. time >= 2))) —>
| a | chng({time}) | SendAbsUpdTime(t’) @pi_time(t’)))

( sum t: Htime. sum t’: Htime. sum wl: Bool.

( (lambda v1

: Bool,

time ’: TimeSort,

| RecvAbsUpdTime(t’). ProcTime(t’);

241



O OO UT A WN

242 Appendix B. Models

time: TimeSort, predicate:Bool#TimeSort —> Bool
(predicate(vl, time’) && if(Urgent_G(b),
forall t’’:TimeSort . time <= t’’ && t’’ < time’
=> |(predicate(vl, t’’)), true)))
(dc, pi_time(t’), pi_time(t),
(lambda v1:Bool, time:TimeSort. time <= 10 && time >= 1))
&&
(lambda v1: Bool, wl: Bool, time’: TimeSort, time:TimeSort,
predicate : Bool#Bool#TimeSort —> Bool.(predicate (vl, wl, time’)))
(de, wl, pi_time(t’), pi_time(t),
(lambda v1: Bool, wl:Bool, time:TimeSort. wl = false))) —
(SendUpdMem_s(wl) | RecvAbsTime (t)
| b | chng({s, time}) | SendAbsUpdTime(t’) @pi_time(t’)))
));

init hide ({ctau},
allow ({CommAbsTime | CommMems | a | chng | CommUpdMem s | CommAbsUpdTime,
CommAbsTime | CommMem s | b | chng | CommUpdMem s | CommAbsUpdTime,
CommAbsTime | CommMem s | ctau | chng | CommUpdMem s | CommAbsUpdTime,
},
comm({ SendAbsTime | RecvAbsTime —> CommAbsTime,
SendAbsUpdTime | RecvAbsUpdTime —> CommAbsUpdTime,
SendMem_s | RecvMem_s —> CommMem s,
SendUpdMem_s | RecvUpdMem s —> CommUpdMem s

},
ProcMem (true) || ProcTime (htime (0, 0)) || ProcChi)));

B.2.4 Communication Example

sort ChiLabelsBasic = struct a | b | send ¢ | recv_c;

sort TimeSort = Nat;

sort Variables = struct s | time;

sort Htime = struct htime(pi_time: TimeSort, pi_counter: Nat);

act a, b;
send_c, recv_c, comm_c: Bool;
act ctau;
act SendAbsTime, RecvAbsTime, CommAbsTime,
SendAbsUpdTime, RecvAbsUpdTime, CommAbsUpdTime: Htime;
SendMem_s, RecvMem_s, CommMem s: Bool;
SendUpdMem_s, RecvUpdMem_s, CommUpdMem s: Bool;
chng: Set(Variables);

map Urgent: ChiLabelsBasic —> Bool;
eqn Urgent(a) = true;
Urgent(b) = false;
Urgent(send_c) = true;
Urgent(recv_c) = false;

proc ProcTime(t: Htime) = sum t’: Htime. pred_htime(t, t’)
—> SendAbsTime(t) | RecvAbsUpdTime(t’). ProcTime(t’);

map pred_htime: Htime#Htime —> Bool;

var t, t’: Htime;

eqn pred_htime(t, t’) = (t’ = htime(pi_time(t), pi_counter(t)+1)) ||
(pi_time(t’) > pi_time(t) && pi_counter(t’) = 0);

proc ProcMems: Bool) =
sum s’: Bool . SendMem s(s) | RecvUpdMem s(s’) . ProcMem(s’)
+ SendMem_s(s) CommUpdMem s(s ) . ProcMem(s )
+ sum s’: Bool . CommMem s(s) | RecvUpdMem_s(s’) . ProcMem(s’)



B.2. Translated Chi 2.0 Models 243
+ CommMem s(s) | CommUpdMem s(s ) . ProcMem(s );
glob dc: Bool;
proc ProcChi =
allow (
{
RecvMem_s | RecvAbsTime | a | chng | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | a | chng | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | a | chng | SendAbsUpdTime,
RecvAbsTime | a | chng | SendAbsUpdTime,
RecvMem_s | RecvAbsTime | b | chng | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | b | chng | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | b | chng | SendAbsUpdTime,
RecvAbsTime | b | chng | SendAbsUpdTime,
RecvMem_s | RecvAbsTime | b | ctau | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | b | ctau | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | b | ctau | SendAbsUpdTime,
RecvAbsTime | b | ctau | SendAbsUpdTime,
RecvMem_s | RecvAbsTime | send_c | chng | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | send c¢ | chng | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | send c¢ | chng | SendAbsUpdTime,
RecvAbsTime | send_c | chng | SendAbsUpdTime,
RecvMem_s | RecvAbsTime | recv_c | chng | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | recv_c | chng | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | recv_c | chng | SendAbsUpdTime,
RecvAbsTime | recv_c | chng | SendAbsUpdTime,
RecvMem_s | RecvAbsTime | comm_c | chng | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | comm c¢ | chng | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | comm_c | chng | SendAbsUpdTime,
RecvAbsTime | comm_c | chng | SendAbsUpdTime,
RecvMem_s | RecvAbsTime | comm_c | chng | chng | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | comm c¢ | chng | chng | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | comm c | chng | chng | SendAbsUpdTime,
RecvAbsTime | comm_c | chng | chng | SendAbsUpdTime,
RecvMem_s | RecvAbsTime | ctau | chng | SendAbsUpdTime,
RecvMem_s | SendUpdMem s | RecvAbsTime | ctau | chng | SendAbsUpdTime,
SendUpdMem_s | RecvAbsTime | ctau | chng | SendAbsUpdTime,
RecvAbsTime | ctau | chng | SendAbsUpdTime
},

comm( {RecvAbsTime | RecvAbsTime —> RecvAbsTime,
SendAbsUpdTime | SendAbsUpdTime —> SendAbsUpdTime,
RecvMem s | RecvMem_s —> RecvMem s,
SendUpdMem_s | SendUpdMem_s —> SendUpdMem s,
send_c | recv_c —> comm_c,
chng | chng — chng},
( sum t: Htime. sum t’: Htime. sum vl: Bool.

( (lambda v1: Bool, time’: TimeSort, time: TimeSort,

predicate: Bool#TimeSort —> Bool .
(predicate(vl, time’) && if(Urgent(send_c),
forall x: TimeSort
time <= x && x < time’ => !(predicate(vl,
(dc, pi_time(t’), pi_time(t),

X)), true)))

(lambda v1: Bool, time: TimeSort. time >= 2))) —

( RecvMem_s(v1l) | RecvAbsTime(t) | send_c(!vl) |
| SendAbsUpdTime(t’) @pi_time(t’)
))

[

( sum t: Htime. sum t’: Htime. sum wl: Bool.

chng ({time})



OOV Dh WN

244

Appendix B. Models

( (lambda v1: Bool, time’: TimeSort, time: TimeSort,
predicate: Bool#TimeSort —> Bool
(predicate (vl, time’) && if(Urgent(recv_c),
forall x: TimeSort
time <= x && x < time’ => !(predicate(vl, x)), true)))
(dc, pi_time(t’), pi_time(t),
(lambda v1: Bool, time: TimeSort. time >= 2))) —>
( SendUpdMem_s(wl) | RecvAbsTime(t)

| recv_c(wl)

| chng({s, time})

| SendAbsUpdTime(t’) @pi_time(t’)

1))

init hide ({ctau},
allow ({ CommAbsTime
CommAbsTime
CommAbsTime
CommAbsTime
CommAbsTime
CommAbsTime
}

comm({ SendAbsTime

CommMem s | a | chng | CommUpdMem s | CommAbsUpdTime,
CommMem s | b | chng | CommUpdMem s | CommAbsUpdTime,
CommMem s | ctau | chng | CommUpdMem s | CommAbsUpdTime,
CommMem s | ctau | chng | chng | CommUpdMem s | CommAbsUpdTime,
CommMem s | CommUpdMem s | chng |chng |comm c¢ | CommAbsUpdTime,
CommMem s | CommUpdMem s | chng |comm c¢ | CommAbsUpdTime

RecvAbsTime —> CommAbsTime,

|
SendAbsUpdTime | RecvAbsUpdTime —> CommAbsUpdTime,
SendMem_s | RecvMem_s —> CommMem s,
SendUpdMem_s | RecvUpdMem s —> CommUpdMem s

},

ProcMem (true) || ProcTime (htime (0, 0)) || ProcChi)));

B.3 The Wafer Dryer Facility Model

This section presents the original mCRL2 source code model for the wafer dryer facil-
ity from Chapter 6. The model that has been used to generate traces is a derivative
from the one stated here. In the derivative model the dense time domain has been
replaced by a model of ticks, with a resolution of one tick per second. The progress of
time is modeled as a data parameter, and functions that ensure that the value of the
time always increases. The derivative model is not included.

sort Places = struct SO | S1 | S2 | S3 | S4;
Wafer = struct wafer(Id: Nat, Place: Places,

State: Bool, Stamp: Real);

map getWafersID: Set(Wafer) —> Set(Nat);

var sw: Set(Wafer);

eqn getWafersID (sw)={i: Nat | exists x: Wafer. x in sw && Id(x) = i && i < 6};

map getWafersPlaces: Set(Wafer) — Set(Places);

var sw: Set(Wafer);

eqn getWafersPlaces(sw) = {i: Places |

map frac: Real —> Real;
var Xx: Real;

exists x: Wafer. x in sw && Place(x) = i };

eqn frac(x) = x — floor(x);

map flip: Bool —> Bool;
var Xx: Bool;
eqn flip (x) = !x;

map rate, time2turn, time2move, time2insert, time2remove, drytime: Nat;

offset: Real;

eqn rate = 30; % Rate at which wafers enter the system
time2turn = 5; % Time required to turn wafers



B.3. The Wafer Dryer Facility Model

time2move
time2insert
time2remove
drytime
offset

6

3
3
3
0
1

act

; % Time required to move a wafer
; % Time required to insert a wafer into the system
; % Time required to exit a wafer from the system

; % Required time to dry a wafer

; % Offset is required to escape "action@O0"

SO0toS1_begin, SOtoS3_begin, S1toSO_begin, S1toS4_begin,
S1toS2_begin, S2toS1_begin, S2toS3_begin, S3toS2_begin,

S3toS0_begin, S3toS4_begin,

SOtoS1_end, SOtoS3_end, S1toSO_end, S1toS2_end,
S1toS4_end, S2toS1_end, S2toS3_end, S3toS2_end,

S3toS0_end, S3toS4_end: Nat;

SO0toS1_begin_dc, SO0toS3_begin_dc,
S1toS2_begin_dc, S2toS1_begin_dc,
S3toS0_begin_dc, S3toS4_begin_dc,

S1toSO_begin_dc, S1toS4_begin_dc,
S2toS3_begin_dc, S3toS2_begin_dc,

SOtoS1_end_dc, SOtoS3_end_dc, S1toSO_end_dc, S1toS2_end_dc,
S1toS4_end_dc, S2toS1_end_dc, S2toS3_end_dc, S3toS2_end_dc,

S3toS0_end_dc, S3toS4_end_dc: Nat;

SO0toS1_begin_c, SO0toS3_begin_c, S1toSO_begin_c, S1toS4_begin_c,
S1toS2_begin_c, S2toS1_begin_c, S2toS3_begin_c, S3toS2_begin c,

S3toS0_begin_c, S3toS4_begin_c,

SO0toS1_end_c, SOtoS3_end c, S1toSO_end c, S1toS2_end_c,
S1toS4_end_c, S2toS1_end_c, S2toS3_end_c, S3toS2_end_c,

S3toS0_end_c, S3toS4_end_c: Nat;
skip;

996 Dryer System %%

proc DS(S1: Bool, S2: Bool, S3: Bool

) =

sum n: Nat. sum t: Real. (!S1) —
S0toS1_begin_dc(n)@t
S0toS1_end_dc(n)@(t+time2insert)
. DS(true, S2, S3)

+ sum n: Nat.

sum t: Real. (!S3) —>

S0toS3_begin_dc(n)@t
SO0toS3_end_dc(n)@(t+time2insert)

. DS(S1, Ss2,

+ sum n: Nat. sum t: Real.

true)

S1toSO_begin_dc(n)@t
S1toS0_end_dc (n)@(t+time2remove)
. DS(false, S2, S3)

+ sum n: Nat. sum t: Real.

S1toS4_begin_dc(n)@t
S1toS4_end_dc(n)@(t+time2remove)
. DS(false, S2, S3)

+ sum n, m: Nat.sum t: Real.

S1toS2_begin_dc(n) | S2toS1_begin_dc(m)@t

S1toS2_end_dc(n)
S3)
sum t: Real. (!183) —>

. DS(s2, S1,
+ sum n: Nat.

S2toS3_begin_dc(n)@t
. S2toS3_end_dc(n)@( t+time2move)
. DS(S1, false, S2)

+ sum n: Nat.

sum t: Real. (!S2) —

S3toS2_begin_dc(n)@t
. S3toS2_end_dc(n)@( t+time2move)
. DS(S1, S3, false)

+ sum n: Nat. sum t: Real.

S3toS4_begin_dc(n) @t
S3toS4_end_dc(n)@( t+time2move)
. DS(S1, S2, false)

+ sum n: Nat. sum t: Real.

S3toS0_begin_dc(n)@t
S3toS0_end_dc (n)@( t+time2move)

| S2toS1_end_dc(m)@(t+time2turn)

245



246 Appendix B. Models

. DS(S1, S2, false);

Y0008
9% Controller %%
O B A B i)
proc C(wafers: Set(Wafer), time: Real) =
% New wafer enters the dryer facility
sum n: Nat. sum t: Real. ((frac((time—offset)/ rate) = 0)
&& !(n in getWafersID (wafers)))
—> S0toS1_begin_c(n) @time
SO0toS1_end_c(n)@t
. C({wafer(n, S1, true, time)} + wafers, t)
+ sum n: Nat. sum t: Real. ((frac((time—offset)/ rate) = 0)
&& !(n in getWafersID (wafers)))
—> S0toS3_begin_c(n) @time
. SO0toS3_end_c(n)@t
. C({wafer(n, S3, true, time)} + wafers, t)
% Move wafer inside dryer facility
+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac ((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S2)
&& !(S3 in getWafersPlaces(wafers)))
—> S$2t0S3_begin_c(Id (w)) @time
S2toS3_begin_c(Id (w))@t
. C((wafers — {w})
+ {wafer(Id(w), S3, State(w), Stamp(w))}, t)
+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S3)
&& 1(S2 in getWafersPlaces(wafers)))
—> S$3toS2_begin_c(Id (w)) @time
S3toS2_begin_c(Id (w)) @t
. C((wafers — {w})
+ {wafer(Id(w), S2, State(w), Stampw))}, t)

% Turn wafer
+ sum w, x: Wafer.sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place(w) = S1) && (Place(x) = S2))
—> S1toS2_begin_c(Id(w)) | S2toS1_begin_c(Id(x)) @time
S1toS2_end_c(Id(w)) | S2toS1_end c(Id(x))@t
. C((wafers — {w, x})
+ {wafer(Id(w), S2, flip (State(w)), Stamp(w)),
wafer (Id(x), S1, flip(State(x)), Stamp(x))}, t)
+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S1)
&& 1(S2 in getWafersPlaces(wafers)))
—> S1toS2_begin c(Id(w)) | S2toS1_begin_c(0) @time
S1toS2_end_c(Id (w)) | S2toS1_end_c(0)@t
. C((wafers—{w})
+ {wafer(Id(w), S2, flip (State(w)), Stamp(w))}, t)
+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S2)
&& !(S1 in getWafersPlaces(wafers)))
—> S2toS1_begin_c(0) | S2toS1_begin_c(Id (w)) @time
S1toS2_end c(0) | S2toS1_end c(Id(w))@t
. C((wafers—{w}) +
{wafer(Id (w), S1, flip(State(w)), Stamp(w))}, t)

% Wafer departure



196
197
198
199
200
201
202
203
204
205

B.3. The Wafer Dryer Facility Model

247

+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac ((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S1)
&& (t — (drytime + Stamp(w)) >=0))
—> S1toS4_begin_c(Id (w)) @time
S1toS4_end_c(Id (w))@t
. C(wafers—{w}, t)
+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S3)
&& (t — (drytime + Stamp(w)) >=0))
—> S3toS4_begin_c(Id (w)) @time
S3toS4_end_c(Id (w)) @t
. C(wafers—{w}, t)
+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac ((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S1)
&& (t — (drytime + Stamp(w)) >=0)
&& (State (w) = false))
—> S1toS0_begin_c(Id (w)) @time
S1toS0_end c(Id (w))@t
. C(wafers—{w}, t)
+ sum w: Wafer. sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac((time—offset)/ rate) < frac((t—offset)/ rate))
&& (Place (w) = S3)
&& (t — (drytime + Stamp(w)) >=0)
&& (State (w) = false))
—> S3t0S0_begin_c (Id (w)) @time
. S3toS0_end_c(Id (w)) @t
. C(wafers—{w}, t)
% time expires
+ sum t: Real. ((frac((time—offset)/ rate) != 0)
&& (frac((t—offset)/ rate)!=0)
&& (frac ((time—offset)/ rate) < frac((t—offset)/ rate)))
—> skip
. C(wafers, t);
init
allow ({
SO0toS1_begin, SOtoS1_end,
S0toS3_begin, SOtoS3_end,
S1toSO_begin, S1toSO_end,
S1toS4_begin, S1toS2_end,
S1toS2_begin, S1toS4_end,
S2toS1_begin, S2toS1_end,
S2toS3_begin, S2toS3_end,
S3toS2_begin, S3toS2_end,
S3toS0_begin, S3toSO_end,
S3toS4_begin, S3toS4_end,
skip},
comm ({
S0toS1_begin_dc | SOtoS1 begin_c —> SOtoS1_begin,
S0toS3_begin_dc | SOtoS3_begin_c —> S0toS3_begin,
S1toS0_begin_dc | S1toSO_begin_c —> S1toSO_begin,
S1toS4_begin_dc | S1toS4_begin_c —> S1toS4_begin,
S1toS2_begin_dc | S1toS2_begin_c¢ —> S1toS2_begin,
S2toS1_begin_dc | S2toS1_begin_c —> S2toS1_begin,
S2toS3_begin_dc | S2toS3_begin_c¢ —> S2toS3_begin,
S3toS2_begin_dc | S3toS2_begin_c —> S3toS2_begin,
S3toS0_begin_dc | S3toSO_begin_c —> S3toS0_begin,
S3toS4_begin_dc | S3toS4_begin_c —> S3toS4_begin,



248 Appendix B. Models

221 SOtoS1_end_dc | SOtoS1_end_c —> S0toS1_end,
222 S0toS3_end_dc | SOtoS3_end_c —> S0toS3_end,
223 S1toS0_end_dc | S1toSO_end_c —> S1toSO_end,
224 S1toS2_end_dc | S1toS2_end_c —> S1toS2_end,
225 S1toS4_end_dc | S1toS4_end_c —> S1toS4_end,
226 S2toS1_end_dc | S2toS1_end_c —> S2toS1_end,
227 S2toS3_end_dc | S2toS3_end_c —> S2toS3_end,
228 S3toS2_end_dc | S3toS2_end_c —> S3toS2_end,
229 S3toS0_end_dc | S3toSO_end_c —> S3toS0_end,
230 S3toS4_end_dc | S3toS4_end_c —> S3toS4_end},
231 C({}, offset) || DS(false, false, false)

232 )

233 )

B.4 Minimal Process Theory Models

This section presents the original mCRL2 source code models that have been created
using the semantic approach for the MPT example (including predicates) from Chap-
ter 6. The semantics is modeled in:

% This mCRL2 model describes the implementation of the Structural Operational
% Semantic deduction rules mentioned in:

% J.C.M. Baeten, T. Basten, and M.A. Reniers

Process Algebra: Equational Theories of Communicating Processes

% (Cambridge Tracts in Theoretical Computer Science)

%

% The locations of the corresponding deduction rules are mentioned above them.

OO OUTA W
§

10 % Set of Action/Predicate labels
11  sort AL = struct a0 | al | a2 | term;

13 % Signature
14 sort T = struct zero?is_zero

15 | one?is_one

16 | a0(pi_1: T)?is_a0

17 | al(pi_1: T)?is_al

18 | a2(pi_1: T)?is_a2

19 | alt(pi_1: T, pi_2: T)?is_alt

20 | par(pi_1: T, pi_2: T)?is_par

21 | seq(pi_1: T, pi_2: T)?is_seq

22 ;

23

24  sort Solution = struct sol(pi_l: AL, pi_t: T);

25

26 map R, R a0, R_al, R a2, R_alt_ 1, R_alt_2: T —> Set(Solution);
27 R_par 0, R _par 1, R_par 2: T —> Set(Solution);

28 R tl, R_t2, R t3, R _seq 1, R seq 2, R seq 3: T — Set(Solution);
29 TR: T — Set(Solution);

30 wvar p: T;
31 eqn R(p) = R_a0O(p) + R_al(p) + R_a2(p) + R_alt_1(p) + R_alt_2(p)

32 + R_par_1(p) + R_par_2(p) + R_seq_2(p) + R_seq_3(p);

33 TR(p) = R_par_0(p) + R_t1(p) + R_t2(p) + R_t3(p) + R_seq_1(p);

34

35 map sigma_a0O, sigma_al, sigma_a2, sigma_alt_1: T —> Bool;

36 sigma_alt_2, sigma_par_1, sigma_par_2: T —> Bool;

37 Cond_a0, Cond_al, Cond_ a2, Cond_alt 1, Cond_alt_2: List (AL)#AL—> Bool;
38 Cond_par_1, Cond_par_2: List (AL)#AL—> Bool;

39 mu_a0_x0, mu_al x0, mu_a2 x0, mu_alt_1_x0, mu_alt_2 x0: T —> T;

40 mu_par_1_y0, mu_par_1_x1, mu_par 2 x0, mu_par 2 yl: T —> T;

41 wvar 1: AL;



B.4. Minimal Process Theory Models

Is: List (AL);

p: T;
% Page 74, Rule 1
eqn Cond aO(ls, 1) =1 = a0;

sigma_aO(p) = true;

mu_a0_x0(p) = p;

R_a0(p) = {t: Solution |
&&
&&
&&

% Page 74, Rule 1

Cond_al(ls, 1) =1 = al;

sigma_al(p) true;

mu_al_x0(p)
R_al(p)

p;

{t: Solution |
&&
&&
&&

% Page 74, Rule 1

Cond_a2(ls, 1) =1 = a2;

sigma_a2(p) = true;

mu_a2_x0(p) = p;

R_a2(p) = {t: Solution |
&&
&&
&&

% Page 74, Rule 2

sigma_alt_1(p)
mu_alt_1_x0(p)
R_alt_1(p)

true;

% Page 74, Rule 3
sigma_alt_2(p)
mu_alt_2_x0(p)
R_alt_2(p)

true;

% Page 84, Rule 1
R_t1(p) = {t: Solution |

% Page 84, Rule 2

R_t2(p) = {t: Solution |
&&
&&
&&

% Page 84, Rule 3

R_t3(p) = {t: Solution |
&&
&&
&&

% Page 175, Rule 1

R_seq_1(p) = {t: Solution |
&&
&&
&&

&&

p;
{t: Solution |

p;
{t: Solution |

249

is_a0(p)

sigma_aO(pi_t(t))

Cond_aO([], pi_1(t))
mu_a0_x0(pi_t(t)) = pi_1(p)};

is_al(p)

sigma_al(pi_t(t))

Cond_al([], pi_1(t))

mu_al x0(pi_t(t)) = pi_1(p)};

is_a2(p)

sigma_a2(pi_t(t))

Cond_a2([], pi_l(t))

mu_a2 x0(pi_t(t)) = pi_1(p)};

is_alt(p)
sigma_alt_1(pi_t(t))
sol (pi_1(t), mu_alt 1 _x0(pi_t(t))) in R(pi_1(p))};

&&
&&

is_alt(p)
sigma_alt_2(pi_t(t))
sol(pi_I(t), mu_ alt 2 xO(pi_t(t))) in R(pi_2(p))};

&&
&&

is_one(p) && pi_l(t) term && (pi_t(t)) = p};

is_alt(p)

p = pi_t(t)

term = pi_l(t)

sol(term, pi_1(p)) in TR(pi_1(p))};

is_alt(p)

p = pi_t(t)

term = pi_Il(t)

sol(term, pi_2(p)) in TR(pi_2(p))};

is_seq(p)

sol(pi_I(t), pi_1(pi_t(t))) in R(pi_1(p))
sol (pi_I(t), pi_2(pi_t(t))) in R(pi_2(p))
pi_l(t) = term

is_seq(pi_t(t))};



250 Appendix B. Models

% Page 175, Rule 2

R_seq_2(p) = {t: Solution | is_seq(p)
&& sol(pi_1(t), pi_1(pi_t(t))) in R(pi_1(p))
&% pi_2(pi_t(t)) = pi_2(p)
&& is_seq(pi_t(t))};

% Page 175, Rule 3

R_seq 3(p) = {t: Solution | is_seq(p)
&& sol(term, pi_1(p)) in TR(pi_1(p))
& t in R(pi_2(p))};

% Page 216, Rule 1

R_par 0(p) = {t: Solution | is_par(p)
&& p = pi_t(t)
&& sol(term, pi_1(p)) in TR(pi_1(p))
&& sol(term, pi_2(p)) in TR(pi_2(p))
&& pi_l(t) = term};

% Page 216, Rule 3

sigma_par_1(p) = is_par(p);
mu_par_1_y0(p) = pi_1(p);

mu_par_1_x1(p) = pi_2(p);

R_par_1(p) = {t: Solution | is_par(p)

&& sigma_par_1(pi_t(t))
&& sol(pi_l(t), mu par 1 yO(pi_t(t))) in R(pi_1(p))
&& mu_par_1_x1(pi_t(t)) = pi_2(p)};

% Page 216, Rule 4

sigma_par_2(p) = is_par(p) ;
mu_par_2_x0(p) = pi_1(p);
mu_par_2_yl(p) = pi_2(p);

R_par_2(p) = {t: Solution | is_par(p)
&& sigma_par_2(pi_t(t))
&& mu_par_2_x0(pi_t(t)) = pi_1(p)
&& sol(pi_l(t), mu par 2 yl(pi_t(t))) in R(pi_2(p))};
act tr: AL;
pr: AL;

proc X(p: T) = sum s: Solution. (s in R(p)) —> tr(pi_I(s)) . X(pi_t(s))
+ sum s: Solution. (s in TR(p)) — pr(pi_l(s)) . X(pi_t(s));

The different input models that have been used to generate the LTSs are described in:

% Figure 8.1a
init X(a0(al(a2(zero))));

% Figure 8.1b
init X(par(al(zero)), a2(zero)));

% Figure 8.1c
init X(alt(aO(zero), al(a2(zero))));

% Figure 8.2
init X(alt(a0(zero), al(one)));



OOV WN -

B.5. Semantically Engineered mCRL2 Models 251

B.5 Semantically Engineered mCRL2 Models

B.5.1 Language Semantics

The language semantics describes the implementation of the semantics that hold for
all untimed mCRL2 models. To create a valid LPS, this semantics is extended with
the model specific (static) semantics (Appendix B.5.2) and a specific model (Ap-
pendix B.5.3).

T G L L ]
9% Sorts 9%
L L L ]

% An argument of a valuation.
sort Argument = struct argument(variable: Variable, valvalue: Value);

% Valuation.
sort Valuation = List (Argument);

% Data expression.
sort DataExpression = struct
de_var(dvr: Variable)?is_de_var

| de_val(dvl: Value)?is_de_val

| de_expr_1(f: Func, expr_1: DataExpression)?is_de_expr_1

| de_expr_2(f: Func, expr_1l: DataExpression,

expr_2: DataExpression)?is_de_expr_2;
% Syntactic action.
sort ActionSyntax =
struct Act(ActionLabel: ActionLabel, args: List(DataExpression))
| ActionTau;

% The sort to model process parameters
sort PP = struct pp(variable: Variable, dataexpression: DataExpression);

% The sort used to model communication
sort Communication =
struct communication(Cml: List (ActionLabel), CmR: ActionLabel);

% The signature of an mCRL2 process term
sort ProcessTerm = struct
Checkmark?is_Checkmark
Deadlock?is_Deadlock
Alpha(pi_multiaction: List (ActionSyntax))?is_Alpha
Alt(pi_1: ProcessTerm, pi_2: ProcessTerm)?is_Alt
Seq(pi_1: ProcessTerm, pi_2: ProcessTerm)?is_Seq
Condl(pi_C: DataExpression, pi_1: ProcessTerm)?is_Condl
Cond2(pi_C: DataExpression,

pi_1: ProcessTerm, pi_2: ProcessTerm)?is_Cond2
Sum(pi_v: Variable, pi_1: ProcessTerm)?is_Sum
Par(pi_1: ProcessTerm, pi_2: ProcessTerm)?is_Par
Lmerge(pi_1: ProcessTerm, pi_2: ProcessTerm)?is_Lmerge
Sync(pi_1: ProcessTerm, pi_2: ProcessTerm)?is_Sync
Allow (pi_V: Set(Bag(ActionLabel)), pi_1: ProcessTerm)?is_Allow
Block (pi_B: Set(ActionLabel), pi_1: ProcessTerm)?is_Block
Rename (pi_Ren: ActionLabel —> ActionLabel,

pi_1: ProcessTerm)?is_Rename
Hide(pi_I: Set(ActionLabel), pi_1: ProcessTerm)?is_Hide
Prehide (pi_U: Set(ActionLabel), pi_1: ProcessTerm)?is_Prehide
Comm(pi_CL: List(Communication), pi_1: ProcessTerm)?is_Comm
Def(pi_P: ProcessLabel, ppl: List(PP))?is_Def;

% Semantic action
sort ActionSemantic =



252

struct ActSem(ActionLabel: ActionLabel, args:

% The sort for an action transition
sort ActionTransition =
struct at(pi_ac: List(ActionSemantic),
pi_t: ProcessTerm,
pi_sigma’: Valuation);

Y

996 Mappings to model the deduction rules %%

% The solution functions that compute the transition
map R,

R_Alpha,

R_Alt_1, R_Alt_2, R_Alt_3, R_Alt_4,

R_Seq_1, R_Seq 2,

R_Condl_1, R _Condl_2,

R_Cond2_1, R _Cond2_2, R_Cond2_3, R_Cond2_4,

R _Sum_1, R Sum_2,

List (Value));

relations.

Appendix B. Models

R_Par_1, R_Par__Z, R_Par_3, R_Par_ 4, R_Par 5, R_Par 6, R_Par_7, R_Par_8,

R_Sync_1, R_Sync_2, R_Sync_3, R_Sync_4,
R_Lmerge_1, R_Lmerge 2,

R_Allow_1, R_Allow_2,

is_Block_1, is_Block_2,

R_Rename_1, R_Rename_2,

R_Hide_1, R_Hide_2,

R_Prehide_1, R_Prehide 2,

R _Comm_1, R _Comm_2,

R Def 1, R Def 2

ProcessTerm#Valuation —> Set(ActionTransition);

var p: ProcessTerm;
s: Valuation;
eqn R(p,s) R_Alpha(p,s)

R_Seq_1(p,s) + R_Seq_2(p,s)
R_Condl_1(p,s) + R_Condl_2(p,s)

R Sum_1(p,s) + R_Sum_2(p,s)

R_Par_5(p,s)

R_Lmerge_1(p,s) + R_Lmerge_2(p,s)
R_Allow_1(p,s) + R_Allow_2(p,s)
is_Block_1(p,s) + is_Block_2(p,s)
R_Rename_1(p,s) + R_Rename_2(p,s)
R_Hide 1(p,s) + R_Hide 2(p,s)
R_Prehide_1(p,s) + R_Prehide_2(p,s)
R_Comm 1(p,s) + R_Comm_2(p,s)
R_Def 1(p,s) + R_Def 2(p,s);

o o o o o o o o S S

996
9906
%% (Alpha,s) ——[[Alpha]](s)——> Checkmark
R_Alpha(p,s) = if(is_Alpha(p),

{ r: ActionTransition |

R_Par_6(p,s) + R_Par_7(p,s) + R_Par_8(p,s)
R_Sync_1(p,s) + R_Sync_2(p,s) + R_Sync_3(p,s) + R_Sync_4(p,s)

pi_ac(r) — Sem_ActList(pi_multiaction(p), s)

&& is_Checkmark(pi_t(r))
&& pi_sigma’(r) = s},
s

% (p,s) —m—> Checkmark
%
% (p + q,s) —m—> Checkmark

R_Alt_1(p,s) + R_Alt_2(p,s) + R_Alt_3(p,s) + R_Alt_4(p,s)

R _Cond2 _1(p,s) + R_Cond2 2(p,s) + R Cond2 3(p,s) + R_Cond2 4(p,s)

R_Par_1(p,s) + R_Par_2(p,s) + R_Par_3(p,s) + R_Par_4(p,s)



B.5. Semantically Engineered mCRL2 Models

R_Alt_1(p,s)

% (p,s) —m—
%

= if(is_Alt(p), { r: ActionTransition
r in R(pi_1(p),s)
&& is_Checkmark ((pi_t(r)))
&% pi_sigma’(r) = s}, {});

- (p’,s’)

% (p +q, s)
R_Alt_2(p,s)

—m=—> (p’,s’)
= if (is_Alt(p), { r: ActionTransition
r in R(pi_1(p),s)
&& !is_Checkmark(pi_t(r))}, {});

% (q,s) —m—> Checkmark

%

% (p + q,s) —m—> Checkmark

R_Alt_3(p,s)

% (p,s) —m—
%

= if(is_Alt(p), { r: ActionTransition
r in R(pi_2(p),s)
&& is_Checkmark (pi_t(r))
&& pi_sigma’(r) = s}, {});

—> (q’,s’)

% (p +q, s)
R_Alt_4(p,s)

—m= —> (q’,s’)
= if (is_Alt(p), { r: ActionTransition
r in R(pi_2(p),s)
&& !is_Checkmark(pi_t(r))}, {});

% (p,s) —m—> Checkmark

%

% (p . q,s) —m=—> (q,s)

R_Seq_1(p,s)

= if(is_Seq(p), { r: ActionTransition

at(pi_ac(r), Checkmark, pi_sigma’(r)) in R(pi_1(p),s)

& pi_t(r) = pi_2(p)
&& pi_sigma’(r) = s}, {});

% (p,s) —m=—> (p’,s’)

%

% (p . q,s) —m=—> (p’. q, s’)

R_Seq 2(p,s) = if(is_Seq(p), { r: ActionTransition |

is_Seq(pi_t(r))

&& at(pi_ac(r), pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p),s)

&& pi_2(pi_t(r)) = pi_2(p)

&& !is_Checkmark (pi_1(pi_t(r)))}, {});

% (p,s) —m—> Checkmark && [[b]](s)==true

%

% (b —> p,s)

—im—> Checkmark

R_Condl_1(p,s)= if(is_Condl (p)
&& Cast2InternalBool (Sem_Dex(pi_C(p), s)),

% (p,s) —m—
%

{ r: ActionTransition |
r in R(pi_1(p), s)
&& is_Checkmark(pi_t(r))
&& pi_sigma’(r) = s, {});

—> (p’,s’) && [[b]](s) = true

% (b —> p,s)

—m=-—> (p’,s’)

R_Condl_2(p,s)= if(is_Condl (p)
&& Cast2InternalBool (Sem_Dex(pi_C(p), s)),

{ r: ActionTransition |
r in R(pi_1(p), s)
&& !is_Checkmark(pi_t(r))}, {});

% (p,s) —m—> Checkmark && [[b]](s) = true

%

253



254

%

R_|

%
%
%

R_|

%
%

=S

I

%
%
%

R_

%
%
%

R_

%
%
%

Appendix B. Models

(b —> p < q,s) —m—> Checkmark
Cond2_1(p,s)= if (is_Cond2(p)
&& Cast2InternalBool (Sem_Dex(pi_C(p), s)),
{ r: ActionTransition |
r in R(pi_1(p), s)
&& is_Checkmark (pi_t(r))
&& pi_sigma’(r) =s, {});

(p,s) —m=—> (p’,s’) && [[b]](s) = true

(b —>p <>gq,s) —m=—> (p’,s’)
Cond2_2(p,s)= if (is_Cond2(p)
&& Cast2InternalBool (Sem_Dex(pi_C(p), s)),
{ r: ActionTransition |
r in R(pi_1(p), s)
&& !is_Checkmark(pi_t(r))}, {});

(q,s) —m—> Checkmark && [[b]](s) = false

(b —> p < q,s) —m—> Checkmark
Cond2_3(p,s)= if (is_Cond2(p)
&& ! Cast2InternalBool (Sem_Dex(pi_C(p), s)),
{ r: ActionTransition
r in R(pi_2(p), s)
&& is_Checkmark (pi_t(r))
&& pi_sigma’(r) = s}, {});

(q,s) —m— —> (q’,s’) && [[b]](s) = false

(b —>p <>gq,s) —m=—> (q’,s’)
Cond2_4(p,s)= if (is_Cond2(p)
&& ! Cast2InternalBool (Sem_Dex(pi_C(p), s)),
{ r: ActionTransition |
r in R(pi_2(p), s)
&& !is_Checkmark(pi_t(r))}, {});

(p,s[d: =e]) —m—> Checkmark

e in M D
(sum d: D . p, s) —m—> Checkmark
Sum_1(p,s) = if (is_Sum(p), { r: ActionTransition |
pi_sigma’(r) = s
&& is_Checkmark(pi_t(r))
&&(exists v: Value.
RestrictDomain (pi_v(p), V)
&&(at(pi_ac(r), pi_t(r), Z) in R(pi_1(p), Z)
whr Z = InsertArgument (argument(pi_v(p), v), s) end))}, {});

(p[d : =d’ ],s[d’: =e]) —m— —> (p’,s’)

e in M_D
(sum d: D . p, s) —m=—> (p’,s’)
Sum_2(p,s) = if (is_Sum(p), { r: ActionTransition |
!is_Checkmark (pi_t(r))
&&(exists v: Value.
RestrictDomain (pi_v(p), V)
&& r in R(VariableSubstitutionInProcessTerm (
(lambda v: Variable.(v))[ pi_v(p) —> VAR ], pi_1(p)),
InsertArgument (argument (VAR, v), s)))}
whr VAR= GenFreshVar(pi_v(p), GetHighestld(s) + 1) end, {});

(p,s) —m—> Checkmark

(|| ¢, s) —m=—> (q, s)

R_Par_1(p,s) = if(is_Par(p), { r: ActionTransition |

at(pi_ac(r), Checkmark, s) in R(pi_1(p), s)
&& pi_t(r) = pi_2(p)



B.5. Semantically Engineered mCRL2 Models 255

&& pi_sigma’(r) = s}, {});

% (p,s) —m——> (p’,s’)

%

% (p || ¢, s) —m— —>

(r’ll q, s”)

R_Par_2(p,s) = if(is_Par(p), { r: ActionTransition |
is_Par(pi_t(r))
&& at(pi_ac(r), pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p), s)
&& !is_Checkmark (pi_1(pi_t(r)))
&& pi_2(pi_t(r)) = pi_2(p)}, {});

% (q,s) —m—> Checkmark

%

% (p || ¢, s) —m— —>

(p, s)

R_Par_3(p,s) = if(is_Par(p), { r: ActionTransition |
at(pi_ac(r), Checkmark, s) in R(pi_2(p), s)

&& pi_

t(r) = pi_1(p)

&& pi_sigma’(r) = s}, {});

% (p,s) —m— —> (q’,s’)

%
% (p || q, s) —m— —>

Il q, s

R_Par_4(p,s) = if(is_Par(p), { r: ActionTransition |
is_Par(pi_t(r))
&& at(pi_ac(r), pi_2(pi_t(r)), pi_sigma’(r)) in R(pi_2(p), s)
&& !is_Checkmark (pi_2(pi_t(r)))

&& pi_

1(pi_t(r)) = pi_1(p)}, {});

% (q,s) —m—> Checkmark,(q,s) —n—> Checkmark

%

% (p || q, s) —m|n—> Checkmark
R_Par 5(p,s) = if(is_Par(p), { r: ActionTransition |
is_Checkmark (pi_t(r))
&& pi_sigma’(r) = s
&& exists t_1, t_2: List(ActionSemantic).
at(t_1, Checkmark, s) in R(pi_1(p), s)
&& at(t_2, Checkmark, s) in R(pi_2(p), s)
&& MergeOrderedActionLists(t_1, t 2) = pi_ac(r)}, {});

% (q,s) —m— —> (p’, s’),(q,s) —n—> Checkmark

%

% (p || q, s) —m|n——> (p’,s’)
R _Par 6(p,s) = if(is_Par(p), { r: ActionTransition |
exists r_1, r_2: ActionTransition.

&&
&&
&&
&&
&&
&&

r_1 in R(pi_1(p), s)

r_2 in R(pi_2(p), s)

is_Checkmark (pi_t(r_1))

lis_Checkmark (pi_t(r_2))

MergeOrderedActionLists (pi_ac(r_1), pi_ac(r_2)) = pi_ac(r)
pi_t(r) = pi_t(r_2)

pi_sigma’(r) == pi_sigma’(r_2)}, {});

% (q,s) —m—> Checkmark,(q,s) —n——> (q’,s’)

%

% (p || q, s) —mln——> (q’,s’)
R_Par_7(p,s) = if(is_Par(p), { r: ActionTransition |
exists r_1, r_2: ActionTransition.

&&
&&
&&
&&
&&
&&

r_1 in R(pi_1(p), s)

r_2 in R(pi_2(p), s)

lis_Checkmark (pi_t(r_1))

is_Checkmark (pi_t(r_2))

MergeOrderedActionLists(pi_ac(r_1), pi_ac(r_2)) = pi_ac(r)
pi_t(r) = pi_t(r_1)

pi_sigma’(r) = pi_sigma’(r_1)}, {});



256

% (q,s) —m——> (p’,s’),(q,s) —n——> (q’,s’’)
%
o (p || ¢, s) —m|n——> (p’||q’, s~ ++s’7)
_Par_8(p,s) = if(is_Par(p), { r: ActionTransition |
is_Par(pi_t(r))
&& exists r_1, r_2: ActionTransition.(
r_1 in R(pi_1(p), s)
&& r_2 in R(pi_2(p), s)
&& !is_Checkmark (pi_t(r_1))
&& !is_Checkmark(pi_t(r_2))
&& pi_ac(r) = MergeOrderedActionLists (pi_ac(r_1), pi_ac(r_2))
&& pi_1(pi_t(r)) = pi_t(r_1)
&& pi_2(pi_t(r)) =
VariableSubstitutionInProcessTerm (SUBST, pi_t(r_2))
&& pi_sigma’(r) =
MergeOrderedValuations (pi_sigma’(r_1),
VariableSubstitutionInValuation (SUBST,
ValuationMinusValuationOrdered (pi_sigma’(r_2),s)))
whr SUBST =
CreateVariableSubstitution (
DUP, GenFreshVars(
max(GetHighestld (pi_sigma’(r_1)),
GetHighestId (pi_sigma’(r_2)))+ 1, DUP))
whr DUP = DuplicateVariablesInValuationOrdered (
ValuationMinusValuationOrdered (pi_sigma’(r_2),s),
ValuationMinusValuationOrdered (pi_sigma’(r_1),s)) end
end)}, {});

w R

% (p,s) —m—> Checkmark
%
% (p ||_q, s) —m=—> (q, s)
R _Lmerge 1(p,s) = if(is_Lmerge(p), { r: ActionTransition |
at(pi_ac(r), Checkmark, s) in R(pi_1(p),s)
&& pi_t(r) = pi_2(p)
&& pi_sigma’(r) = s}, {});

% (p,s) —m——> (p’,s’)
%
% (p ||_q, s) —m=—> (p’ || q, s)
R_Lmerge 2(p,s) = if(is_Lmerge(p), { r: ActionTransition |
is_Par(pi_t(r))

&% at(pi_ac(r), pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p),s)

&& pi_2(pi_t(r)) = pi_2(p)

&& pi_1(pi_t(r)) != Checkmark}, {});

% (p,s) —m—> Checkmark,(q,s) —n—> Checkmark
%7
% (plq, s) —m|n—> Checkmark
R_Sync_1(p,s) = if(is_Sync(p), { r: ActionTransition |
pi_sigma’(r) = s
&& is_Checkmark(pi_t(r))
&& exists r_1, r_2: ActionTransition.
r_1 in R(pi_1(p), s)
&% r_2 in R(pi_2(p), s)
&& is_Checkmark (pi_t(r_1))
&& is_Checkmark (pi_t(r_2))

&& MergeOrderedActionLists (pi_ac(r_1), pi_ac(r_2)) = pi_ac(r)},
% (p,s) —m— —> (p’,s’),(q,s) —n—> Checkmark
%
% (plqg, s) —m|n——> (p’,s’)
R _Sync_2(p,s) = if(is_Sync(p), { r: ActionTransition |

exists r_1, r_2: ActionTransition.
r_1 in R(pi_1(p), s)
&& r_2 in R(pi_2(p), s)

Appendix B. Models

b



B.5. Semantically Engineered mCRL2 Models 257

&& !is_Checkmark(pi_t(r_1))

&& is_Checkmark(pi_t(r_2))

&& MergeOrderedActionLists(pi_ac(r_1), pi_ac(r_2)) = pi_ac(r)
&& pi_t(r) = pi_t(r_1)

&& pi_sigma’(r_1) == pi_sigma’(r)}, {});

% (p,s) —m—> Checkmark,(q,s) —n——> (q’,s’)
%
% (plq, s) —m|n——> (q’,s’)
R_Sync_3(p,s) = if(is_Sync(p), { r: ActionTransition |

exists r_1, r_2: ActionTransition.

r_1 in R(pi_1(p), s)

&& r_2 in R(pi_2(p), s)

&& is_Checkmark(pi_t(r_1))

&& !is_Checkmark (pi_t(r_2))

&& MergeOrderedActionLists(pi_ac(r_1), pi_ac(r_2)) == pi_ac(r)

&& pi_t(r) = pi_t(r_2)

&& pi_sigma’(r) = pi_sigma’(r_1)}, {});

% (p,s) —m— —> (p,s’),(q,s) —n——> (q’,s’’)
%
6 (plq, s) —m|n——> (p’||q’,s'++s’’)
R_Sync_4(p,s) = if(is_Sync(p), { r: ActionTransition |
is_Par(pi_t(r))
&& exists r_1, r_2: ActionTransition.(
r_1 in R(pi_1(p), s)
&& r_2 in R(pi_2(p), s)
&& !is_Checkmark (pi_t(r_1))
&& !is_Checkmark (pi_t(r_2))
&& pi_ac(r) = MergeOrderedActionLists (pi_ac(r_1), pi_ac(r_2))
&& pi_1(pi_t(r)) = pi_t(r_1)
&& pi_2(pi_t(r)) =
VariableSubstitutionInProcessTerm (SUBST, pi_t(r_2))
&& pi_sigma’(r) =
MergeOrderedValuations (pi_sigma’(r_1),
VariableSubstitutionInValuation (SUBST,
ValuationMinusValuationOrdered (pi_sigma’(r_2),s)))

N

whr SUBST =
CreateVariableSubstitution (
DUP, GenFreshVars(
max(GetHighestld (pi_sigma’(r_1)),
GetHighestld (pi_sigma’(r_2)))+ 1, DUP))
whr DUP = DuplicateVariablesInValuationOrdered (
ValuationMinusValuationOrdered (pi_sigma’(r_2),s),
ValuationMinusValuationOrdered (pi_sigma’(r_1),s)) end
end)}, {});

% (p,s) —m—> Checkmark,(m _in_ V +{tau})
%
% (allow(A,p),s) —m—> Checkmark
R_Allow_1(p,s) = if(is_Allow(p), { r: ActionTransition |
pi_t(r) Checkmark
&& r in R(pi_1(p), s)
&& ActionLabels(pi_ac(r)) in (pi_V(p) + {{}}
&& pi_sigma’(r) = s}, {});

% (p,s) —m— —> (p’,s’),(m _in_ V +{tau})
%
% (allow(A,p),s) —m— —> (allow(A,p’),s’)
R_Allow_2(p,s) = if(is_Allow(p), { r: ActionTransition |
is_Allow (pi_t(r))

&& pi_1(pi_t(r)) != Checkmark

&& pi_V(pi_t(r)) = pi_V(p)

&& at(pi_ac(r),pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p), s)

&& ActionLabels(pi_ac(r)) in (pi_V(p) + {{}ID}, {});




258

%
%
%
is

%
%
%
is

%
%
%

R_

%
%
%

R_

%
%
%

Appendix B. Models

(p,s) —m—> Checkmark , (m{} B = {})

(block (B,p),s) —m—> Checkmark

_Block_1(p,s) = if(is_Block(p), { r: ActionTransition |

pi_t(r) Checkmark
&& r in R(pi_1(p), s)
&& Bag2Set(ActionLabels (pi_ac(r))) pi_ B(p) = {}
&& pi_sigma’(r) = s}, {});

(p,s) —m—> Checkmark , (m{} B = {})

(block(B,p),s) —m— —> (allow(B,p’),s’)

_Block_2(p,s) = if(is_Block(p), { r: ActionTransition

is_Block (pi_t(r))
&& pi_1(pi_t(r)) != Checkmark
&& pi_B(pi_t(r)) = pi_B(p)

&& at(pi_ac(r),pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p), s)

&& Bag2Set(ActionLabels(pi_ac(r))) pi_B(p) = {}}, {}D):;

(p,s) —m—> Checkmark

(rename(R,p),s) —R(m——> Checkmark
Rename_1(p,s) = if (is_Rename(p), { r: ActionTransition |
is_Checkmark (pi_t(r))
&& exists ac’: List (ActionSemantic).
pi_ac(r) = ActRename(pi_Ren(p), ac’)
&& at(ac’, pi_t(r), s) in R(pi_1(p), s)
&% pi_sigma’(r) = s}, {});

(p,s) —m— —> (p’,s’)

(rename(R,p),s) —Ren(R,m)— —> (rename(R,p’),s’)
Rename_2(p,s) = if (is_Rename(p), { r: ActionTransition
pi_Ren(pi_t(r)) = pi_Ren(p)
&& is_Rename(pi_t(r))
&& pi_1(pi_t(r)) != Checkmark
&& exists ac’: List (ActionSemantic).
pi_ac(r) = ActRename(pi_Ren(p), ac’)

&& at(ac’,pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p), s)},

(p,s) —m—> Checkmark

(hide(I,p),s) —h(I,m——> Checkmark

R_Hide_1(p,s) = if(is_Hide(p), { r: ActionTransition |

%
%
%

is_Checkmark (pi_t(r))
&& exists ac’: List(ActionSemantic).
pi_ac(r) = ActHide(pi_I(p), ac’)
&& at(ac’, pi_t(r), s) in R(pi_1(p), s)
&& pi_sigma’(r) = s}, {});

(p,s) —m——> (p’,s’)

(hide(I,p),s) —h(I,m)— —> (hide(I,p’),s’)

R_Hide_2(p,s) = if(is_Hide(p), { r: ActionTransition |

pi_I(pi_t(r)) = pi_I(p)
&& is_Hide (pi_t(r))
&& pi_1(pi_t(r)) != Checkmark
&& exists ac’: List(ActionSemantic).
pi_ac(r) = ActHide(pi_I(p), ac’)
&& at(ac’,pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p), s)},

% (p,s) —m—> Checkmark

%

% (prehide(U,p),s) —ph(U,m——> Checkmark

s

s



B.5. Semantically Engineered mCRL2 Models

R_Prehide_1(p,s) =

% (p,s) —m— —> (p’

259

if (is_Prehide(p), { r: ActionTransition |
is_Checkmark(pi_t(r))
&& exists ac’: List(ActionSemantic).
pi_ac(r) = ActPrehide(pi_U(p), ac’)
&& at(ac’, pi_t(r), s) in R(pi_1(p), s)
&& pi_sigma’(r) = s}, {});

,87)

()/U
% (prehide(U,p),s)
R_Prehide_2(p,s) =

% (p,s) —m—> Chec
%

——ph(U,m)— —> (prehide (U,p’),s’)
if (is_Prehide(p), { r: ActionTransition |

pi_U(pi_t(r)) = pi_U(p)
&& is_Prehide (pi_t(r))
&& pi_1(pi_t(r)) != Checkmark
&& exists ac’: List (ActionSemantic).

pi_ac(r) = ActPrehide (pi_U(p), ac’)
&& at(ac’,pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p), s)}, {});

kmark

% (comm(C,p),s) —cm(C,m)—> Checkmark
R Comm 1(p,s) = if(is_Comm(p), { r: ActionTransition |

is_Checkmark (pi_t(r))

&& exists ac’: List (ActionSemantic).

% (p,s) —m— —> (p’

at(ac’, pi_t(r), s) in R(pi_1(p), s)
&& pi_sigma’(r) = s
&& pi_ac(r) = ActComm(pi_CL(p), ac’)}, {});

,s7)

%

% (comm(C,p),s) —cm(C,m)— —> (comm(C,p’),s’)
R Comm 2(p,s) = if(is_Comm(p), { r: ActionTransition |

% (q,s(d: =[[e]](s)
%

pi_CL(pi_t(r)) = pi_CL(p)
&8& is_Comm(pi_t(r))
&& pi_1(pi_t(r)) != Checkmark
&& exists ac’: List (ActionSemantic).
pi_ac(r) = ActComm(pi_CL(p), ac’)
&& at(ac’,pi_1(pi_t(r)), pi_sigma’(r)) in R(pi_1(p), s)}, {});

) —m—> Checkmark

% (P(e),s) —m—> Checkmark

R _Def 1(p, s) = if(

% (q[d: =d’],s(d’:
%

is_Def(p), { r: ActionTransition |
at(pi_ac(r), pi_t(r), Z) in R(Def(pi_P(p)), Z)
&& pi_sigma’(r) = s
&& is_Checkmark(pi_t(r))}, {})
whr Z =
MergeOrderedValuations (
ComputePPunderValuation (ppl(p), s),
RemoveArgumentWithDuplicateVariable (ppl(p), s))
end;

=[[e]](s)) —m —> (q’,s")

% (P(e),s) —m— —>
R_Def 2(p, s) = if(

(q’,s’)
is_Def(p), { r: ActionTransition |
r in R(SUBST, MergeOrderedValuations (REN,s))
&& !is_Checkmark(pi_t(r))}, {}
whr REN = VariableSubstitutionInValuation (
CreateVariableSubstitution (
GetVarLabelsFromPP (ppl(p)),
GenFreshVars (GetHighestIld(s) + 1,
GetVarLabelsFromPP (ppl(p)))),
ComputePPunderValuation (ppl(p),



260 Appendix B. Models

575 s)),

576 SUBST = VariableSubstitutionInProcessTerm (
577 CreateVariableSubstitution (

578 GetVarLabelsFromPP (ppl(p)),

579 GenFreshVars(GetHighestId (s) + 1,

580 GetVarLabelsFromPP (ppl(p)))),

581 Def(pi_P(p)))

582 end;

583

584 % Semantic interpretation function
585 map Sem_ActList: List (ActionSyntax)#Valuation —> List (ActionSemantic);

586 Sem_Act: ActionSyntax# Valuation —> ActionSemantic;

587 Sem_DexList: List(DataExpression)#Valuation —> List(Value);
588 var a: ActionSyntax;

589 as: List (ActionSyntax);

590 sigma: Valuation;

591 d: Variable;

592 des: List(DataExpression);

593 de: DataExpression;

594 expr_1: DataExpression;

595 expr_2: DataExpression;

596 1: ActionLabel;

597 eqn Sem_ActList([], sigma) =[1;

598 Sem_ActList(a |> as, sigma) =

599 if (a = ActionTau,

600 Sem_ActList(as, sigma),

601 InsertAction (Sem_Act(a, sigma), Sem_ActList(as, sigma)));
602 Sem_Act(Act(l,des), sigma) = ActSem(l, Sem_DexList(des, sigma));
603 Sem_DexList ([], sigma) = [];

604 Sem_DexList(de |> des, sigma) =

605 Sem_Dex(de, sigma) |> Sem_DexList(des, sigma);

606

607 e 2% 2% ) 2% LG

608 %% Auxiliary functions for the deduction rules %%

609  BEOOO D00 Y o 00

610

611 % Label identity function

612 map ID: ActionLabel —> ActionLabel;
613 var x: ActionLabel;

614 eqn ID(x)=x;

616 % Action rename function
617 map ActRename: (ActionLabel —> ActionLabel)#List (ActionSemantic)

618 —> List (ActionSemantic);

619 var f: ActionLabel — ActionLabel;

620 a: ActionSemantic;

621 as: List (ActionSemantic);

622 eqn ActRename(f, []) = [];

623 ActRename(f, a |> as) =

624 InsertAction (ActSem (f (ActionLabel(a)), args(a)), ActRename(f, as));
625

626 % Action hide function
627 map ActHide: Set(ActionLabel)#List (ActionSemantic) —> List (ActionSemantic);
628 var 1: Set(ActionLabel);

629 as: List (ActionSemantic);

630 a: ActionSemantic;

631 eqn ActHide(I, []) =[1;

632 ActHide (I, a |> as) =

633 if (ActionLabel(a) in I, ActHide(I, as), a |> ActHide(I, as));
634

635 % Action prehide function

636 map ActPrehide: Set(ActionLabel)#List (ActionSemantic) —> List (ActionSemantic);
637 var U: Set(ActionLabel);

638 as: List (ActionSemantic);

639 a: ActionSemantic;



B.5. Semantically Engineered mCRL2 Models 261

eqn ActPrehide (U, []) =[1;
ActPrehide (U, a |> as) =
if (ActionLabel(a) in U, InsertAction (ActSem(int, []), ActPrehide (U, as))
, a |> ActPrehide (U, as));

% Action communication function
map ActComm: List (Communication)#List (ActionSemantic) —> List (ActionSemantic);
var as: List(ActionSemantic);
C: Communication;
CL: List (Communication);
eqn ActComm ([] , as) = as;
ActComm(C |> CL, as) =
ActCommAux(C, CL, as,
ArgumentsToActionLabelMap (as, lambda x: List(Value). {}),
ActionLabelsToBag (CmI(C)), [], [1);

% Auxiliary function required by the action communication function
% that maps action data parameters to a bag of action labels
map ArgumentsToActionLabelMap: List (ActionSemantic)#
(List (Value) — Bag(ActionLabel)) —>(List(Value) — Bag(ActionLabel));
var ActionParametersToActionLabels: List(Value) —> Bag(ActionLabel);
as: List (ActionSemantic);
a: ActionSemantic;
eqn ArgumentsToActionLabelMap ([], ActionParametersToActionLabels) =
ActionParametersToActionLabels;
ArgumentsToActionLabelMap(a |> as, ActionParametersToActionLabels) =
ArgumentsToActionLabelMap (as,
ActionParametersToActionLabels[
args(a) —> ActionParametersToActionLabels(args(a)) +
{ActionLabel(a): 1}]);

% Auxiliary function required by the action communication function
% that transforms a list of action labels to a bag of action labels.
map ActionLabelsToBag: List (ActionLabel) — Bag(ActionLabel);
var ActLab: ActionLabel;

CommActLabels: List (ActionLabel);
eqn ActionLabelsToBag([]) = {};

ActionLabelsToBag (ActLab |> CommActLabels) =

{ActLab: 1} + ActionLabelsToBag (CommActLabels);

% Auxiliary function required by the action communication function
% that computes the Synchronizing actions in the remaining multi—action.
map ActCommAux: Communication#List (Communication)#List (ActionSemantic)#
(List (Value) — Bag(ActionLabel))#Bag(ActionLabel)#List (ActionSemantic)#
List (ActionSemantic) —> List (ActionSemantic);
var ActionParametersToActionLabels: List(Value) —> Bag(ActionLabel);
CommActBag: Bag(ActionLabel);
ResultActions, RemainingActions: List (ActionSemantic);
C: Communication;
CL: List (Communication);
as: List (ActionSemantic);
a: ActionSemantic;
eqn ActCommAux(C, CL, [], ActionParametersToActionLabels,
CommActBag, ResultActions, RemainingActions) =
MergeOrderedActionLists (ResultActions , ActComm(CL, RemainingActions));
ActCommAux(C, CL, a |> as, ActionParametersToActionLabels,
CommActBag, ResultActions, RemainingActions) =
if (CommActBag <= ActionParametersToActionLabels(args(a)),
%Condition holds
ActCommAux(C, CL,
EliminateMatchingActions (CmI(C), a |> as, args(a)),
ArgumentsToActionLabelMap (
EliminateMatchingActions (CmI(C), a |> as, args(a)),
lambda x: List(Value). {}),



262 Appendix B. Models

CommActBag, InsertAction (ActSem(CmR(C), args(a)), ResultActions),
RemainingActions),

%Condition does not hold

ActCommAux(C, CL, as, ActionParametersToActionLabels, CommActBag,
ResultActions, a |> RemainingActions));

% Auxiliary function required by the action communication function
% to remove an occurrence of a Synchonizing action in the remaining multi—action.
map EliminateMatchingActions: List (ActionLabel)#List (ActionSemantic)#List (Value)
—> List (ActionSemantic);
var ActLab: ActionLabel;
CommActLabels: List (ActionLabel);
as: List (ActionSemantic);
args: List(Value);
eqn EliminateMatchingActions ([], as, args) = as;
EliminateMatchingActions (ActLab |> CommActLabels, as, args) =
EliminateMatchingActions (CommActLabels,
RemoveAction (ActSem (ActLab, args), as), args);

% Auxiliary function that is required by the action communication function
% to remove an action in the remainder of a list of actions, i.e. a multi—action.
map RemoveAction: ActionSemantic#List (ActionSemantic) —> List (ActionSemantic);
var a, b: ActionSemantic;

as: List (ActionSemantic);
eqn RemoveAction(a, []) = [];

RemoveAction(a, b |> as) = if(a = b, as, b |> RemoveAction(a, as));

% Determine the last generated fresh variable in a data valuation.
map GetHighestld: Valuation —> Nat;
GetVarld : Argument —> Nat;
var las: Valuation;
a: Argument;
eqn GetHighestld ([]) = 0;
GetHighestld (a |> las) = max(GetVarld(a), GetHighestld(las));
GetVarld (a) =
if (is_d ’(variablelabel (variable(a))),
id (variablelabel (variable(a))), 0);

% Conversion of a list of semantics action to a bag of action labels.
map ActionLabels: List(ActionSemantic) — Bag(ActionLabel);
var as: List(ActionSemantic);
a: ActionSemantic;
eqn ActionLabels ([]) = {};
ActionLabels(a |> as) = {ActionLabel(a): 1} + ActionLabels(as);

% Function that retrieves the variables from the process parameters.
map GetVarLabelsFromPP: List (PP) —> List(Variable);
var ppl: List (PP);
pp : PP;
eqn GetVarLabelsFromPP ([]) = [];
GetVarLabelsFromPP (pp |> ppl) = variable(pp) |> GetVarLabelsFromPP (ppl);

% Function that generates new variables for a vector of variables.
% Identifier starts at value of ’'n’
map GenFreshVars: Nat#List (Variable) — List(Variable);
var vs: List(Variable);
v : Variable;
n: Nat;
eqn GenFreshVars(n,[]) = ;
GenFreshVars(n, v |> vs) = GenFreshVar(v,n) |> GenFreshVars(n+1, vs);

% Function that transforms a list of process parameters into a valuation.

map ComputePPunderValuation: PP#Valuation —> Argument;
ComputePPunderValuation: List (PP)#Valuation —> Valuation;

var p: PP;



B.5. Semantically Engineered mCRL2 Models

pl: List (PP);
s: Valuation;
eqn ComputePPunderValuation(p,s) =
argument (variable (p), Sem_Dex(dataexpression(p), s));
ComputePPunderValuation ([], s) = [];
ComputePPunderValuation(p |> pl, s) =

InsertArgument (ComputePPunderValuation(p,s), ComputePPunderValuation(pl,s));

% Function that creates a variable substitution.
map CreateVariableSubstitution:
List (Variable)#List (Variable) —>(Variable —> Variable);
CreateVariableSubstitution:
List (Variable)#List (Variable)#(Variable —> Variable) —
(Variable —> Variable);
var OldVar: Variable;
NewVar: Variable;
OldVars: List(Variable);
NewVars: List (Variable);
VarRename: Variable —> Variable;
eqn CreateVariableSubstitution (OldVars, NewVars) =
CreateVariableSubstitution (OldVars, NewVars, lambda v: Variable.(v));
CreateVariableSubstitution ([], [], VarRename) = VarRename;

CreateVariableSubstitution (OldVar |> OldVars, NewVar |> NewVars, VarRename)=
CreateVariableSubstitution (OldVars, NewVars, VarRename[OldVar —> NewVar]);

% Function that substitutes variables in a valuation.

map VariableSubstitutionInValuation: (Variable —> Variable)#Valuation—> Valuation;

var VarRename: Variable —> Variable;
as: Valuation;
a : Argument;
eqn VariableSubstitutionInValuation (VarRename, []) = [];
VariableSubstitutionInValuation (VarRename, a |> as) =
InsertArgument (argument (VarRename (variable (a)), valvalue(a)),
VariableSubstitutionInValuation (VarRename, as));

% Function that substitutes variables in a process term.
map VariableSubstitutionInProcesParameters:
(Variable —> Variable)#List (PP) —> List (PP);
VariableSubstitutionInProcessTerm:
(Variable —> Variable)#ProcessTerm —> ProcessTerm;
VariableSubstitutionInActionList:
(Variable —> Variable)#List (ActionSyntax) —> List (ActionSyntax);
VariableSubstitutionInAction :
(Variable —> Variable)#ActionSyntax —> ActionSyntax;
VariableSubstitutionInVariableList:
(Variable —> Variable)#List (Variable) — List (Variable);
VariableSubstitutionInDataExpressionList:
(Variable —> Variable)#List (DataExpression) —> List (DataExpression);
var VarRename: Variable —> Variable;
v: Variable;
ptl, pt2: ProcessTerm;
al: List (ActionSyntax);
a: ActionSyntax;
vl: List(Variable);
dl: List(DataExpression);
d: DataExpression;
ppl: List (PP);
pp: PP;
V: Set(Bag(ActionLabel));
B: Set(ActionLabel);
Ren: ActionLabel —> ActionLabel;
1,U: Set(ActionLabel);
Cml: List(ActionLabel);
CmR: ActionLabel;
P: ProcessLabel;



264

eqn

var

Appendix B. Models

CL: List (Communication);
VariableSubstitutionInVariableList (VarRename, []) = [];
VariableSubstitutionInVariableList (VarRename, v |> vl) =
VarRename (v) |> VariableSubstitutionInVariableList(VarRename, vl);
VariableSubstitutionInDataExpressionList (VarRename, []) = [];
VariableSubstitutionInDataExpressionList (VarRename, d |> dl) =
VariableSubstitutionInDataExpression (VarRename, d) |>
VariableSubstitutionInDataExpressionList (VarRename, dl);
VariableSubstitutionInAction (VarRename, a) =

Act(ActionLabel(a),
VariableSubstitutionInDataExpressionList (VarRename, args(a)));
VariableSubstitutionInActionList (VarRename, []) = [];

VariableSubstitutionInActionList (VarRename, a |> al) =
VariableSubstitutionInAction (VarRename, a) [>
VariableSubstitutionInActionList (VarRename, al);
VariableSubstitutionInProcessTerm (VarRename, Deadlock) = Deadlock;
VariableSubstitutionInProcessTerm (VarRename, Checkmark) = Checkmark;
VariableSubstitutionInProcessTerm (VarRename, Alpha(al)) =
Alpha(VariableSubstitutionInActionList (VarRename, al));
VariableSubstitutionInProcessTerm (VarRename, Seq(ptl, pt2))
Seq(VariableSubstitutionInProcessTerm (VarRename, ptl),
VariableSubstitutionInProcessTerm (VarRename, pt2));
VariableSubstitutionInProcessTerm (VarRename, Alt(ptl, pt2)) =
Alt(VariableSubstitutionInProcessTerm (VarRename, ptl),
VariableSubstitutionInProcessTerm (VarRename, pt2));
VariableSubstitutionInProcessTerm (VarRename, Condl(d, ptl)) =
Condl(VariableSubstitutionInDataExpression (VarRename, d),
VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcessTerm (VarRename, Cond2(d, ptl, pt2)) =
Cond2(VariableSubstitutionInDataExpression (VarRename, d),
VariableSubstitutionInProcessTerm (VarRename, ptl),
VariableSubstitutionInProcessTerm (VarRename, pt2));
VariableSubstitutionInProcessTerm (VarRename, Sum(v, ptl)) =
Sum(VarRename(v), VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcessTerm (VarRename, Par(ptl, pt2)) =
Par(VariableSubstitutionInProcessTerm (VarRename, ptl),
VariableSubstitutionInProcessTerm (VarRename, pt2));
VariableSubstitutionInProcessTerm (VarRename, Sync(ptl, pt2)) =
Sync(VariableSubstitutionInProcessTerm (VarRename, ptl),
VariableSubstitutionInProcessTerm (VarRename, pt2));
VariableSubstitutionInProcessTerm (VarRename, Allow(V, ptl)) =
Allow (V, VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcessTerm (VarRename, Block(B, ptl)) =
Block (B, VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcessTerm (VarRename, Hide(I, ptl)) =
Hide (I, VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcessTerm (VarRename, Prehide (U, ptl)) =
Prehide (U, VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcessTerm (VarRename, Comm(CL, ptl))=
Comm(CL, VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcessTerm (VarRename, Def(P, ppl)) =
Def(P, VariableSubstitutionInProcesParameters(VarRename, ppl));
VariableSubstitutionInProcessTerm (VarRename, Rename(Ren, ptl)) =
Rename (Ren, VariableSubstitutionInProcessTerm (VarRename, ptl));
VariableSubstitutionInProcesParameters (VarRename, []) = [];
VariableSubstitutionInProcesParameters (VarRename, pp |> ppl) =
pp(variable (pp),
VariableSubstitutionInDataExpression (VarRename, dataexpression(pp))) |>
VariableSubstitutionInProcesParameters (VarRename, ppl);

% Function that retrieves duplicate variables from a valuation.
map DuplicateVariablesInValuationOrdered: Valuation#Valuation —> List(Variable);

X,y: Argument;
xs: Valuation;
ys: Valuation;



B.5. Semantically Engineered mCRL2 Models 265

[1;
[1;
[> ys) =

eqn DuplicateVariablesInValuationOrdered ([], ys)
DuplicateVariablesInValuationOrdered (xs, [])
DuplicateVariablesInValuationOrdered (x |> xs, y
if (variable (x) = variable(y),
variable (x) |> DuplicateVariablesInValuationOrdered (xs, ys),
if (variable (x) < variable (y),
DuplicateVariablesInValuationOrdered (xs, y |> ys),
DuplicateVariablesInValuationOrdered (x |> xs, ys)));

% Function that inserts an argument into a valuation.
map InsertArgument : Argument# Valuation —> Valuation;
var x,y: Argument;
ys: Valuation;
eqn InsertArgument(x, []) = [x];
InsertArgument (x, y|> ys) =
if(x <=y, x|> y|> ys, y|> InsertArgument(x, ys));

% Function that inserts a semantic action into a list of semantic actions.
map InsertAction:
ActionSemantic# List (ActionSemantic) —> List (ActionSemantic);
var x,y: ActionSemantic;
ys: List (ActionSemantic);
eqn InsertAction(x, []) = [x];
InsertAction (x, y|> ys)= if(x <=y, x |[> y |> ys, y |> InsertAction(x, ys));

% Merge two ordered lists of semantic actions.
map MergeOrderedActionLists: List (ActionSemantic)#List (ActionSemantic)
—> List (ActionSemantic);
var x,y: ActionSemantic;
xs,ys: List (ActionSemantic);
eqn MergeOrderedActionLists ([],[]) [1;
MergeOrderedActionLists ([],xs) XS
MergeOrderedActionLists (xs,[]) = xs;
MergeOrderedActionLists (x |> xs, y |> ys) =
if(x <=y, x |> MergeOrderedActionLists(xs, y |> ys),
y |> MergeOrderedActionLists(x |> xs, ys));

% Merge two ordered valuations.
map MergeOrderedValuations: Valuation#Valuation —> Valuation;
var x,y: Argument;
xs,ys: Valuation;
eqn MergeOrderedValuations ([],[]) [1;
MergeOrderedValuations ([],xs) XS ;
MergeOrderedValuations (xs,[]) = XS;
MergeOrderedValuations(x |> xs, y |> ys) =
if(x <=y, x |> MergeOrderedValuations(xs, y |> ys),
y |> MergeOrderedValuations(x |> xs, ys));

% Function that subtracts a valuation from another valuation.
map ValuationMinusValuationOrdered: Valuation#Valuation —> Valuation;
var x,y: Argument;
xs: Valuation;
ys: Valuation;
eqn ValuationMinusValuationOrdered ([], ys) = [];
ValuationMinusValuationOrdered (xs, []) = xs;
ValuationMinusValuationOrdered(x |> xs, y |> ys) =
if (x =y, ValuationMinusValuationOrdered (xs, ys),
if(x <y, x |> ValuationMinusValuationOrdered(xs, y |> ys),
ValuationMinusValuationOrdered (x |> xs, ys)));

% Function that preserves all arguments in a valuation, for which the

% variables do not occur as a left hand side variable in a list

% of process parameters.

map RemoveArgumentWithDuplicateVariable: List (PP)#Valuation —> Valuation;



OO WN

266

Appendix B. Models

RemoveArgumentWithDuplicateVariable ’: List (PP)#Valuation —> Valuation;

OrderPP: List (PP) — List (PP);

InsertPP: PP # List (PP) —> List (PP);

var p,q: PP;
Ip,lq: List(PP);
v: Argument;
vl: Valuation;
eqn OrderPP([]) = [];

OrderPP(p |> lp) = InsertPP(p, OrderPP(lp));

InsertPP(p, []1) = [pl;

InsertPP(p, q |> 1q)= if(p<=q, p |> q |> lq, q |> InsertPP(p, 1q));
RemoveArgumentWithDuplicateVariable (Ip, vl) =
RemoveArgumentWithDuplicateVariable ’(OrderPP(lp), vl);
RemoveArgumentWithDuplicateVariable ’([], vl) = vl;
RemoveArgumentWithDuplicateVariable’(lp, []) = [];
RemoveArgumentWithDuplicateVariable ’(p |> lp, v |[> vl) =

if (variable (p) = variable(v),

RemoveArgumentWithDuplicateVariable ’(lp, vl),

if (variable (p) > variable (v)

v |> RemoveArgumentWithDuplicateVariable’(p |> lp, vl),
RemoveArgumentWithDuplicateVariable ’(lp, v |[> v1)));

W00V
996 Actions %o
L L L L L %

% Transition relation function.
act a: List (ActionSemantic);

R i
9% Processes %%
R A )

% Linear Process Equation.
proc X(p: ProcessTerm, s: Valuation)
sum r: ActionTransition.(r in
X(pi_t(r), pi_sigma’(r));

R(p, s))—> a(pi_ac(r)).

B.5.2 Model Specific Semantics

The model specific semantics describe the semantics that are specific for a set of mod-
els. Within this semantics we describe the allowed actions, variables, and (user de-
fined) sorts, and the system of process equations.

% Sort for variables

sort Variable = struct bool(variablelabel: VariableLabel)?is_bool
| nat(variablelabel: VariableLabel)?is_nat;

% Sort for values
sort Value = struct bot | bool’(b:

% Sort for process equation labels
sort ProcessLabel = struct p0 | pl |

% Sort for action labels
sort ActionLabel = struct a | b | al

% Sort for variable labels.
% Note that d’(Nat) may only be used
sort VariableLabel = struct v| vl

% Process Equations

Bool)?is_bool | nat’(n: Nat)?is_nat;

p2 | p3 | p4 | p5 | p6 | p7 | P8 | P | Q;

| a2 | a3 | a4 | int;

to generate fresh variables

v2 | v3 | d’(id: Nat)?is_d’;



B.5. Semantically Engineered mCRL2 Models 267

map Def: ProcessLabel —> ProcessTerm;
eqn Def(p0) = Alpha([Act(al, [de_var(bool(v1))])]);
Def(pl) = Seq(Alpha([Act(al, [DD]),
Par (Alpha ([Act(a2, [])]), Def(pl, [1)));
Def(p2) = Seq(Alpha([Act(al, [de var(bool(vi))]D]),
Seq(Def(p3, [pp(bool(vl), de_val(bool’(false)))]),
Alpha ([Act(al, [de_var(bool(v1))])])));
Alpha ([Act(a2, [de_var(bool(v1))1])]);
Seq(Alpha ([Act(a2, [de_var(bool(v1))]]),
Alpha ([Act(a2, [de_var(bool(v1))])1]));
Def(p5) = Seq(Alpha([Act(al, [de_var(bool(v1))])]),
Seq(Def(p4, [pp(bool(vl), de_val(bool’(false)))]),
Alpha ([Act(al, [de_var(bool(v1))])1)));
Condl(de_var(bool(vl)), Alpha([Act(a3, [de_var(bool(v1))])]));
Seq(Alpha([Act(al, [de_var(bool(v1))])]),
Def(p7,
[pp(bool(vl), de_expr_1(bool op(neg), de_var(bool(vli))))]));
Def(p8) = Seq(Alpha([Act(al, [de_var(bool(vi))]D]),
Alpha ([Act(a2, [de_var(bool(v1))])1));
Def(P) = Sum(bool(v), Seq(Alpha([ Act(a, [de_var(bool(v))])]),
Alpha ([Act(b, [ de_var(bool(v)) 1D1)));

Def(p3)
Def(p4)

Def(p6)
Def(p7)

Def(Q) = Alt(Seq(Alpha([ Act(a, [de_val(bool’(true))])]),
Alpha ([Act(b, [ de_val(bool’(true)) 1)1)),

Seq(Alpha ([ Act(a, [de_val(bool’(false))])]),

Alpha ([Act(b, [ de_val(bool’(false)) 1)1)));

% Restrict the selection of a value to a Particular domain
map RestrictDomain: Variable#Value —> Bool;
var f: Func;

vl, v2: Value;

v: Variable;

w: Value;

vs: List(Variable);

ws: List(Value);
eqn RestrictDomain(v, w) =

(is_bool(v) && is_bool(w)) || (is_nat(v) && is_nat(w));

9% Generate a fresh variable with an appropriate sort
map GenFreshVar: Variable#Nat —> Variable;
var 1: VariableLabel;
vid: Nat;
eqn GenFreshVar(bool (1), vid)
GenFreshVar(nat (1), vid)

bool(d’(vid));
nat(d’(vid));

% Sorts for operators

sort Operator = struct neg | and | or | eq ;

sort Func = struct bool op(op: Operator)?is_bool
| nat_op(op: Operator)?is_nat;

% Function to interpret meta notation data expression into values
map Sem Dex: DataExpression#Valuation —> Value;
var d: Variable;
dvl: Value;
exprl: DataExpression;
expr2: DataExpression;
sigma: Valuation;
arg : Argument;
eqn Sem Dex(de_var(d), []) = bot;
Sem_Dex(de_var(d), arg |> sigma) =
if (variable (arg) = d, valvalue(arg), Sem_Dex(de_var(d), sigma));
Sem _Dex(de_val(dvl), sigma) = dvl;
Sem_Dex(de_expr_1(bool_op(neg), exprl), sigma) =
bool’ (! Cast2InternalBool (Sem_Dex(exprl, sigma)));
Sem_Dex(de_expr_2(bool_op(and), exprl, expr2), sigma) =



OO WN

268 Appendix B. Models

bool’(Cast2InternalBool (Sem Dex(exprl, sigma)) &&
Cast2InternalBool (Sem_Dex(expr2, sigma)));
Sem_Dex(de_expr_2(bool_op(or), exprl, expr2), sigma) =
bool’(Cast2InternalBool (Sem_Dex(exprl, sigma)) ||
Cast2InternalBool (Sem Dex(expr2, sigma)));
Sem _Dex(de_expr_2(bool_op(eq), exprl, expr2), sigma)
bool’(Cast2InternalBool (Sem_Dex(exprl, sigma)) =
Cast2InternalBool (Sem_Dex(expr2, sigma)));

% Function to cast meta data expressions to mcrl2 data expressions
map Cast2InternalBool: Value — Bool;
Cast2InternalNat: Value —> Nat;
var b: Bool;
n: Nat;
eqn Cast2InternalBool(bool’(b))
Cast2InternalNat (nat’(n))

b;
n;

% Function to substitute variables in data expressions
map VariableSubstitutionInDataExpression:
(Variable —> Variable)#DataExpression —> DataExpression;
var VarRename: Variable —> Variable;
value: Value;
v: Variable;
f: Func;
exprl, expr2: DataExpression;
eqn VariableSubstitutionInDataExpression (VarRename, de_val(value))=
de_val(value);
VariableSubstitutionInDataExpression (VarRename, de_var(v)) =
de_var (VarRename (v));
VariableSubstitutionInDataExpression (VarRename, de_expr_1(f, exprl))=
de_expr_1(f, VariableSubstitutionInDataExpression (VarRename, exprl));
VariableSubstitutionInDataExpression (VarRename, de_expr_2(f, exprl, expr2))=
de_expr_2(f, VariableSubstitutionInDataExpression (VarRename, exprl),
VariableSubstitutionInDataExpression (VarRename, expr2));

B.5.3 Input Models

The different input models are described here. Every init represents a different
mCRL2 model in meta notation. The LPE that is used to generate the transitions
carries the process label X. The LPE contains two arguments. The first argument de-
notes the mCRL2 model written in the meta notation. The second argument denotes
the initial valuation for the model.

% Multi action tests

init X(alpha([Act(al, [1]), [D);

init X(alpha([]), [1);

init X(alpha([ActionTaul]), []);

init X(alpha([Act(al, []), ActionTaul), []);

init X(alpha([Act(al, [de_var(bool(v1))])]), [field (bool(vl), bool’(true))]);

% Alternative composition tests
init X(alt(alpha([Act(al, [])]), deadlock), [1);
init X(alt(alpha([Act(al, [])]), alpha([Act(a2, []1D])), [1);

% Sequential composition tests
init X(seq(alpha([Act(al, [])]), alpha([Act(a2, [1D1)), [1);
init X(seq(alpha([Act(al, []D]),
eq(alpha([Act(a2, [])]), alpha([Act(a2, [1)]))), [D);
init X(seq(seq(alpha([Act(al, [de_var(bool(v1))])]),
alpha ([Act(a2, [de_var(bool(v1))])]))
alpha ([Act(a3, [de_var(bool(v1))]])),

5



B.5. Semantically Engineered mCRL2 Models 269

[field (bool(vl), bool’(true))]);
init X(seq(alpha([Act(al, [])]), seq(alpha([Act(a2, [])]),

alpha ([Act(a3, [1)]1))), [field (bool(vl), bool’(true))]);
init X(alt(alpha([]), seq(alpha([Act(al, []1)]), deadlock)), [1);

% Sum tests
init X(Sum(bool(vl), alpha([Act(a3, [de_var(bool(v1))])])),
init X(Sum(bool(vl), seq(alpha([Act(a3, [de_var(bool(vl))])
init X(Sum(bool(vl), seq(alpha([Act(a3, [de_var(bool(vl))])
init X(Sum(bool(vl), seq(alpha([Act(a3, [de_var(bool(vl))])
alpha ([Act(a3, [1DD))), [D);
init X(Sum(bool(vl), seq(alpha([Act(a3, [de_var(bool(vl))])]),
alpha ([Act(a3, [de_var(bool(v1))])1))), [1);
init X(Sum(bool(vl), seq(Sum(bool(vl),
alpha ([Act(al, [de_var(bool(v1))])])),
alpha ([Act(a3, [de_var(bool(v1))])1))), [1);

[D;

1), deadlock)), [
1), checkmark)),
D

——
e

% Condition tests
init X(condl(de_var(bool(vl)), alpha([Act(a3, [de_var(bool(v1))])])),
[field (bool(v1l), bool’(true))]);
init X(condl(de_var(bool(vl)), alpha([Act(a3, [de_var(bool(v1))])])),
[field (bool(vl), bool’(true))]);
init X(condl(de_var(bool(vl)), alpha([Act(a3, [de_var(bool(v1))])])),
[field (bool(vl), bool’(false))]);
init X(condl(de_expr_1(bool_op(neg), de_var(bool(vl))),
alpha ([Act(a3, [de_var(bool(v1))])])),
[field (bool(vl), bool’(false))]);
init X(cond2(de_var(bool(vl)), alpha([Act(al, [de_var(bool(v1))D]),
alpha ([Act(a2, [de_var(bool(v1))])])),
[field (bool(vl), bool’(true))]);
init X(cond2(de_var(bool(vl)), alpha([Act(al, [de_var(bool(v1))D]),
alpha ([Act(a2, [de_var(bool(v1))])])),
[field (bool(vl), bool’(false))]);
init X(Sum(bool(vl), condl(de_var(bool(vl)),
alpha ([Act(a3, [de_var(bool(v1))])1))), [1);
init X(Sum(bool(vl), cond2(de_var(bool(vl)),
alpha ([Act(al, [de_var(bool(v1))])]),
alpha ([Act(a3, [de_var(bool(v1))D)1))), [1);
init X(Sum(bool(vl), cond2(de_expr_1(bool_op(neg), de_var(bool(vl))),
alpha ([Act(al, [de_var(bool(v1))])]),
alpha ([Act (a3, [de_var(bool(viIN]11D)), [1);

% Parallel tests

init X(par(alpha([Act(al, [])]), alpha([Act(a2, [D1)), [1);

init X(par(seq(alpha([Act(al, [])]), alpha([Act(a2, [])])),
seq(alpha([Act(a3, []1)]), alpha([Act(a4, [1D1]))), [D);

% Sync tests

init X(sync(alpha([Act(al, [])]), alpha([Act(a2, [])])),

init X(sync(seq(alpha([Act(al, [])]), alpha([Act(a2, [])]

init X(sync(alpha([Act(al, [])]), seq(alpha([Act(a2, [])]
[D]
))),

[D;
)), alpha([Act(a3, [])
), alpha([Act(a3, [])]
init X(sync(seq(alpha([Act(al, [])]), alpha([Act(a2, ),

seq(alpha([Act(a3, [1)]), alpha([Act(a4, [])] [
% Left merge tests
init X(Ilmerge(alpha([Act(al, []1)]), alpha([Act(a2, [1])), [1);
init X(lmerge(seq(alpha([Act(al, [])]), alpha([Act(a2, [])])), alpha([Act(a3, [1D])), [1);
init X(lmerge (alpha([Act(al, [])]), seq(alpha([Act(a2, [])]), alpha([Act(a3, [DD)), [
init X(lmerge(seq(alpha([Act(al, [])]), alpha([Act(a2, []1D])),
), [1

seq(alpha([Act(a3, [1)]), alpha([Act(a4, [1)]))

% Allow tests

init X(Allow ({}, alpha([Act(al, []1D])), [1);

init X(Allow ({{a2: 1}}, alpha([Act(al, []1D])), [1);
init X(Allow ({{al: 1}}, alpha([Act(al, [DD])), [D;



270 Appendix B. Models

init X(Allow ({{al: 1}}, seq(alpha([Act(al, [])]), alpha([Act(al, []D]))), [1);
init X(Allow ({{a2: 1}}, seq(alpha([Act(al, [])]), alpha([Act(a2, [1)1))), [1);
init X(Allow ({{al: 1}}, seq(alpha([Act(al, [])]), alpha([Act(a2, [DD1))), [1);

% Block tests

init X(Block({al}, alpha([Act(al, [])])), [1);

init X(Block({a2}, alpha([Act(al, [1)1)), [1);

init X(Block({a2}, seq(alpha([Act(al, [])]), alpha([Act(a2, [1D1]))), [1);
init X(Block({a2}, alpha([Act(al, []), Act(a2, [1D1)), [1);

% Action rename tests
init X(Rename(ID[a2—>al], alpha([Act(a2, [])])), []1);
init X(Rename(ID[a2—>al], seq(alpha([Act(a2, [])]), alpha([Act(a2, [1D]))), [1);

% Prehide tests
init X(Prehide({a2}, alpha([Act(a2, [1)])), [1);
init X(Prehide ({a2}, seq(alpha([Act(a2, [1)]), alpha([Act(al, []D]))), [1);

% Hide tests
init X(Hide({a2}, alpha([Act(a2, []D])), [D);
init X(Hide ({a2}, seq(alpha([Act(a2, [])]), alpha([Act(al, [1D1))), [1);

% Communication tests
init X(Comm([communication([a2, a2], al)],
alpha ([Act(a2, []), Act(al, []), Act(a2, [D1)), [1);
init X(Comm([communication([a2, a2], al)],
alpha ([Act(a2, []), Act(al, []), Act(a2, [de_var(bool(v1))])])),
[field (bool(v1l), bool’(true))]);

% Process Equation tests

init X(Def(p0, [pp(bool(vl), de_val(bool’(false)))]), [field (bool(vl), bool’(true))]);

init X(Def(p0, [pp(bool(vl), de_var(bool(v2)))]), [field (bool(vl), bool’(true))]);
init X(Def(p0, [pp(bool(v2), de_var(bool(vl)))]), [field (bool(vl), bool’(true))]);
init X(Def(p2, []), [field (bool(vl), bool’(true))]);
init X(Def(p5, []), [field (bool(vl), bool’(true))]);

init X(Def(p4, [pp(bool(vl), de_val(bool’(false)))]), [field (bool(vl), bool’(true))])

init X(seq(Def(p4, [pp(bool(vl), de_val(bool’(false)))]),
alpha ([Act(a2, [de_var(bool(v1))])])), [field (bool(vl), bool’(true))]);
init X(Def(p6, [pp(bool(vl), de_val(bool’(true)))]),
[field (bool(vl), bool’(false))]);
init X(Sum(bool(vl), Sum(bool(v2),
alpha ([Act(al, [de_var(bool(vl)), de_var(bool(v2))])1))), [1);
init X(par(Def(p0, [pp(bool(vl), de val(bool’(false)))]),
Def(p0, [pp(bool(vl), de_val(bool’(true)))])), [1);
init X(par(Def(p8, [pp(bool(vl), de_val(bool’(true)))]),
Def(p8, [pp(bool(vl), de_val(bool’(true)))])), [1);
init X(par(Def(p8, [pp(bool(vl), de_val(bool’(false)))]),
Def(p8, [pp(bool(vl), de_val(bool’(true)))])), [1);
init X(Def(P, [1), [1);
init X(Def(Q, [1), [1);
init X(par(Def(P, []), Def(P, [])), []);
init X(par(Def(Q, [1), Def(Q, [1)), [D1);



Bibliography

[65A10]

[ABE10]

[ABPVO0S]

[ABV94]

[AFVO01]

[AH89]

[AIMR09]

[Are02]

[Aut]

65A - System aspects. Functional safety of electrical/electronic/pro-
grammable electronic safety-related systems - S+ IEC 61508 (Edition
2.0). CD, 4 2010.

M.E van Amstel, M.G.J. van den Brand, and L.J.P Engelen. An exercise
in iterative domain-specific language design. In A. Capiluppi, A. Cleve,
and N. Moha, editors, EVOL /IWPSE, pages 48-57. ACM, 2010.

M.FE van Amstel, M.G.J. van den Brand, Z. Proti¢, and T. Verhoeff. Trans-
forming Process Algebra Models into UML State Machines: Bridging a
Semantic Gap? In A. Vallecillo, J. Gray, and A. Pierantonio, editors,
ICMT, volume 5063 of LNCS, pages 61-75. Springer, 2008.

L. Aceto, B. Bloom, and EW. Vaandrager. Turning SOS Rules into Equa-
tions. Inf. Comput., 111(1):1-52, 1994.

L. Aceto, W.J. Fokkink, and C. Verhoef. Conservative Extension in Struc-
tural Operational Semantics. In Current Trends in Theoretical Computer
Science, pages 504-524. World Scientific, 2001.

L. Aceto and M. Hennessy. Termination, Deadlock and Divergence. In
M.G. Main, A. Melton, M.W. Mislove, and D.A. Schmidt, editors, Math-
ematical Foundations of Programming Semantics, volume 442 of LNCS,
pages 301-318. Springer, 1989.

L. Aceto, A. Ingolfsdottir, M.R. Mousavi, and M.A. Reniers. Algebraic
Properties for Free! Bulletin of the EATCS, 99:81-104, October 2009.

D.B. Aredo. A Framework for Semantics of UML Sequence Diagrams in
PVS. Journal of Universal Computer Science, 8(7):674-697, 2002.

AutoDesk. 3D Studio Max 2009. http://usa.autodesk. com. Visited:
September 25, 2012.

271


http://usa.autodesk.com

272

[AvdBE11]

[AvdBEV12]

[AWO02]

[BB8S]

[BB97]

[BBG97]

[BBMO3]

[BBNS09]

[BBRO9]

[BCN'09]

[BCROO]

BIBLIOGRAPHY

S. Andova, M.G.J. van den Brand, and L.J.P Engelen. Prototyping the
Semantics of a DSL using ASF+SDF: Link to Formal Verification of DSL
Models. In E Durdn and V. Rusu, editors, AMMSE, volume 56 of EPTCS,
pages 65-79, 2011.

S. Andova, M.G.J. van den Brand, L.J.P Engelen, and T. Verhoef. MDE
Basics with a DSL Focus. In Marco Bernardo, Vittorio Cortellessa, and
Alfonso Pierantonio, editors, Formal Methods for Model-Driven Engineer-
ing, volume 7320 of LNCS, pages 21-57. Springer Berlin / Heidelberg,
2012.

T. Archer and A. Whitechapel. Inside C. Pro-Developer Series. Microsoft
Press, second edition edition, 2002.

J.C.M. Baeten and J.A. Bergstra. Processen en procesexpressies (Dutch).
Informatie, 30(3):177-248, 1988.

J.M.C. Baeten and J.A. Bergstra. Discrete Time Process Algebra: Abso-
lute Time, Relative Time and Parametric Time. Fundam. Inform., 29(1-
2):51-76, 1997.

M. Bezem, R.N. Bol, and J.E Groote. Formalizing Process Algebraic
Verifications in the Calculus of Constructions. Formal Asp. Comput.,
9(1):1-48, 1997.

E Budinsky, S.A. Brodsky, and E. Merks. Eclipse Modeling Framework.
Pearson Education, 2003.

S. Bensalem, M. Bozga, T-H Nguyen, and J. Sifakis. D-finder: A tool
for compositional deadlock detection and verification. In A. Bouajjani
and O. Maler, editors, Proceedings of the 21st International Conference on
Computer Aided Verification (CAV 2009), Grenoble, France, volume 5643
of LNCS, pages 614-619. Springer, 2009.

J.C.M. Baeten, T. Basten, and M.A. Reniers. Process Algebra: Equational
Theories of Communicating Processes (Cambridge Tracts in Theoretical
Computer Science). Cambridge University Press, December 2009.

D. A. van Beek, P Collins, D. E. Nadales, J. E. Rooda, and R. R. H.
Schiffelers. New Concepts in the Abstract Format of the Compositional
Interchange Format. In A. Giua, C. Mahuela, M. Silva, and J. Zaytoon,
editors, 3rd IFAC Conference on Analysis and Design of Hybrid Systems,
pages 250-255, Zaragoza, Spain, 2009.

E. Borger, A. Cavarra, and E. Riccobene. An ASM semantics for UML
activity diagrams. In T. Rus, editor, Algebraic Methodology and Software
Technology. 8th International Conference, AMAST 2000, Iowa City, Iowa,



BIBLIOGRAPHY 273

[BDHO1]

[BFGT01]

[BG96]

[BGR'03]

[BHBMO7]

[BHMMOO]

[BHMMO2]

[BHR'08]

[BK84]

[BK85]

[BLL*95]

USA, May 20-27, 2000, Proceedings, volume 1816 of LNCS, pages 293—
308. Springer, 2000.

D. Bosnacki, D. Dams, and L. Holenderski. A Heuristic for Symmetry
Reductions with Scalarsets. In J.N. Oliveira and P Zave, editors, FME,
volume 2021 of LNCS, pages 518-533. Springer, 2001.

S.C.C. Blom, W.J. Fokkink, J.E Groote, I. van Langevelde, B. Lisser, and
J.C. van de Pol. uCRL: A Toolset for Analysing Algebraic Specifications.
In G. Berry, H. Comon, and A. Finkel, editors, Proc. Computer Aided Ver-
ification (CAV 2001), volume 2102 of LNCS, pages 250-254. Springer,
2001.

R.N. Bol and J.E Groote. The Meaning of Negative Premises in Transi-
tion System Specifications. J. ACM, 43(5):863-914, 1996.

D.A. van Beek, Niek G.J., J.E. Rooda, R.R.H. Schiffelers, K.L. Man, and
M.A. Reniers. Relating Chi to hybrid automata. In S.E. Chick, PJ.
Sanchez, D.M. Ferrin, and D.J. Morrice, editors, Proceedings of the 2003
Winter Simulation Conference, pages 632-640, 2003.

J.M.J. Beckers, WPM.H. Heemels, B.H.M. Bukkems, and G.J. Muller.
Effective industrial modeling for high-tech systems: The example of
Happy Flow. In Seventeenth Annual International Symposium of the In-
ternational Council On Systems Engineering (INCOSE), 2007.

C. de O. Braga, E.H. Haeusler, J. Meseguer, and PD. Mosses. Maude
Action Tool: Using Reflection to Map Action Semantics to Rewriting
Logic. In AMAST, pages 407-421, 2000.

C. de O. Braga, E.H. Haeusler, J. Meseguer, and PD. Mosses. Mapping
Modular SOS to Rewriting Logic. In LOPSTR, pages 262-277, 2002.

D.A. van Beek, A.T. Hofkamp, M.A. Reniers, J.E. Rooda, and R.R.H.
Schiffelers. Syntax and Formal Semantics of Chi 2.0. Technical Report 1,
Eindhoven University of Technology, 2008.

J.A. Bergstra and J.W. Klop. Process Algebra for Synchronous Commu-
nication. Information and Control, 60(1-3):109-137, 1984.

J.A. Bergstra and J.W. Klop. Algebra of Communicating Processes with
Abstraction. Theor. Comput. Sci., 37:77-121, 1985.

J. Bengtsson, K.G. Larsen, E Larsson, P Pettersson, and W. Yi. Uppaal -
a Tool Suite for Automatic Verification of Real-Time Systems. In Proc. of
Workshop on Verification and Control of Hybrid Systems III, number 1066
in LNCS, pages 232-243. Springer, October 1995.



274

[BluO5]

[BMO02]

[BMO5]

[BMR*05]

[BMR'06]

[B5r98]

[BPSM108]

[BPW93]

[BROO]

[BRO1]

[BRO4]

BIBLIOGRAPHY
Bluespec. Automatic  Generation of Control Logic with
Bluespec  SystemVerilog, =~ Februari  2005. Available at:

http://www.bluespec.com/forum/download.php?id=63.

J.C.M. Baeten and C.A. Middelburg. Process Algebra with Timing. EATCS
Monographs. Springer-Verlag, Berlin, Germany, 2002.

C. Braga and J. Meseguer. Modular Rewriting Semantics in Practice.
ENTCS, 117:393-416, 2005.

D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schif-
felers. Syntax and semantics of timed Chi. Computer Science Report
05-09, Technische Universiteit Eindhoven, March 2005.

D.A. van Beek, K.L. Man, M.A. Reniers, J.E. Rooda, and R.R.H. Schif-
felers. Syntax and consistent equation semantics of hybrid chi. J. Log.
Algebr. Program., 68(1-2):129-210, 2006.

E. Borger. High Level System Design and Analysis Using Abstract State
Machines. In FM-Trends, volume 1641 of LNCS, pages 1-43. Springer,
1998.

T. Bray, J. Paoli, C.M. Sperberg-McQueen, E. Maler, and E Yergeau. Ex-
tensible Markup Language (XML) 1.0 (Fifth Edition). World Wide Web
Consortium, Recommendation REC-xml-20081126, November 2008.

J.A. Bergstra, A. Ponse, and J. van Wamel. Process Algebra with Back-
tracking. In J.W. de Bakker, W.P de Roever, and G. Rozenberg, editors,
REX School /Symposium, volume 803 of LNCS, pages 46-91. Springer,
1993.

T. Ball and S.K.i Rajaman. Bebop: A Symbolic Model Checker for
Boolean Programs. In K. Havelund, J. Penix, and W. Visser, editors, Pro-
ceedings of the 7th International SPIN Workshop on SPIN Model Checking
and Software Verification (SPIN’00), Stanford, CA, USA, volume 1885 of
LNCS, pages 113-130. Springer, 2000.

T. Ball and S.K.i Rajaman. Automatically validating temporal safety
properties of interfaces. In M.B. Dwyer, editor, Proceedings of the 8th
international SPIN workshop on Model Checking Software (SPIN’01),
Toronto, Ontario, Canada, volume 2057 of LNCS, pages 103-122.
Springer, 2001.

J.M.C. Baeten and M.A. Reniers. Timed Process Algebra (With a Fo-
cus on Explicit Termination and Relative-Timing). In M. Bernardo and
E Corradini, editors, SFM, volume 3185 of LNCS, pages 59-97. Springer,
2004.



BIBLIOGRAPHY 275

[Bra92]

[Bra0O1]

[BRASV89]

[BRSRO7]

[BSW69]

[BTW*05]

[But92]

[But94]

[BV93]

[BVO7]

[BVDH'01]

[CCGT09]

J.C. Bradfield. Verifying Temporal Properties of Systems. Progress in
Theoretical Computer Science. Birkh&duser, 1992.

C. de O. Braga. Rewriting Logic as a Semantic Framework for Modular
Structural Operational Semantics. PhD thesis, Pontificia Universidade
Catodlica do Rio de Janeiro, 2001.

G. Boudol, V. Roy, R. de Simone, and D. Vergamini. Process Calculi, from
Theory to Practice: Verification Tools. In Automatic Verification Methods
for Finite State Systems, pages 1-10, 1989.

D.A. van Beek, M.A. Reniers, R.R.H. Schiffelers, and J.E. Rooda. Foun-
dations of a Compositional Interchange Format for Hybrid Systems. In
A. Bemporad, A. Bicchi, and G.C. Buttazzo, editors, HSCC, volume 4416
of LNCS, pages 587-600. Springer, 2007.

K. A. Bartlett, R. A. Scantlebury, and P T. Wilkinson. A note on reliable
full-duplex transmission over half-duplex links. Commun. ACM, 12:260-
261, May 1969.

E. Bortnik, N. Trcka, A.J. Wijs, B. Luttik, J.M. van de Mortel-Fronczak,
J.C.M. Baeten, W.J. Fokkink, and J.E. Rooda. Analyzing a y model of a
turntable system using Spin, CADP and UPPAAL. Journal of Logic and
Algebraic Programming, 65(2):51-104, 2005.

K-H. Buth. Using SOS Definitions in Term Rewriting Proofs. In Larch,
Workshops in Computing, pages 36-54. Springer, 1992.

K-H. Buth. Simulation of SOS Definitions with Term Rewriting Systems.
In ESOP, volume 788 of LNCS, pages 150-164. Springer, 1994.

J.C.M. Baeten and C. Verhoef. A Congruence Theorem for Structured
Operational Semantics with Predicates. In CONCUR, pages 477-492,
1993.

C. Braga and A. Verdejo. Modular Structural Operational Semantics
with Strategies. ENTCS, 175(1):3-17, 2007.

M.G.J Brand, A. van Deursen, J. Heering, H.A. de Jong, M. de Jonge,
T. Kuipers, P Klint, L. Moonen, PA. Olivier, J. Scheerder, J.J. Vinju,
E. Visser, and J. Visser. = The ASF+SDF Meta-environment: A
Component-Based Language Development Environment. In R. Wilhelm,
editor, CC, volume 2027 of LNCS, pages 365-370. Springer, 2001.

B. Combemale, X. Crégut, P-L. Garoche, and X. Thirioux. Essay on Se-
mantics Definition in MDE - An Instrumented Approach for Model Veri-
fication. JSW, 4(9):943-958, 2009.



276

[CCRO8]

[CDH*"00]

[CGJ'03]

[CGP99]

[CH90]

[Chu32]

[CMS95]

[CS96]

[CW96]

[CW02]

[Dar88]

[dBIMO6]

[dBvVL80]

[Dell1]

BIBLIOGRAPHY

J. Cabot, R. Clarisd, and D. Riera. Verification of UML/OCL Class Dia-
grams using Constraint Programming. In ICSTW "08, pages 73-80. IEEE
Computer Society, 2008.

J.C. Corbett, M.B. Dwyer, J. Hatcliff, S. Lauback, C.S. Pasareanu, Robby;,
and H. Zheng. Bandera: Extracting finite-state models from Java source
code. In Proceedings of the 22nd international conference on Software
engineering (ICSE 2000), Limerick, Ireland, pages 439-448, 2000.

E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement for symbolic model checking. Journal of
the ACM, 50(5):752-794, 2003.

E.M. Clarke, O. Grumberg, and D.A. Peled. Model Checking. The MIT
Press, 1999.

R. Cleaveland and M. Hennessy. Priorities in Process Algebras. Inf
Comput., 87(1/2):58-77, 1990.

A. Church. A Set of Postulates for the Foundation of Logic. Annals of
Mathematics, 2, 1932.

R. Cleaveland, E. Madelaine, and S. Sims. A Front-End Generator for
Verification Tools. In TACAS, volume 1019 of LNCS, pages 153-173.
Springer, 1995.

R. Cleaveland and S. Sims. The NCSU Concurrency Workbench. In CAV,
volume 1102 of LNCS, pages 394-397. Springer, 1996.

E.M. Clarke and J.M. Wing. Formal Methods: State of the Art and Future
Directions. ACM Comput. Surv., 28(4):626-643, 1996.

T. Clark and J. Warmer, editors. Object Modeling with the OCL, The Ra-
tionale behind the Object Constraint Language, volume 2263 of LNCS.
Springer, 2002.

L.E Darwin. Checking C programs with Lint. O’Reilly & Associates, Inc.,
Sebastopol, CA, USA, 1988.

M.G.J. den Brand, J. Iversen, and PD. Mosses. An Action Environment.
Sci. Comput. Program., 61(3):245-264, 2006.

J.W. de Bakker and J. van Leeuwen, editors. Automata, Languages and
Programming, 7th Colloquium, Noordweijkerhout, The Netherland, July
14-18, 1980, Proceedings, volume 85 of LNCS. Springer, 1980.

T. Delissen. Design and Validation of a Model-Driven Engineering En-
vironment for the Specification and Transformation of T-ReCS models.
Master’s thesis, Technische Universiteit Eindhoven, 2011.



BIBLIOGRAPHY 277

[DGP02]

[DMY02]

[DRJK'06]

[dS85]

[DS09]

[EC80]

[EMO02]

[EWO05]

[Fok07]

[FV98]

[Gal03]

[GG89]

[GH93]

P Degano, E Gadducci, and C. Priami. A Causal Semantics for CCS via
Rewriting Logic. Theor. Comput. Sci., 275(1-2):259-282, 2002.

A. David, M.O. Moller, and W. Yi. Formal Verification of UML Statecharts
with Real-Time Extensions. In FASE, volume 2306 of LNCS, pages 218-
232. Springer, 2002.

D. Di Ruscio, E Jouault, I. Kurtev, J. Bézivin, and A. Pierantonio. Ex-
tending AMMA for Supporting Dynamic Semantics Specifications of
DSLs. Technical Report n. 06.02, Laboratoire d’Informatique de Nantes-
Atlantique, April 2006.

R. de Simone. Higher-Level Synchronising Devices in Meije-SCCS.
Theor. Comput. Sci., 37:245-267, 1985.

E.G. Daylight and S.K. Shukla. On the Difficulties of Concurrent-System
Design, Illustrated with a 2 x 2 Switch Case Study. In FM, volume 5850
of LNCS, pages 273-288. Springer, 2009.

E.A. Emerson and E.M. Clarke. Characterizing Correctness Properties
of Parallel Programs Using Fixpoints. In de Bakker and van Leeuwen
[dBvL80], pages 169-181.

S. Eker and A. Meseguer, J.and Sridharanarayanan. The Maude LTL
Model Checker. ENTCS, 71:162-187, 2002.

J. Evermann and Y. Wand. Toward Formalizing Domain Modeling Se-
mantics in Language Syntax. IEEE Trans. Software Eng., 31(1):21-37,
2005.

W.J. Fokkink. Modelling Distributed Systems. Springer Berlin Heidelberg,
2007.

W.J. Fokkink and C. Verhoef. A Conservative Look at Operational Se-
mantics with Variable Binding. Inf Comput., 146(1):24-54, 1998.

V. Galpin. A format for semantic equivalence comparison. Theor. Com-
put. Sci., 309(1-3):65-109, 2003.

R.J. van Glabbeek and U. Goltz. Equivalence Notions for Concurrent
Systems and Refinement of Actions (Extended Abstract). In A. Kreczmar
and G. Mirkowska, editors, Proceedings of Mathematical Foundations of
Computer Science 1989 (MFCS’89), Porabka-Kozubnik, Poland, volume
379 of LNCS, pages 237-248. Springer, 1989.

J.V. Guttag and J.J. Horning. Larch: Languages and Tools for Formal
Specification. Springer-Verlag New York, Inc., New York, NY, USA, 1993.



278

[GKM*08]

[GKOT00]

[GKS*11]

[GM99]

[GMR*06]

[GMRT09]

[GMWUO06]

[God97]

[GP93]

BIBLIOGRAPHY

J.E Groote, J.J.A Keiren, A.H.J. Mathijssen, B. Ploeger, EBM. Stappers,
C. Tankink, Y.S. Usenko, M.J. van den Weerdenburg, W. Wesselink,
T.A.C. Willemse, and J. van der Wulp. The mCRL2 toolset. In Proceed-
ings International Workshop on Advanced Software Development Tools and
Techniques (WASDeTT 2008), 2008.

Y. Gurevich, PW. Kutter, M. Odersky, and L. Thiele, editors. Abstract
State Machines, Theory and Applications, International Workshop, ASM
2000, Monte Verita, Switzerland, March 19-24, 2000, Proceedings, vol-
ume 1912 of LNCS. Springer, 2000.

J.E Groote, J.J.A. Keiren, EPM. Stappers, W. Wesselink, and T.A.C.
Willemse. Experiences in developing the mCRL2 toolset. Softw., Pract.
Exper., 41(2):143-153, 2011.

J.E Groote and R. Mateescu. Verification of Temporal Properties of Pro-
cesses in a Setting with Data. In A.M. Haeberer, editor, Proc. Algebraic
Methodology And Software Technology (AMAST 1998), volume 1548 of
LNCS, pages 74-90. Springer, 1999.

J.E Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J.
van den Weerdenburg. The Formal Specification Language mCRL2.
In MMOSS, volume 06351 of Dagstuhl Seminar Proceedings. Interna-
tionales Begegnungs- und Forschungszentrum fuer Informatik (IBFI),
Schloss Dagstuhl, Germany, 2006.

J.E Groote, A.H.J. Mathijssen, M.A. Reniers, Y.S. Usenko, and M.J.
van den Weerdenburg. Analysis of distributed systems with mCRL2.
In M. Alexander and W. Gardner, editors, Process Algebra for Parallel
and Distributed Processing, chapter 4, pages 99-128. Taylor & Francis
Group, 2009.

J.E Groote, A.H.J. Mathijssen, M. van Weerdenburg, and Y.S. Usenko.
From yCRL to mCRL2: Motivation and Outline. ENTCS, 162:191-196,
2006.

P Godefroid. Model checking for programming languages using
Verisoft. In Proceedings of the 24th ACM SIGPLAN-SIGACT symposium
on Principles of Programming Languages (POPL97), Paris, France, pages
174-186. ACM Press, 1997.

J.E Groote and A. Ponse. Proof Theory for uCRL: A Language for Pro-
cesses with Data. In D.J. Andrews, J.E Groote, and C.A. Middelburg,
editors, Semantics of Specification Languages, Workshops in Computing,
pages 232-251. Springer, 1993.



BIBLIOGRAPHY 279

[GPUO1]

[GPWO03]

[GRO1]

[Gro93]

[GV92]

[GWO05a]

[GWO5b]

[HA00]

[Haa]

[Har87]

[Har99]

[Har06]

[Hen96]

[HHJWO7]

J.E Groote, A. Ponse, and Y.S. Usenko. Linearization in parallel pCRL.
J. Log. Algebr. Program., 48(1-2):39-70, 2001.

J.E Groote, J. Pang, and A.G. Wouters. Analysis of a distributed system
for lifting trucks. J. Log. Algebr. Program., 55(1-2):21-56, 2003.

J.E Groote and M.A. Reniers. Algebraic process verification. In J.A.
Bergstra, A. Ponse, and S.A. Smolka, editors, Handbook of Process Al-
gebra, chapter 17, pages 1151-1208. Elsevier Science Publishers B.V,
Amsterdam, 2001.

J.E Groote. Transition system specifications with negative premises.
Theor. Comput. Sci., 118(2):263-299, 1993.

J.E Groote and EW. Vaandrager. Structured Operational Semantics and
Bisimulation as a Congruence. Inf. Comput., 100(2):202-260, 1992.

J.E Groote and T.A.C. Willemse. Model-checking processes with data.
Science of Computer Programming, 56(3):251-273, 2005.

J.E Groote and T.A.C. Willemse. Parameterised Boolean Equation Sys-
tems. Theor. Comput. Sci., 343(3):332-369, 2005.

J.C. Hoe and Arvind. Synthesis of operation-centric hardware descrip-
tions. In ICCAD ’00: Proceedings of the 2000 IEEE/ACM international
conference on Computer-aided design, pages 511-519, Piscataway, NJ,
USA, 2000. IEEE Press.

K. Haaland. JIT Software Development-Inside the Eclipse Software De-
velopment Process.

D. Harel. Statecharts: A visual formalism for complex systems. Sci.
Comput. Program., 8(3):231-274, 1987.

PH. Hartel. LETOS - a Lightweight Execution Tool for Operational Se-
mantics. Softw., Pract. Exper., 29(15):1379-1416, 1999.

W. Harrison. Eating Your Own Dog Food. IEEE Software, 23(3):5-7,
2006.

T.A. Henzinger. The Theory of Hybrid Automata. In Proceedings of the
11th Annual IEEE Symposium on Logic in Computer Science (LICS ’96),
pages 278-292, New Brunswick, New Jersey, 1996.

P Hudak, J. Hughes, S.L.P Jones, and P Wadler. A history of Haskell:
being lazy with class. In B.G. Ryder and B. Hailpern, editors, HOPL,
pages 1-55. ACM, 2007.



280

BIBLIOGRAPHY

[HHVOMO7] M. Hidalgo-Herrero, A. Verdejo, and Y. Ortega-Mallén. Using Maude

[HKW11]

[HM80]

[Hoa78]

[Hol01]

[Hor51]

[HRO4]

[HVBOO]

[HWWO1]

[IEE91]

[Inc]

[ISO05]

[Joh78]

[JRH99]

and Its Strategies for Defining a Framework for Analyzing Eden Seman-
tics. ENTCS, 174(10):119-137, 2007.

Y-L. Hwong, V.J.J. Kusters, and T.A.C. Willemse. Analysing the Con-
trol Software of the Compact Muon Solenoid Experiment at the Large
Hadron Collider. In E Arbab and M. Sirjani, editors, FSEN, volume 7141
of LNCS, pages 174-189. Springer, 2011.

M. Hennessy and R. Milner. On Observing Nondeterminism and Con-
currency. In de Bakker and van Leeuwen [dBvL80], pages 299-309.

C.A.R. Hoare. Communicating sequential processes. Commun. ACM,
21(8):666-677, 1978.

G.J. Holzmann. From code to models. In Proceedings of the Second
International Conference on Application of Concurrency to System Design
(ACSD 2001), Newcastle upon Tyne, UK, pages 3-10. IEEE Computer
Society Press, 2001.

A. Horn. On Sentences Which are True of Direct Unions of Algebras. J.
Symb. Log., 16(1):14-21, 1951.

M. Huth and M.D. Ryan. Logic in computer science - Modelling and rea-
soning about systems (2. ed.). Cambridge University Press, 2004.

J. den Hartog, E.P de Vink, and J.W. de Bakker. Metric Semantics
and Full Abstractness for Action Refinement and Probabilistic Choice.
ENTCS, 40:72-99, 2000.

E van Ham, H. van de Wetering, and J.J. van Wijk. Visualization of State
Transition Graphs. In INFOVIS, pages 59-63, 2001.

IEEE. IEEE Standard for the Scheme Programming Language. IEEE Std
1178-1990, 1991.

PolySpace Inc. Polyspace verification toolsuite.  http://www.
polyspace.com. Visited: September 25, 2012.

OMG. Meta Object Facility (MOF) Specification, iso/iec 19502:2005 edi-
tion, 2005.

S.C. Johnson. Lint, a C program checker. Technical Report Comp. Sci.
Tech. Rep. 65, Bell Laboratories, 1978.

S.L.P Jones, A. Reid, FE Henderson, C.A.R. Hoare, and S. Marlow. A
Semantics for Imprecise Exceptions. In PLDI, pages 25-36, 1999.


http://www.polyspace.com
http://www.polyspace.com

BIBLIOGRAPHY 281

[JS04]

[JS08]

[JS09]

[Kle09]
[Kof07]

[Koz83]

[KR11]

[Kus01]

[Lam77]

[Lam02]

[LMEO4]

[LNO3]

[LS92]

S. Jansamak and A. Surarerks. Formalization of UML statechart mod-
els using Concurrent Regular Expressions. In ACSC ‘04, pages 83-88,
Darlinghurst, Australia, 2004. Australian Computer Society, Inc.

E.K. Jackson and W. Schulte. Model Generation for Horn Logic with
Stratified Negation. In FORTE, volume 5048 of LNCS, pages 1-20.
Springer, 2008.

E.K. Jackson and J. Sztipanovits. Formalizing the Structural Semantics
of Domain-Specific Modeling Languages. Software and System Modeling,
8(4):451-478, 2009.

A. Kleppe. Software Language Engineering. Addisson-Wesley, 2009.

J. Kofron. Checking software component behavior using behavior pro-
tocols and SPIN. In Y. Cho, R.L. Wainwright, H. Haddad, S.Y. Shin, and
Y.W. Koo, editors, Proceedings of the 2007 ACM Symposium on Applied
Computing (SAC’07), Seoul, Korea, pages 1513-1517. ACM Press, 2007.

D. Kozen. Results on the Propositional mu-Calculus. Theor. Comput.
Sci., 27:333-354, 1983.

J.J.A. Keiren and M.A. Reniers. Type checking mCRL2. Technical Re-
port 11, Technische Universiteit Eindhoven, 2011.

S. Kuske. A Formal Semantics of UML State Machines Based on Struc-
tured Graph Transformation. In UML, volume 2185 of LNCS, pages 241-
256. Springer, 2001.

L. Lamport. Proving the Correctness of Multiprocess Programs. IEEE
Transactions on Software Engineering, 3(2):125-143, 1977.

L. Lamport. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2002.

P Leven, T. Mehler, and S. Edelkamp. Directed error detection in
C++ with the assembly-level model checker StEAM. In S. Graf and
L. Mounier, editors, Proceedings of the 11th International SPIN Workshop
on Model Checking Software (SPIN), Barcelona, Spain, volume 2989 of
LNCS, pages 39-56. Springer, 2004.

K.G. Larsen and P Niebert, editors. Formal Modeling and Analysis of
Timed Systems: First International Workshop, FORMATS 2003, Marseille,
France, September 6-7, 2003. Revised Papers, volume 2791 of LNCS.
Springer, 2003.

K.G. Larsen and A. Skou. Compositional Verification of Probabilistic
Processes. In R. Cleaveland, editor, CONCUR, volume 630 of LNCS,
pages 456-471. Springer, 1992.



282

[McL07]

[Mes92]

[MOMO96]

[MonO5]

[Mos04a]

[Mos04b]

[MPO7]

[MRO6]

[MRGO7]

[MSWO09]

[MWWO04]

[Nie04]

[NNH99]

[NO96]

BIBLIOGRAPHY

J. McLoone. Eating Your Own Dogfood, May 2007.

J. Meseguer. Conditioned Rewriting Logic as a United Model of Concur-
rency. Theor. Comput. Sci., 96(1):73-155, 1992.

N. Marti-Oliet and J. Meseguer. Rewriting Logic as a Logical and Se-
mantic Framework. ENTCS, 4, 1996.

M. Monteban. Reduction Algorithms on Linear Process Equations. IS-TI
005, Vrije Universiteit Amsterdam, 2005.

PD. Mosses. Exploiting Labels in Structural Operational Semantics. In
SAC, pages 1476-1481, 2004.

PD. Mosses. Modular Structural Operational Semantics. J. Log. Algebr.
Program., 60-61:195-228, 2004.

A.H.J. Mathijssen and A.J. Pretorius. Verified Design of an Automated
Parking Garage. In L. Brim, B.R. Haverkort, M. Leucker, and J.C. van de
Pol, editors, Proc. FMICS and PDMC 2006, volume 4346 of LNCS, pages
165-180. Springer, 2007.

M.R. Mousavi and M.A. Reniers. Prototyping SOS Meta-theory in
Maude. ENTCS, 156(1):135-150, 2006.

M.R. Mousavi, M.A. Reniers, and J.E Groote. SOS Formats and Meta-
theory: 20 Years After. Theor. Comput. Sci., 373(3):238-272, 2007.

M.G Meulen, EPM. Stappers, and T.A.C. Willemse. Breath-Bounded
Model Checking. Computer Science Report No. 09-03, Eindhoven Uni-
versity of Technology, March 2009.

S. Mauw, W.T. Wiersma, and T.J.H. Willemse. Language-Driven System
Design. IJSEKE, 14(6):625-663, 2004.

N.J.M. van den Nieuwelaar. Supervisory Machine Control by Predictive-
reactive Scheduling. PhD thesis, Technische University Eindhoven, 2004.

E Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer, 1999.

E. Najm and E Olsen. Reactive EFSMs - reactive Promela/RSPIN. In
T. Margaria and B. Steffen, editors, Tools and Algorithms for Construction
and Analysis of Systems, Second International Workshop, TACAS 96, Pas-
sau, Germany, March 27-29, 1996, Proceedings, volume 1055 of LNCS,
pages 349-368. Springer, 1996.



BIBLIOGRAPHY 283

[OBM10] RC Olveczky, A. Boronat, and J. Meseguer. Formal Semantics and Anal-

ysis of Behavioral AADL Models in Real-Time Maude. In J. Hatcliff and
E. Zucca, editors, FMOODS /FORTE, volume 6117 of LNCS, pages 47-62.
Springer, 2010.

[OW10] S. Orzan and T.A.C. Willemse. Invariants for Parameterised Boolean

[PL99]

[Plo04]

[PRQ]

[PTO8]

[PWO06]

[PWO7]

[PWW11]

[Rep93]

[RGZWO02]

[RJB04]

[Roo07]

[RRH10]

Equation Systems. Theor. Comput. Sci., 411(11-13):1338-1371, 2010.

L. Paltor and J. Lilius. Formalising UML State Machines for Model Check-
ing. In UML, volume 1723 of LNCS, pages 430-445. Springer, 1999.

G.D. Plotkin. A Structural Approach to Operational Semantics. J. Log.
Algebr. Program., 60-61:17-139, 2004.

PRQA. QA-C++ toolsuite. http: //www.programmingresearch. com/|
Visited: September 25, 2012.

B. Ploeger and C. Tankink. Improving an Interactive Visualization of
Transition Systems. In Proceedings of the 4th ACM Symposium on Soft-
ware Visualization 2008 (SoftVis 2008), pages 115-124. ACM, 2008.

A.J. Pretorius and J.J. van Wijk. Visual Analysis of Multivariate State
Transition Graphs. IEEE Trans. Vis. Comput. Graph., 12(5):685-692,
2006.

AJ. Pretorius and J.J. van Wijk. Bridging the semantic gap: Visualizing
transition graphs with user-defined diagrams. IEEE Computer Graphics
and Applications, 27(5):58-66, 2007.

B. Ploeger, W. Wesselink, and T.A.C. Willemse. Verification of reactive
systems via instantiation of Parameterised Boolean Equation Systems.
Inf. Comput., 209(4):637-663, 2011.

J.H. Reppy. Concurrent ML: Design, Application and Semantics. In
PE. Lauer, editor, Functional Programming, Concurrency, Simulation and
Automated Reasoning, volume 693 of LNCS, pages 165-198. Springer,
1993.

M.A. Reniers, J.E Groote, M. van der Zwaag, and J. van Wamel. Com-
pleteness of Timed mCRL. Fundam. Inform., 50(3-4):361-402, 2002.

J. Rumbaugh, 1. Jacobson, and G. Booch. Unified Modeling Language
Reference Manual, The (2nd Edition). Pearson Higher Education, 2004.

N. Roos. Océ geeft aanzet tot open innovatie in inkjet, August 2007.
Mechatronica Magazine.

A. Riesco and J. Rodriguez-Hortala. A Natural Implementation of Plural
Semantics in Maude. ENTCS, 253(7):165-175, 2010.


http://www.programmingresearch.com/

284

[Sax94]

[Sco70]

[Sofa]

[Sofb]

[Sofc]

[SRO9]

[SRGO9]

[SRG10]

[SRGW11]

[SRW1la]

[SRW11b]

[SRWG12]

[SS08]

BIBLIOGRAPHY

R. Sax. Classic Home Desserts: A Treasury of Heirloom and Contemporary
Recipes from Around the World. Houghton Mifflin Harcourt, 1994.

D.S. Scott. Outline of a Mathematical Theory of Computation. Technical
Monograph PRG-2, Oxford University Computing Laboratory, Oxford,
England, November 1970.

The Maude system. http://maude.cs.uiuc.edu/. Visited: September
25, 2012.

The mCRL2 toolset. http://www.mcrl2.org/. Visited: September 25,
2012.

Java PathFinder. |http://javapathfinder.sourceforge.net. Vis-
ited: September 25, 2012.

EPM. Stappers and M.A. Reniers. Verification of safety requirements for
program code using data abstraction. ECEASST, 23, 2009.

EPM. Stappers, M.A. Reniers, and J.E Groote. Suitability of mCRL2
for Concurrent-System Design: A 2 X 2 Switch Case Study. In FMCO,
volume 6286 of LNCS, pages 166-185. Springer, 2009.

EPM. Stappers, M.A. Reniers, and J.E Groote. Grip op Correcte Software
(Dutch). In Release, volume 4, pages 18-21. Array Publications, 2010.

EPM. Stappers, M.A. Reniers, J.E Groote, and S. Weber. Dogfooding the
Structural Operational Semantics of mCRL2. Computer Science Report
No. 11-18, Eindhoven University of Technology, December 2011.

EPM. Stappers, M.A. Reniers, and S. Weber. Transforming SOS Specifi-
cations to Linear Processes. Computer Science Report No. 11-07, Eind-
hoven University of Technology, May 2011.

EPM. Stappers, M.A. Reniers, and S. Weber. Transforming SOS Spec-
ifications to Linear Processes. In FMICS, volume 6959 of LNCS, pages
196-211. Springer, 2011.

EPM. Stappers, M.A. Reniers, S. Weber, and J.E Groote. Dogfooding
the Formal Semantics of mCRL2. In SEW, volume 35. IEEE, 2012. To
Appear.

G. Singh and S.K. Shukla. Verifying Compiler Based Refinement of
Bluespec™™ Specifications Using the SPIN Model Checker. In SPIN "08:
Proceedings of the 15th international workshop on Model Checking Soft-
ware, volume 5156 of LNCS, pages 250-269, Berlin, Heidelberg, 2008.
Springer-Verlag.


http://maude.cs.uiuc.edu/
http://www.mcrl2.org/
http://javapathfinder.sourceforge.net

BIBLIOGRAPHY 285

[SSR08a]

[SSROSD]

[SSRO9]

[SW09]

[SWR*11a]

[SWR*11b]

[TDPO3]

[Ter97]

[Ton98]

[Tur85]

[Use02]

[vdPV97]

EPM. Stappers, L.J.A.M. Somers, and M.A. Reniers. Multidisciplinary
Modelling: Current status and expectations in the Dutch TWINS con-
sortium. In ICSSEAO8, pages S5.2:1-10, 2008.

EPM. Stappers, L.J.A.M. Somers, and M.A. Reniers. Multidisciplinary
Modelling in the Netherlands. In J. Heidrich and D. Falessi, editors,
PROFES, volume Short Paper Session Proceedings, pages 25-28, 2008.

EPM. Stappers, L.J.A.M. Somers, and M.A. Reniers. La modélisation
multidisciplinaire: Etat d’avancements et attentes du projet Neérlandais
TWINS. Génie Logiciel, 88:26-35, March 2009.

D.A. Sadilek and G. Wachsmuth. Using Grammarware Languages to
Define Operational Semantics of Modelled Languages. In TOOLS (47),
volume 33 of LNBIP, pages 348-356. Springer, 2009.

EPM. Stappers, S. Weber, M.A. Reniers, S. Andova, and 1. Nagy. Formal-
izing a Domain Specific Language Using SOS: An Industrial Case Study.
In A.M. Sloane and U. Almann, editors, SLE, volume 6940 of LNCS,
pages 223-242. Springer, 2011.

EPM. Stappers, S. Weber, M.A. Reniers, S. Andova, and I. Nagy. For-
malizing a Domain Specific Language Using SOS: An Industrial Case
Study. In U. Assmann, J. Saraiva, and A. Sloane, editors, SLE, LNCS,
Pre-Proceedings, pages 223-242, July 2011.

O. Tkachuk, M.B. Dwyer, and C.S. Pasareanu. Automated Environment
Generation for Software Model Checking. In Proceedings of the 18th IEEE
International Conference on Automated Software Engineering, Montreal,
Canada, pages 116-129. IEEE Computer Society Press, 2003.

PD. Terry. Compilers and Compiler Generators: An Introduction with
C++. Coriolis Group, March 1997.

H. Tonino. A Sound and Complete SOS-Semantics for Non-Distributed
Deterministic Abstract State Machines. In Workshop on Abstract State
Machines, pages 91-110, 1998.

D.A. Turner. Miranda: A Non-Strict Functional Language with Polymor-
phic Types. In FPCA, pages 1-16, 1985.

Y.S. Usenko. Linearization in uCRL. PhD thesis, Eindhoven University of
Technology, December 2002.

PH.A van der Putten and J.PM. Voeten. Specification of reactive hard-
ware/software systems. PhD thesis, Eindhoven University of Technology,
Eindhoven, The Netherlands, 1997.



286

[Ver02]

[VEtHSUO7]

[VMO02]

[VMOO6]

[WBRGO8]

[Web07]

[Wee07]

[Wei81]

[WF05]

[Wie03]

[Will1]

[WLBF09]

[Wol09]

BIBLIOGRAPHY

A. Verdejo. Building Tools for LOTOS Symbolic Semantics in Maude. In
FORTE, volume 2529 of LNCS, pages 292-307. Springer, 2002.

M.C.J.D. van Eekelen, S. ten Hoedt, R. Schreurs, and Y.S. Usenko. Anal-
ysis of a Session-Layer Protocol in mCRL2. In S. Leue and P Merino,
editors, FMICS, volume 4916 of LNCS, pages 182-199. Springer, 2007.

A. Verdejo and N. Marti-Oliet. Implementing CCS in Maude 2. ENTCS,
71, 2002.

A. Verdejo and N. Marti-Oliet. Executable Structural Operational Se-
mantics in Maude. J. Log. Algebr. Program., 67(1-2):226-293, 2006.

K. Wijbrans, B. Buve, R. Rijkers, and W. Geurts. Software Engineer-
ing with Formal Methods: Experiences with the Development of a
Storm Surge Barrier Control System. In J. Cuéllar, T.S.E. Maibaum, and
K. Sere, editors, FM, volume 5014 of LNCS, pages 419-424. Springer,
2008.

M. Weber. An Embeddable Virtual Machine for State Space Genera-
tion. In D. Bosnacki and S. Edelkamp, editors, Proceedings of the 14th
International SPIN Workshop on Model Checking Software (SPIN), Berlin,
Germany, volume 4595 of LNCS, pages 168-186. Springer, 2007.

M.J. van den Weerdenburg. An account of implementing applicative
term rewriting. ENTCS, 174(10):139-155, 2007.

M. Weiser. Program slicing. In Proceedings of the 5th International Con-
ference on Software Engineering (ICSE’81), San Diego, CA, USA, pages
439-449. IEEE Computer Society Press, 1981.

A.J. Wijs and W.J. Fokkink. From chi-t to uCLR: Combining Performance
and Functional Analysis. In ICECCS, pages 184-193. IEEE Computer
Society, 2005.

J. Wielemaker. An Overview of the SWI-Prolog Programming Environ-
ment. In WLPE, volume CW371 of Report, pages 1-16. Katholieke Uni-
versiteit Leuven, 2003.

W.W. Wilson. Implementation of Axiomatic Language. In J.P Gallagher
and M. Gelfond, editors, ICLP (Technical Communications), volume 11
of LIPIcs, pages 290-295. Schloss Dagstuhl - Leibniz-Zentrum fuer In-
formatik, 2011.

J. Woodcock, PG. Larsen, J. Bicarregui, and J.S. Fitzgerald. Formal
methods: Practice and experience. ACM Comput. Surv., 41(4), 2009.

T.J.L. Wolterink. Operational Semantics Applied to Model Driven Engi-
neering. Master’s thesis, University of Twente, 2009.



Bridging Formal Models - An Engineering Perspective 287

Summary

The thesis presents different techniques that can be used to build formal behavioral
models. If modal properties are formulated, the models can be subjected to veri-
fication techniques to determine whether a model possesses the desired properties.
However many native environments do not facilitate tools or techniques to verify
them. Hence, these models need to be transformed into other models that provide
suitable techniques for a formal analysis. The transformations are classified into two
engineering approaches, namely syntactically engineered models and semantically en-
gineered models. Syntactically engineered models are constructed from input specifi-
cations without explicitly considering the semantics. Semantically engineered models
are constructed from input specifications by explicitly considering the semantics.

The syntactic engineering approach presents four dedicated modeling techniques
that construct or disseminate verification results for formal models.

The first modeling technique describes a way to create models from system de-
scriptions that specify concurrent behavior. Here, we model three variations of a 2x2
switch, for which the models are subsequently compared to models created in the
specification languages: TLA+, Bluespec, Statecharts, and ACP. The comparison vali-
dates that mCRL2 is a suitable specification language to model descriptions or specify
the behavior for prototype systems.

The second syntactic technique constructs an mCRL2 model from a software im-
plementation that operates a printer for printing Printed Circuit Boards. The model
is used to advise (other) software engineers on dangerous language constructs in the
control software. Hence, the model is model checked for various safety properties.
The implementation is modeled through an over-approximation on the behavior by
abstracting from program variables, such that only interface calls between processes
and non-deterministic choices in procedures remain.

The third modeling technique describes a language transformation from the lan-
guage Chi 2.0 language to the mCRL2 language. The purpose of the transformation
is to facilitate model checking techniques to the discrete part of the Chi 2.0 language.
The transformation illustrates that even though the languages reside in the (same)



288 Summary

timed discrete event domain, it is not trivial to translate all syntactic notions.

The fourth technique offers a visual solution to disseminate verification result from
formal models to different disciplines using native physical designs for industrially
sized systems. We demonstrate the dissemination for a practical situation, showing
that these solutions add value to the validation and verification of functional behavior.

By applying these modeling techniques, we observe that all techniques require hu-
man ingenuity, which can potentially introduce unintended behavior. To reduce the
chances of introducing unintended behavior and rule out the human ingenuity effort
as much as possible, we propose a semantic engineering approach, that constructs
formal models based on the formal semantics of a language.

We first formalize the behavior of an (informal) industrial Domain Specific Lan-
guage, using a Transition System Specification (TSS). By performing the formaliza-
tion in a compositional way, we show that it is possible to formalize an industrial
language, and that behavioral ambiguities can be resolved when informed choices
are made.

The second step describes the transformation of a TSS to a Linear Process Specifi-
cation (LPS). The transformation is specified for deduction rules that are in deSimone
format, including predicates. The LPSs are specified in the syntax of the mCRL2 lan-
guage, that, with the help of the underlying (higher-order) re-writer/tool-set, can be
used for simulation, exhaustive labeled transition system generation and verification
of behavioral properties.

The applicability of the approach is finally demonstrated by taking on the formal
definition of the (untimed) mCRL2 language. To validate that the implementation
corresponds to its formal semantics we directly model the corresponding TSS. Despite
its formal characterization, thorough study and broad use in many areas, the approach
reveals a number of (subtle) differences between the mCRL2’s intended semantics, the
defined semantics and the actual implementation.



Bridging Formal Models - An Engineering Perspective 289

Samenvatting

Dit proefschrift beschrijft verschillende technieken die gebruikt kunnen worden om
formele gedragsmodellen te construeren. Als modale eigenschappen zijn geformu-
leerd, kunnen de bijbehorende modellen onderworpen worden aan verificatie technie-
ken om te zien of deze de gewenste eigenschappen bezitten. De omgevingen waarin
deze modellen worden geconstrueerd, bieden vaak geen of nauwelijks faciliteiten
voor verificatie. Vandaar dat deze modellen worden getransformeert naar modellen
in andere omgevingen die wel geschikt zijn voor verificatie doeleinden. De beschreven
transformaties worden geclacifiseerd door twee benaderingen, namelijk de traditio-
nele syntactische constructie van modellen en een alternatieve semantische constructie
van modellen. Syntactisch geconstrueerde modellen worden uit specificaties vervaar-
digd zonder expliciet te letten op de semantiek. Semantisch geconstrueerde modellen
worden uit specificaties verkregen door expliciet gebruik te maken van de semantiek.

De informele constructie van modellen wordt beschreven door vier toegewijde tech-
nieken die resulteren in formele modellen. Deze kunnen vervolgens gebruikt worden
voor validatie en verificatie doeleinden.

De eerste techniek demonstreert een case studie waarin gedragsmodellen voor een
2x2 switch worden opgesteld voor een systeem dat parallel gedrag beschrijft. De
modellen worden beschreven in de mCRL2 taal, waarna deze worden vergeleken met
de resulterende modellen van vier andere specificatie talen, namelijk TLA+, Bluespec,
statecharts, en ACP. De vergelijking bevestigt dat de mCRL2 taal geschikt is voor het
beschrijven van gedragsmodellen.

De tweede syntactische techniek construeert een mCRL2 model uit een software-
implementatie die de aansturing verzorgt voor het printen van printplaten. Het resul-
terende model in deze case study wordt gebruikt om (andere) software engineers te
informeren over potentieel gevaarlijke taalconstructies in de software controller. Het
model wordt vervolgens aan de verificatie van verschillende veiligheidseigenschappen
onderworpen. De modeleertechniek beschrijft een over-approximatie waarbij wordt
geabstraheerd van de programma variabelen, zodanig dat alleen de communicatie
tussen interfaces en non-deterministische keuzes binnen de verschillende procedures



290 Samenvatting

behouden blijven.

De derde techniek transformeert taalconstructies uit de taal Chi 2.0 naar mCRL2
taalconstructies. Met behulp van de vertaling worden model-check technieken be-
schikbaar gemaakt aan het discrete gedeelte van de Chi 2.0 taal. Hoewel beide talen
zich in eenzelfde getimede discrete event domein bevinden, illustreert de aanpak dat
de transformatie niet geheel triviaal is.

De vierde techniek beschrijft een visuele oplossing om verificatie resultaten uit for-
mele modellen te relateren aan de originele ontwerpen van industriéle systemen. De
aanpak wordt geillustreerd door een case study. Uit deze oplossing komt naar vo-
ren dat soortgelijke technieken een toegevoegde waarde bieden bij de validatie en de
verificatie van functioneel gedrag.

Bij uitvoering van bovenstaande modelleertechnieken observeren wij dat bij het
construeren van gedragsmodellen er steeds sprake is van een menselijke ingenui-
teit, een interpretatie of een inbreng, die mogelijk onbedoelde gedrag introduceert.
Om de menselijke invloedsfactor te reduceren, beschrijft het tweede gedeelte van het
proefschrift een structurele en semantische modelleermethode die door middel van
de formele semantiek van een taal, formele gedragsmodellen construeert.

Daarvoor beschrijven we eerst hoe het gedrag van een informele taal geformali-
seerd kan worden. Aan de hand van een casus wordt een industriéle domein speci-
fieke taal omgezet naar een Transitie Systeem Specificatie (TSS). Door de formalizatie
compositionele uit te voeren laten we zien dat deze methode geschikt is voor een in-
dustriéle taal. Daarnaast laten we zien dat een exercitie als deze ongewenst en/of
onduidelijk gedrag aan het licht brengt. Door tijdens de formalizatie wel overwogen
keuzes te maken kunnen deze problemen worden verholpen.

De tweede stap beschrijft de transformatie van een TSS naar een Lineaire Proces
Specificatie (LPS). De transformatie wordt beschreven voor deductie regels die vol-
doen aan het DeSimone formaat, inclusief predicaten. De LPSen worden beschreven
in de syntax van de mCRL2 taal, waardoor het mogelijk is om met de bijbehorende
toolset en onderliggende hogere-orde herschrijver, het bijbehorende gelabelde transi-
tie systeem te genereren of de specificatie te verifiéren.

De toepasbaarheid van de semantische methode wordt onderzocht door de formele
definitie (van het tijdloze fragment) van de mCRL2 taal te nemen en deze als input
te gebruiken voor deze methode. Door de operationele semantiek rechtstreeks te ver-
talen naar noties in de LPS, valideren wij tevens dat de beoogde semantiek en diens
implementatie overeenkomen. Ondanks de formele karakterisering, de grondige stu-
die en het brede gebruik van de taal, laat de exercitie toch een aantal (subtiele)
verschillen zien tussen de bedoeld semantiek, de gedefinieerde semantiek en de ge-
implementeerde executie van de mCRL2 taal.



Bridging Formal Models - An Engineering Perspective 291

Curriculum Vitae

Frank Stappers was born on April 24th, 1982 in Weert. In August 2000 he completed
secondary school (VWO) at the Philips van Horne Scholengemeenschap in Weert. In
September 2000 Frank started to study Computer Science at Eindhoven University
of Technology. He obtained his Master’s degree in April 2007 on his master’s thesis
entitled Modeling, Validation, Verification and Integration of models with the y-toolkit
applied in an ASML case-study.

From April 2007 Frank worked as a Ph.D. Student at the Design and Analysis of
Systems Group at the Computer Science department of the Eindhoven University of
Technology. The first three years he was involved in the TWINS: Optimizing Soft-
ware Hardware Co-design Flow for Software Intensive Systems project. In the fourth
year he moved to the Formal Methods Group at the Computer Science department
of the Eindhoven University of Technology to carry out the “Kenniswerkingsregeling”
project LithoSysSL at ASML. In the final year he returned to the Design and Analysis
of Systems Group, which was by then renamed to Model Driven Software Engineering
Group, at the Computer Science department of the Eindhoven University of Technol-
ogy to finish his thesis.



292 Curriculum Vitae



Bridging Formal Models - An Engineering Perspective

293

Titles in the IPA Dissertation Series since 2006

E. Dolstra. The Purely Functional Software Deploy-
ment Model. Faculty of Science, UU. 2006-01

R.J. Corin. Analysis Models for Security Protocols.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2006-02

PR.A. Verbaan. The Computational Complexity of
Evolving Systems. Faculty of Science, UU. 2006-03

K.L. Man and R.R.H. Schiffelers. Formal Specifi-
cation and Analysis of Hybrid Systems. Faculty of
Mathematics and Computer Science and Faculty of
Mechanical Engineering, TU/e. 2006-04

M. Kyas. Verifying OCL Specifications of UML Mod-
els: Tool Support and Compositionality. Faculty of
Mathematics and Natural Sciences, UL. 2006-05

M. Hendriks. Model Checking Timed Automata -
Techniques and Applications. Faculty of Science,
Mathematics and Computer Science, RU. 2006-06

J. Ketema. Bohm-Like Trees for Rewriting. Faculty
of Sciences, VUA. 2006-07

C.-B. Breunesse. On JML: topics in tool-assisted ver-
ification of JML programs. Faculty of Science, Math-
ematics and Computer Science, RU. 2006-08

B. Markvoort. Towards Hybrid Molecular Sim-
ulations. Faculty of Biomedical Engineering,
TU/e. 2006-09

S.G.R. Nijssen. Mining Structured Data. Faculty of
Mathematics and Natural Sciences, UL. 2006-10

G. Russello. Separation and Adaptation of Concerns
in a Shared Data Space. Faculty of Mathematics and
Computer Science, TU/e. 2006-11

L. Cheung. Reconciling Nondeterministic and Prob-
abilistic Choices. Faculty of Science, Mathematics
and Computer Science, RU. 2006-12

B. Badban. Verification techniques for Extensions
of Equality Logic. Faculty of Sciences, Division of
Mathematics and Computer Science, VUA. 2006-13

A.J. Mooij. Constructive formal methods and pro-
tocol standardization. Faculty of Mathematics and
Computer Science, TU/e. 2006-14

T. Krilavicius. Hybrid Techniques for Hybrid Sys-
tems. Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2006-15

M.E. Warnier. Language Based Security for Java
and JML. Faculty of Science, Mathematics and
Computer Science, RU. 2006-16

V. Sundramoorthy. At Home In Service Discovery.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2006-17

B. Gebremichael. Expressivity of Timed Automata
Models. Faculty of Science, Mathematics and Com-
puter Science, RU. 2006-18

L.C.M. van Gool. Formalising Interface Specifica-
tions. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2006-19

C.J.E Cremers. Scyther - Semantics and Verification
of Security Protocols. Faculty of Mathematics and
Computer Science, TU/e. 2006-20

J.V. Guillen Scholten. Mobile Channels for Exoge-
nous Coordination of Distributed Systems: Seman-
tics, Implementation and Composition. Faculty of
Mathematics and Natural Sciences, UL. 2006-21

H.A. de Jong. Flexible Heterogeneous Software Sys-
tems. Faculty of Natural Sciences, Mathematics,
and Computer Science, UVA. 2007-01

N.K. Kavaldjiev. A run-time reconfigurable
Network-on-Chip for streaming DSP applications.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2007-02

M. van Veelen. Considerations on Modeling for
Early Detection of Abnormalities in Locally Au-
tonomous Distributed Systems. Faculty of Mathe-
matics and Computing Sciences, RUG. 2007-03

T.D. Vu. Semantics and Applications of Pro-
cess and Program Algebra. Faculty of Natural
Sciences, Mathematics, and Computer Science,
UvVA. 2007-04

L. Brandan Briones. Theories for Model-based Test-
ing: Real-time and Coverage. Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
UT. 2007-05

I. Loeb. Natural Deduction: Sharing by Presenta-
tion. Faculty of Science, Mathematics and Com-
puter Science, RU. 2007-06

M.W.A. Streppel. Multifunctional Geometric Data
Structures. Faculty of Mathematics and Computer
Science, TU/e. 2007-07

N. Trcka. Silent Steps in Transition Systems and
Markov Chains. Faculty of Mathematics and Com-
puter Science, TU/e. 2007-08



R. Brinkman. Searching in encrypted data. Faculty
of Electrical Engineering, Mathematics & Computer
Science, UT. 2007-09

A. van Weelden. Putting types to good use. Fac-
ulty of Science, Mathematics and Computer Sci-
ence, RU. 2007-10

J.A.R. Noppen. Imperfect Information in Soft-
ware Development Processes. Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
UT. 2007-11

R. Boumen. Integration and Test plans for Complex
Manufacturing Systems. Faculty of Mechanical En-
gineering, TU/e. 2007-12

A.J. Wijs. What to do Next?: Analysing and Op-
timising System Behaviour in Time. Faculty of Sci-
ences, Division of Mathematics and Computer Sci-
ence, VUA. 2007-13

C.EJ. Lange. Assessing and Improving the Quality
of Modeling: A Series of Empirical Studies about the
UML. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2007-14

T. van der Storm. Component-based Configura-
tion, Integration and Delivery. Faculty of Nat-
ural Sciences, Mathematics, and Computer Sci-
ence,UVA. 2007-15

B.S. Graaf. Model-Driven Evolution of Software Ar-
chitectures. Faculty of Electrical Engineering, Math-
ematics, and Computer Science, TUD. 2007-16

A.H.J. Mathijssen. Logical Calculi for Reasoning
with Binding. Faculty of Mathematics and Com-
puter Science, TU/e. 2007-17

D. Jarnikov. QoS framework for Video Streaming in
Home Networks. Faculty of Mathematics and Com-
puter Science, TU/e. 2007-18

M. A. Abam. New Data Structures and Algorithms
for Mobile Data. Faculty of Mathematics and Com-
puter Science, TU/e. 2007-19

W. Pieters. La Volonté Machinale: Understand-
ing the Electronic Voting Controversy.  Faculty
of Science, Mathematics and Computer Science,
RU. 2008-01

A.L. de Groot. Practical Automaton Proofs in PVS.
Faculty of Science, Mathematics and Computer Sci-
ence, RU. 2008-02

M. Bruntink. Renovation of Idiomatic Crosscutting
Concerns in Embedded Systems. Faculty of Electrical
Engineering, Mathematics, and Computer Science,
TUD. 2008-03

A.M. Marin. An Integrated System to Manage Cross-
cutting Concerns in Source Code. Faculty of Electri-
cal Engineering, Mathematics, and Computer Sci-
ence, TUD. 2008-04

N.C.W.M. Braspenning. Model-based Integration
and Testing of High-tech Multi-disciplinary Systems.
Faculty of Mechanical Engineering, TU/e. 2008-05

M. Bravenboer. Exercises in Free Syntax: Syntax
Definition, Parsing, and Assimilation of Language
Conglomerates. Faculty of Science, UU. 2008-06

M. Torabi Dashti. Keeping Fairness Alive: Design
and Formal Verification of Optimistic Fair Exchange
Protocols. Faculty of Sciences, Division of Mathe-
matics and Computer Science, VUA. 2008-07

L.S.M. de Jong. Integration and Test Strategies for
Complex Manufacturing Machines. Faculty of Me-
chanical Engineering, TU/e. 2008-08

1. Hasuo. Tracing Anonymity with Coalgebras. Fac-
ulty of Science, Mathematics and Computer Sci-
ence, RU. 2008-09

L.G.W.A. Cleophas. Tree Algorithms: Two Tax-
onomies and a Toolkit. Faculty of Mathematics and
Computer Science, TU/e. 2008-10

I.S. Zapreev. Model Checking Markov Chains: Tech-
niques and Tools. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2008-11

M. Farshi. A Theoretical and Experimental Study of
Geometric Networks. Faculty of Mathematics and
Computer Science, TU/e. 2008-12

G. Gulesir. Evolvable Behavior Specifications Us-
ing Context-Sensitive Wildcards. Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
UT. 2008-13

ED. Garcia. Formal and Computational Cryptogra-
phy: Protocols, Hashes and Commitments. Faculty
of Science, Mathematics and Computer Science,
RU. 2008-14

P E. A. Diirr. Resource-based Verification for Ro-
bust Composition of Aspects. Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
UT. 2008-15

E.M. Bortnik. Formal Methods in Support of
SMC Design. Faculty of Mechanical Engineering,
TU/e. 2008-16

R.H. Mak. Design and Performance Analysis
of Data-Independent Stream Processing Systems.
Faculty of Mathematics and Computer Science,
TU/e. 2008-17



M. van der Horst. Scalable Block Processing Algo-
rithms. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2008-18

C.M. Gray. Algorithms for Fat Objects: Decomposi-
tions and Applications. Faculty of Mathematics and
Computer Science, TU/e. 2008-19

J.R. Calamé. Testing Reactive Systems with Data -
Enumerative Methods and Constraint Solving. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2008-20

E. Mumford. Drawing Graphs for Cartographic Ap-
plications. Faculty of Mathematics and Computer
Science, TU/e. 2008-21

E.H. de Graaf. Mining Semi-structured Data, The-
oretical and Experimental Aspects of Pattern Evalua-
tion. Faculty of Mathematics and Natural Sciences,
UL. 2008-22

R. Brijder. Models of Natural Computation: Gene
Assembly and Membrane Systems. Faculty of Math-
ematics and Natural Sciences, UL. 2008-23

A. Koprowski. Termination of Rewriting and Its Cer-
tification. Faculty of Mathematics and Computer
Science, TU/e. 2008-24

U. Khadim. Process Algebras for Hybrid Systems:
Comparison and Development. Faculty of Mathe-
matics and Computer Science, TU/e. 2008-25

J. Markovski. Real and Stochastic Time in Pro-
cess Algebras for Performance Evaluation. Fac-
ulty of Mathematics and Computer Science,
TU/e. 2008-26

H. Kastenberg. Graph-Based Software Specification
and Verification. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2008-27

LR. Buhan. Cryptographic Keys from Noisy Data
Theory and Applications.  Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT. 2008-28

R.S. Marin-Perianu. Wireless Sensor Networks in
Motion: Clustering Algorithms for Service Discovery
and Provisioning. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2008-29

M.H.G. Verhoef. Modeling and Validating Dis-
tributed Embedded Real-Time Control Systems. Fac-
ulty of Science, Mathematics and Computer Sci-
ence, RU. 2009-01

M. de Mol. Reasoning about Functional Pro-
grams: Sparkle, a proof assistant for Clean. Fac-
ulty of Science, Mathematics and Computer Sci-
ence, RU. 2009-02

M. Lormans. Managing Requirements Evolution.
Faculty of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2009-03

M.PWJ. van Osch. Automated Model-based Test-
ing of Hybrid Systems. Faculty of Mathematics and
Computer Science, TU/e. 2009-04

H. Sozer. Architecting Fault-Tolerant Software Sys-
tems. Faculty of Electrical Engineering, Mathemat-
ics & Computer Science, UT. 2009-05

M.J. van Weerdenburg. Efficient Rewriting Tech-
niques. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2009-06

H.H. Hansen. Coalgebraic Modelling: Applications
in Automata Theory and Modal Logic. Faculty of Sci-
ences, Division of Mathematics and Computer Sci-
ence, VUA. 2009-07

A. Mesbah. Analysis and Testing of Ajax-based
Single-page Web Applications. Faculty of Electrical
Engineering, Mathematics, and Computer Science,
TUD. 2009-08

A.L. Rodriguez Yakushev. Towards Getting Generic
Programming Ready for Prime Time. Faculty of Sci-
ence, UU. 2009-9

K.R. Olmos Joffré. Strategies for Context Sensi-
tive Program Transformation. Faculty of Science,
UU. 2009-10

J.A.G.M. van den Berg. Reasoning about Java pro-
grams in PVS using JML. Faculty of Science, Mathe-
matics and Computer Science, RU. 2009-11

M.G. Khatib. MEMS-Based Storage Devices. Integra-
tion in Energy-Constrained Mobile Systems. Faculty
of Electrical Engineering, Mathematics & Computer
Science, UT. 2009-12

S.G.M. Cornelissen. Evaluating Dynamic Analy-
sis Techniques for Program Comprehension. Faculty
of Electrical Engineering, Mathematics, and Com-
puter Science, TUD. 2009-13

D. Bolzoni. Revisiting Anomaly-based Network In-
trusion Detection Systems. Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT. 2009-14

H.L. Jonker. Security Matters: Privacy in Voting
and Fairness in Digital Exchange. Faculty of Mathe-
matics and Computer Science, TU/e. 2009-15

M.R. Czenko. TuLiP - Reshaping Trust Management.
Faculty of Electrical Engineering, Mathematics &
Computer Science, UT. 2009-16



T. Chen. Clocks, Dice and Processes. Faculty of Sci-
ences, Division of Mathematics and Computer Sci-
ence, VUA. 2009-17

C. Kaliszyk. Correctness and Availability: Build-
ing Computer Algebra on top of Proof Assistants and
making Proof Assistants available over the Web. Fac-
ulty of Science, Mathematics and Computer Sci-
ence, RU. 2009-18

R.S.S. O’Connor. Incompleteness & Completeness:
Formalizing Logic and Analysis in Type Theory. Fac-
ulty of Science, Mathematics and Computer Sci-
ence, RU. 2009-19

B. Ploeger. Improved Verification Methods for Con-
current Systems. Faculty of Mathematics and Com-
puter Science, TU/e. 2009-20

T. Han. Diagnosis, Synthesis and Analysis of Prob-
abilistic Models. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2009-21

R. Li. Mixed-Integer Evolution Strategies for Param-
eter Optimization and Their Applications to Medical
Image Analysis. Faculty of Mathematics and Natu-
ral Sciences, UL. 2009-22

J.H.P Kwisthout. The Computational Complex-
ity of Probabilistic Networks. Faculty of Science,
UU. 2009-23

T.K. Cocx. Algorithmic Tools for Data-Oriented Law
Enforcement. Faculty of Mathematics and Natural
Sciences, UL. 2009-24

AL Baars. Embedded Compilers. Faculty of Sci-
ence, UU. 2009-25

M.A.C. Dekker. Flexible Access Control for Dy-
namic Collaborative Environments. Faculty of Elec-
trical Engineering, Mathematics & Computer Sci-
ence, UT. 2009-26

J.EJ. Laros. Metrics and Visualisation for Crime
Analysis and Genomics. Faculty of Mathematics and
Natural Sciences, UL. 2009-27

C.J. Boogerd. Focusing Automatic Code Inspections.
Faculty of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2010-01

M.R. NeuhéuRer. Model Checking Nondeterminis-
tic and Randomly Timed Systems. Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
UT. 2010-02

J. Endrullis. Termination and Productivity. Faculty
of Sciences, Division of Mathematics and Computer
Science, VUA. 2010-03

T. Staijen. Graph-Based Specification and Verifica-
tion for Aspect-Oriented Languages. Faculty of Elec-
trical Engineering, Mathematics & Computer Sci-
ence, UT. 2010-04

Y. Wang. Epistemic Modelling and Protocol Dynam-
ics. Faculty of Science, UvA. 2010-05

J.K. Berendsen. Abstraction, Prices and Probabil-
ity in Model Checking Timed Automata. Faculty
of Science, Mathematics and Computer Science,
RU. 2010-06

A. Nugroho. The Effects of UML Modeling on the
Quality of Software. Faculty of Mathematics and
Natural Sciences, UL. 2010-07

A. Silva. Kleene Coalgebra. Faculty of Science,
Mathematics and Computer Science, RU. 2010-08

J.S. de Bruin. Service-Oriented Discovery of Knowl-
edge - Foundations, Implementations and Applica-
tions. Faculty of Mathematics and Natural Sciences,
UL. 2010-09

D. Costa. Formal Models for Component Connec-
tors. Faculty of Sciences, Division of Mathematics
and Computer Science, VUA. 2010-10

M.M. Jaghoori. Time at Your Service: Schedu-
lability Analysis of Real-Time and Distributed Ser-
vices. Faculty of Mathematics and Natural Sciences,
UL. 2010-11

R. Bakhshi. Gossiping Models: Formal Analysis of
Epidemic Protocols. Faculty of Sciences, Depart-
ment of Computer Science, VUA. 2011-01

B.J. Arnoldus. An Illumination of the Template
Enigma: Software Code Generation with Templates.
Faculty of Mathematics and Computer Science,
TU/e. 2011-02

E. Zambon. Towards Optimal IT Availability Plan-
ning: Methods and Tools. Faculty of Electrical
Engineering, Mathematics & Computer Science,
UT. 2011-03

L. Astefanoaei. An Executable Theory of Multi-
Agent Systems Refinement. Faculty of Mathematics
and Natural Sciences, UL. 2011-04

J. Proenca. Synchronous coordination of distributed
components. Faculty of Mathematics and Natural
Sciences, UL. 2011-05

A. Morali. IT Architecture-Based Confidentiality
Risk Assessment in Networks of Organizations. Fac-
ulty of Electrical Engineering, Mathematics & Com-
puter Science, UT. 2011-06



M. van der Bijl. On changing models in Model-
Based Testing. Faculty of Electrical Engineering,
Mathematics & Computer Science, UT. 2011-07

C. Krause. Reconfigurable Component Connec-
tors. Faculty of Mathematics and Natural Sciences,
UL. 2011-08

M.E. Andrés. Quantitative Analysis of Information
Leakage in Probabilistic and Nondeterministic Sys-
tems. Faculty of Science, Mathematics and Com-
puter Science, RU. 2011-09

M. Atif. Formal Modeling and Verification of Dis-
tributed Failure Detectors. Faculty of Mathematics
and Computer Science, TU/e. 2011-10

PJ.A. van Tilburg. From Computability to Exe-
cutability — A process-theoretic view on automata
theory. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2011-11

Z. Protic. Configuration management for models:
Generic methods for model comparison and model
co-evolution. Faculty of Mathematics and Computer
Science, TU/e. 2011-12

S. Georgievska. Probability and Hiding in Concur-
rent Processes. Faculty of Mathematics and Com-
puter Science, TU/e. 2011-13

S. Malakuti. Event Composition Model: Achiev-
ing Naturalness in Runtime Enforcement. Faculty
of Electrical Engineering, Mathematics & Computer
Science, UT. 2011-14

M. Raffelsieper. Cell Libraries and Verification.
Faculty of Mathematics and Computer Science,
TU/e. 2011-15

C.P. Tsirogiannis. Analysis of Flow and Visibility on
Triangulated Terrains. Faculty of Mathematics and
Computer Science, TU/e. 2011-16

Y.-J. Moon. Stochastic Models for Quality of Service
of Component Connectors. Faculty of Mathematics
and Natural Sciences, UL. 2011-17

R. Middelkoop. Capturing and Exploiting Abstract
Views of States in OO Verification. Faculty of Math-
ematics and Computer Science, TU/e. 2011-18

M.E van Amstel. Assessing and Improving the Qual-
ity of Model Transformations. Faculty of Mathemat-
ics and Computer Science, TU/e. 2011-19

AN. Tamalet. Towards Correct Programs in Prac-
tice. Faculty of Science, Mathematics and Com-
puter Science, RU. 2011-20

H.J.S. Basten. Ambiguity Detection for Program-
ming Language Grammars. Faculty of Science,
UvA. 2011-21

M. Izadi. Model Checking of Component Connec-
tors. Faculty of Mathematics and Natural Sciences,
UL. 2011-22

L.C.L. Kats. Building Blocks for Language Work-
benches. Faculty of Electrical Engineering, Math-
ematics, and Computer Science, TUD. 2011-23

S. Kemper. Modelling and Analysis of Real-Time
Coordination Patterns. Faculty of Mathematics and
Natural Sciences, UL. 2011-24

J. Wang. Spiking Neural P Systems. Faculty of
Mathematics and Natural Sciences, UL. 2011-25

A. Khosravi. Optimal Geometric Data Structures.
Faculty of Mathematics and Computer Science,
TU/e. 2012-01

A. Middelkoop. Inference of Program Properties
with Attribute Grammars, Revisited. Faculty of Sci-
ence, UU. 2012-02

Z. Hemel. Methods and Techniques for the Design
and Implementation of Domain-Specific Languages.
Faculty of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2012-03

T. Dimkov. Alignment of Organizational Security
Policies: Theory and Practice. Faculty of Electri-
cal Engineering, Mathematics & Computer Science,
UT. 2012-04

S. Sedghi. Towards Provably Secure Efficiently
Searchable Encryption. Faculty of Electrical En-
gineering, Mathematics & Computer Science,
UT. 2012-05

E Heidarian Dehkordi. Studies on Verification of
Wireless Sensor Networks and Abstraction Learning
for System Inference. Faculty of Science, Mathemat-
ics and Computer Science, RU. 2012-06

K. Verbeek. Algorithms for Cartographic Visualiza-
tion. Faculty of Mathematics and Computer Sci-
ence, TU/e. 2012-07

D.E. Nadales Agut. A Compositional Interchange
Format for Hybrid Systems: Design and Imple-
mentation. Faculty of Mechanical Engineering,
TU/e. 2012-08

H. Rahmani. Analysis of Protein-Protein Interaction
Networks by Means of Annotated Graph Mining Al-
gorithms. Faculty of Mathematics and Natural Sci-
ences, UL. 2012-09



S.D. Vermolen. Software Language Evolution. Fac-
ulty of Electrical Engineering, Mathematics, and
Computer Science, TUD. 2012-10

L.J.P Engelen. From Napkin Sketches to Reliable
Software. Faculty of Mathematics and Computer

Science, TU/e. 2012-11

EPM. Stappers. Bridging Formal Models — An En-
gineering Perspective. Faculty of Mathematics and
Computer Science, TU/e. 2012-12



	Acknowledgments
	Contents
	List of Figures
	List of Tables
	1. Introduction
	2. Preliminaries
	3. Modeling System Descriptions
	4. Modeling Implementations
	5. Modeling Specification Languages
	6. Disseminating Verification Results
	7. Formalizing a Behavioral Language
	8. Defining a Semantic Bridge
	9. Applying the Semantic Bridge
	10. A Reflection on the Semantic Bridge
	11. Conclusions
	Appendices
	Bibliography
	Summary
	Samenvatting
	Curriculum Vitae

