832 research outputs found

    EMPIRICAL COMPARISON OF METHODS FOR THE HIERARCHICAL PROPAGATION OF HYBRID UNCERTAINTY IN RISK ASSESSMENT, IN PRESENCE OF DEPENDENCES

    No full text
    Risk analysis models describing aleatory (i.e., random) events contain parameters (e.g., probabilities, failure rates, ...) that are epistemically-uncertain, i.e., known with poor precision. Whereas aleatory uncertainty is always described by probability distributions, epistemic uncertainty may be represented in different ways (e.g., probabilistic or possibilistic), depending on the information and data available. The work presented in this paper addresses the issue of accounting for (in)dependence relationships between epistemically-uncertain parameters. When a probabilistic representation of epistemic uncertainty is considered, uncertainty propagation is carried out by a two-dimensional (or double) Monte Carlo (MC) simulation approach; instead, when possibility distributions are used, two approaches are undertaken: the hybrid MC and Fuzzy Interval Analysis (FIA) method and the MC-based Dempster-Shafer (DS) approach employing Independent Random Sets (IRSs). The objectives are: i) studying the effects of (in)dependence between the epistemically-uncertain parameters of the aleatory probability distributions (when a probabilistic/possibilistic representation of epistemic uncertainty is adopted) and ii) studying the effect of the probabilistic/possibilistic representation of epistemic uncertainty (when the state of dependence between the epistemic parameters is defined). The Dependency Bound Convolution (DBC) approach is then undertaken within a hierarchical setting of hybrid (probabilistic and possibilistic) uncertainty propagation, in order to account for all kinds of (possibly unknown) dependences between the random variables. The analyses are carried out with reference to two toy examples, built in such a way to allow performing a fair quantitative comparison between the methods, and evaluating their rationale and appropriateness in relation to risk analysis

    CBR and MBR techniques: review for an application in the emergencies domain

    Get PDF
    The purpose of this document is to provide an in-depth analysis of current reasoning engine practice and the integration strategies of Case Based Reasoning and Model Based Reasoning that will be used in the design and development of the RIMSAT system. RIMSAT (Remote Intelligent Management Support and Training) is a European Commission funded project designed to: a.. Provide an innovative, 'intelligent', knowledge based solution aimed at improving the quality of critical decisions b.. Enhance the competencies and responsiveness of individuals and organisations involved in highly complex, safety critical incidents - irrespective of their location. In other words, RIMSAT aims to design and implement a decision support system that using Case Base Reasoning as well as Model Base Reasoning technology is applied in the management of emergency situations. This document is part of a deliverable for RIMSAT project, and although it has been done in close contact with the requirements of the project, it provides an overview wide enough for providing a state of the art in integration strategies between CBR and MBR technologies.Postprint (published version

    Complexity and the Economics of Climate Change: a Survey and a Look Forward

    Get PDF
    URL des Documents de travail : http://ces.univ-paris1.fr/cesdp/cesdp2016.htmlDocuments de travail du Centre d'Economie de la Sorbonne 2016.58 - ISSN : 1955-611XWe provide a survey of the micro and macro economics of climate change from a complexity science perspective and we discuss the challenges ahead for this line of research. We identify four areas of the literature where complex system models have already produced valuable insights: (i) coalition formation and climate negotiations, (ii) macroeconomic impacts of climate-related events, (iii) energy markets and (iv) diffusion of climate-friendly technologies. On each of these issues, accounting for heterogeneity, interactions and disequilibrium dynamics provides a complementary and novel perspective to the one of standard equilibrium models. Furthermore, it highlights the potential economic benefits of mitigation and adaptation policies and the risk of under-estimating systemic climate change-related risks

    Improving resilience in Critical Infrastructures through learning from past events

    Get PDF
    Modern societies are increasingly dependent on the proper functioning of Critical Infrastructures (CIs). CIs produce and distribute essential goods or services, as for power transmission systems, water treatment and distribution infrastructures, transportation systems, communication networks, nuclear power plants, and information technologies. Being resilient, where resilience denotes the capacity of a system to recover from challenges or disruptive events, becomes a key property for CIs, which are constantly exposed to threats that can undermine safety, security, and business continuity. Nowadays, a variety of approaches exists in the context of CIs’ resilience research. This dissertation starts with a systematic review based on PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) on the approaches that have a complete qualitative dimension, or that can be used as entry points for semi-quantitative analyses. The review identifies four principal dimensions of resilience referred to CIs (i.e., techno-centric, organizational, community, and urban) and discusses the related qualitative or semi-quantitative methods. The scope of the thesis emphasizes the organizational dimension, as a socio-technical construct. Accordingly, the following research question has been posed: how can learning improve resilience in an organization? Firstly, the benefits of learning in a particular CI, i.e. the supply chain in reverse logistics related to the small arms utilized by Italian Armed Forces, have been studied. Following the theory of Learning From Incidents, the theoretical model helped to elaborate a centralized information management system for the Supply Chain Management of small arms within a Business Intelligence (BI) framework, which can be the basis for an effective decision-making process, capable of increasing the systemic resilience of the supply chain itself. Secondly, the research question has been extended to another extremely topical context, i.e. the Emergency Management (EM), exploring the crisis induced learning where single-loop and double-loop learning cycles can be established regarding the behavioral perspective. Specifically, the former refers to the correction of practices within organizational plans without changing core beliefs and fundamental rules of the organization, while the latter aims at resolving incompatible organizational behavior by restructuring the norms themselves together with the associated practices or assumptions. Consequently, with the aim of ensuring high EM systems resilience, and effective single-loop and double-loop crisis induced learning at organizational level, the study examined learning opportunities that emerge through the exploration of adaptive practices necessary to face the complexity of a socio-technical work domain as the EM of Covid-19 outbreaks on Oil & Gas platforms. Both qualitative and quantitative approaches have been adopted to analyze the resilience of this specific socio-technical system. On this consciousness, with the intention to explore systems theoretic possibilities to model the EM system, the Functional Resonance Analysis Method (FRAM) has been proposed as a qualitative method for developing a systematic understanding of adaptive practices, modelling planning and resilient behaviors and ultimately supporting crisis induced learning. After the FRAM analysis, the same EM system has also been studied adopting a Bayesian Network (BN) to quantify resilience potentials of an EM procedure resulting from the adaptive practices and lessons learned by an EM organization. While the study of CIs is still an open and challenging topic, this dissertation provides methodologies and running examples on how systemic approaches may support data-driven learning to ultimately improve organizational resilience. These results, possibly extended with future research drivers, are expected to support decision-makers in their tactical and operational endeavors

    Consciosusness in Cognitive Architectures. A Principled Analysis of RCS, Soar and ACT-R

    Get PDF
    This report analyses the aplicability of the principles of consciousness developed in the ASys project to three of the most relevant cognitive architectures. This is done in relation to their aplicability to build integrated control systems and studying their support for general mechanisms of real-time consciousness.\ud To analyse these architectures the ASys Framework is employed. This is a conceptual framework based on an extension for cognitive autonomous systems of the General Systems Theory (GST).\ud A general qualitative evaluation criteria for cognitive architectures is established based upon: a) requirements for a cognitive architecture, b) the theoretical framework based on the GST and c) core design principles for integrated cognitive conscious control systems

    Complexity and the Economics of Climate Change: A Survey and a Look Forward

    Get PDF
    Climate change is one of the most daunting challenges human kind has ever faced. In the paper, we provide a survey of the micro and macro economics of climate change from a complexity science perspective and we discuss the challenges ahead for this line of research. We identify four areas of the literature where complex system models have already produced valuable insights: (i) coalition formation and climate negotiations, (ii) macroeconomic impacts of climate-related events, (iii) energy markets and (iv) diffusion of climatefriendly technologies. On each of these issues, accounting for heterogeneity, interactions and disequilibrium dynamics provides a complementary and novel perspective to the one of standard equilibrium models. Furthermore, it highlights the potential economic benefits of mitigation and adaptation policies and the risk of under-estimating systemic climate change-related risks

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    The Econometrics of Bayesian Graphical Models: A Review With Financial Application

    Get PDF
    Recent advances in empirical finance has shown that the adoption of network theory is critical to understand contagion and systemic vulnerabilities. While interdependencies among financial markets have been widely examined, only few studies review networks, however, they do not focus on the econometrics aspects. This paper presents a state-of-the-art review on the interface between statistics and econometrics in the inference and application of Bayesian graphical models. We specifically highlight the connections and possible applications of network models in financial econometrics, in the context of systemic risk
    • …
    corecore