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ABSTRACT

Recent advances in empirical finance have shown that the adoption of network theory
is critical in order to understand contagion and systemic vulnerabilities. While inter-
dependencies among financial markets have been widely examined, only a few stud-
ies review networks, and they do not focus on the econometrics aspects. This paper
presents a state-of-the-art review on the interface between statistics and economet-
rics in the inference and application of Bayesian graphical models. We specifically
highlight the connections and possible applications of network models in financial
econometrics in the context of systemic risk.

Keywords: Bayesian inference; graphical models; model selection; systemic risk; financial crisis.

1 INTRODUCTION

The global financial crisis has prompted new research interests to understand the
structure of the financial system and risk propagation channels. In order to provide a
framework for strengthening financial stability, policymakers are currently not only
refining the regulatory and institutional setup, but also looking for analytical tools to
identify, monitor and address systemic risk better. According to Bernanke (2010) and
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the Financial Crisis Inquiry Commission (2011), the global financial crisis was trig-
gered by losses suffered by holders of subprime mortgages, and amplified by financial
system vulnerabilities. They pointed out that in the absence of the systemic vulner-
abilities, the triggers might produce sizable losses to certain firms, investors or asset
classes, but generally they would not lead to a global recession. Many authors have
found the complex connections in financial markets to have been the vulnerabilities
that magnified the initial shocks of the crisis (see, for example, Acemoglu et al 2015;
Battiston et al 2012; Billio et al 2012; Diebold and Yilmaz 2014; Gai et al 2011).

Network analysis has proven to be a promising tool for understanding the systemic
vulnerabilities. It studies the interconnectedness among financial markets and the
macroeconomy. The novelty of network analyses in this domain is crucial to model
the complex connections in the financial system through information from network
structure, density, homophily and centralities (Jackson 2014). While interconnected-
ness and contagion have been widely studied, only a few studies review networks,
and they do not focus on the econometrics aspects (see Dornbusch et al (2000), Peri-
coli and Sbracia (2003) and Dungey et al (2005) for a review of financial contagion
models). This study contributes to the literature on network econometrics. In partic-
ular, it presents a state-of-the-art review on the inference and possible applications of
networks in financial econometrics in the context of systemic risk.

Many techniques for network modeling have been developed in statistics and social
network literature. The common class of models includes the following: exponential
random graph models (Frank and Strauss 1986; Holland and Leinhardt 1981), stochas-
tic block models (Nowicki and Snijders 2001; Wang and Wong 1987) and latent space
models (Handcock et al 2007; Hoff et al 2002). For a review of statistical models for
social networks, see Kolaczyk (2009), Goldenberg et al (2010), Snijders (2011) and
Kolaczyk and Csardi (2014).

In most applications of social networks, the network is assumed to be known
and is considered as the observed data. However, in the systemic risk literature, the
role of interconnectedness in the risk-propagation process crucially depends on the
network structure, which is generally unknown. Much of the earlier work on contagion
has focused on interconnectedness arising from actual exposures among institutions,
based on either balance sheet information or other financial market data. There is
relatively little empirical work on the former, largely because of problems of balance
sheet data accessibility. However, several studies have focused on the latter in order to
understand sources of contagion and spillovers (Ahelegbey ef al 2016; Barigozzi and
Brownlees 2016; Billio e al 2012; Diebold and Yilmaz 2014). Although market data
is readily available these days, inferring networks from observed data is characterized
by uncertainty and highly complex structures.

Relationships among many real-world phenomenons are often more complex than
pairwise. It is well known that interring networks from data is a model determination
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problem in which the number of candidates increases super-exponentially with the
number of variables (Chickering et al 2004). Therefore, applying standard techniques,
such as Granger causality (Granger 1969), to identify a single model from this set
of candidates often ignores the problem of model uncertainty. Also, such techniques
are unable to distinguish between direct and mediated causes. Here, we present an
overview of the Bayesian approach to network identification. This method takes into
account network uncertainty by allowing us to incorporate prior information, where
necessary, and perform model averaging (see Heckerman et al 1995). The approach
discussed in this paper is closely related to the literature on Gaussian graphical models
for time series (Carvalho and West 2007; Carvalho et al 2007; Dahlhaus and Eichler
2003). It is also related to Eichler (2007) and Zou and Feng (2009), who present the
network techniques as a valid alternative to the Granger concept for causal identifi-
cation and its extensions in the econometrics literature (Diks and Panchenko 2005;
Hoover 2001).

We demonstrate the effectiveness of the Bayesian method in identifying intercon-
nectedness among both the major financial sectors in the US, using the monthly
returns indexes of Billio et al (2012), and the daily volatilities of the super-sectors
of the European stock market. The results on the returns network corroborate the
findings of Billio et al (2012), with evidence of higher connectedness between 2001
and 2008 and insurance companies being central to the spread of risk in the US finan-
cial market during the subperiod leading to the global financial crisis. The volatility
network shows that banks and insurance companies are central to the spread of the
“fear connectedness” (Diebold and Yilmaz 2014) expressed by market participants in
the financial sector of the euro area.

This paper proceeds as follows. We review network applications from a statistical
perspective in Section 2 and the literature on financial networks for systemic risk in
Section 3. In Section 4, we relate network models to multivariate analysis and present
possible applications in financial econometrics. We then discuss the Bayesian network
inference in Section 5. In Section 6, we illustrate the effectiveness of the Bayesian
network inference in analyzing the return and volatility connectedness of financial
time series.

2 A REVIEW OF GRAPHICAL MODELS

Graphical modeling is a class of multivariate analysis that uses graphs to represent
statistical models. They are represented by (G, 0) € (4 x @), where G is a network,
0 is the model parameters, § is the space of graphs and @ is the parameter space.
A graph G = (V, E) is defined in terms of a set V' of vertices or nodes (variables)
joined by a set E of edges or links (interactions). We introduce the essential concepts of
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graphical models and review the developments in statistical inference and application
of Bayesian network models.

2.1 Basic terminologies

A graph with undirected edge interactions between variables is an “undirected graph”
(or “Markov network™). These graphs produce a class of models commonly known
as undirected graphical models, which are more suitable for analyzing similarity and
correlated behaviors among variables (see Koller and Friedman 2009; Meinshausen
and Biihlmann 2006; Wainwright and Jordan 2008).

A graph with directed edge interactions between variables is a “directed graph”
and a directed graph without cycles is a “directed acyclic graph” (DAG). DAGs are
typically based on the concept of family ordering. For instance, in A — B — C,
A is a parent of B, and C is a child of B; A and B are ancestors of C, and B and C
are descendants of A. C — A is illegal, since a descendant cannot be his or her own
ancestor. This type of ordering is suitable for expressing causal relationships. These
graphs produce a class of models referred to as Bayesian networks (see, for example,
Ghahramani 1998; Heckerman et al 1995; Neapolitan 2004).

A partially directed acyclic graph (or chain graph) is a type of DAG that allows
bidirected edges. These graphs are suitable for applications in which a unique direction
of influence cannot be ascribed to interactions among some variables. They represent
a class of Markov equivalent DAGs. Two or more DAGs are said to be Markov
equivalent if they depict the same set of conditional independence relationships. For
example, A - B — C,A < B — Cand A <— B <— C are Markov equivalent, since
they all represent the conditional independence of A and C, given B (see Andersson
et al 1997; Gillispie and Perlman 2001; Pearl 2000).

A bipartite graph is an undirected graph in which variables are categorized into
two sets, such that nodes in one set can only interact with those in the other set, and
no two nodes in the same set are connected. This type of graph belongs to the class
of color graphs, in which each variable is assigned a color such that no edge con-
nects identically colored nodes. Thus, a bipartite graph is equivalent to a two-colored
graph. A factor graph is a bipartite graph with nodes categorized into variables and
factors, which are represented by different shapes. Variable nodes are often repre-
sented by circles, and factor nodes are often represented by squares (see Asratian
1998; Kschischang et al 2001; Zha et al 2001).

A weighted graph is one that has a numeric value (weights) associated with each
edge. A graph is complete if all vertices are connected. A clique is a subset of vertices
that are completely connected. Let V' be the set of vertices and Vo C V; then,
G is defined as a subgraph on nodes in V. The triple (Va, Vg, Vc) € V forms a
decomposition of a graph G if V = V), U Vg U V¢ and Vo = V N Vg, such that
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Gc is complete and separates G and Gg. The subgraph G is called a separator. The
decomposition is proper if V5 # @ and Vg # @. A sequence of subgraphs that cannot
be further properly decomposed are the prime components of a graph. A graph is
decomposable if it is complete, or if every prime component is complete (see Giudici
and Green 1999; Koller and Friedman 2009; Wainwright and Jordan 2008).

2.2 Statistical inference

Statistical inference of the graph structure is central to the model estimation. The
common methods are (i) the constraint-based approach, (ii) the score-based approach
and (iii) the hybrid approach.

2.2.1 Constraint-based approach

The constraint-based approach to graph selection involves the use of statistical tests
to identify conditional independence relationships among variables. The outcomes
of these tests are used to constrain the graph selection process to estimate the most
plausible graph that is consistent with those constraints obtained. The most widely
applied constraint-based inference is the PC algorithm, based on Fisher’s z-transform
(see Spirtes et al 2000; Verma and Pearl 1991).

2.2.2 Score-based approach

Score-based approaches are typically based on assigning a score to each candidate
graph. The score represents the goodness-of-fit of the graph given the data. This
approach involves a search over the set of candidates that minimizes a penalized
likelihood score. Another aspect of this approach is Bayesian in nature: it usually
involves priors and posterior computations, taking advantage of model averaging
to address the model uncertainty problem. Examples of such algorithms are greedy
search, simulated annealing and Markov chain Monte Carlo (MCMC) (Friedman and
Koller 2003; Giudici and Green 1999; Madigan and York 1995).

2.2.3 Hybrid approach

The hybrid approach combines techniques from the constraint-based and score-based
inferences for graph selection. Methods based on this approach are designed to adopt
constraint-based reasoning as an initial step to restrict the search space for the appli-
cation of the score-based scheme. An example of this is the Max-Min Hill-Climbing
algorithm (Tsamardinos et al 2006). Regularization methods such as the least abso-
lute shrinkage and selection operator (LASSO) and its variants are also hybrid meth-
ods (Banerjee et al 2008; Friedman et al 2008; Meinshausen and Biihlmann 2006;
Tibshirani 1996).

www.risk.net/journal Journal of Network Theory in Finance
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2.3 Applications and developments in Bayesian network models

Graphical models have contributed to modeling challenging and complex real-world
phenomenons in several fields. They have been applied in forensic science as tools
to aid in reasoning under uncertainty. For example, Bayesian networks have been
identified as a suitable tool for analyzing evidence in complex legal and criminal
cases (Dawid 2003; Wright 2007).

The study of gene interactions has become increasingly important because such
information can be used as a basis for treating and diagnosing diseases, which con-
tributes to our understanding of biological processes. Several researchers have applied
graphical models to analyze gene interactions in detecting conditional dependencies
(Friedman et al 2000; Hensman et al 2013). Several authors studied change points and
time-varying interactions (see Grzegorczyk et al 2011; Lebre et al 2010; Robinson
and Hartemink 2009).

The observation that gene data is typically characterized by heavy tails or out-
liers has motivated research on high-dimensional gene expressions by relaxing the
assumption of normality. The active research in this area focuses on non-normality and
outliers (Miyamura and Kano 2006; Vogel and Fried 2011) and non-paranormal dis-
tributions (nonparametric or semi-parametric models) to allow for mixed data (binary,
ordinal or continuous) (see Teramoto et al 2014; Zhao et al 2012). Many studies have
considered applications in which conditional distributions assume different probabil-
ity models, such as Bernoulli, multinomial, Poisson and exponential families (Hofling
and Tibshirani 2009; Ravikumar et al 2010).

Studies in biological networks have revealed the complex hierarchical structures
of cellular processes, which pose a challenge to researchers. An active focus in this
area is designing algorithms to detect hierarchical modularity (Hao et al 2012; Ravasz
2009), latent variables (Choi et al 2011; Liu and Willsky 2013) and hubs (Akavia et al
2010; Tan et al 2014).

Graphical models have been applied in areas such as image processing, speech
and handwriting recognition, which often exhibit regularities, even though they are
characterized by uncertainty. Such models have been applied to acquire a structural
representation of the patterns in these phenomenons. Many researchers have devel-
oped state-of-the-art algorithms to track structural patterns in these domains (Bishop
2006; Koller and Friedman 2009; Murphy 2012).

Many real-world systems are too complex and complicated for humans to learn
from. Machine learning has therefore become necessary to help identify the patterns
in such systems. Graphical models provide a suitable framework to represent the
relationships in such patterns. Developing large-scale algorithms for big data and high-
dimensional problems has increasingly become a great concern in machine learning
and statistics. A common approach to network inference is a centralized learning

Journal of Network Theory in Finance www.risk.net/journal
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algorithm, which is often hindered by restrictive resource constraints such as limited
local computing, limited memory and expensive computational power. An active area
of research in this domain is development of a decentralized system of distributed
algorithms for high-dimensional problems (Liu and Ihler 2012; Meng et al 2013).

Graphical models have become more advanced in multivariate analysis, specif-
ically with regard to multiple regression problems. To deal with high-dimensional
problems, parsimony of the model is critical in achieving reasonable performances
with a limited sample size. Different research directions have been considered for
building a parsimonious model. Several authors have approached the problem by
considering sparsity (Fan and Peng 2004; Yuan and Lin 2006). Others considered the
reduced-rank approach (Bunea et al 2011; Chen et al 2013), while some investigated
the sparse reduced-rank approach (Chen and Huang 2012; Lian et al 2015).

3 NETWORK ASPECT OF SYSTEMIC RISK

Systemic risk, as defined by Billio et al (2012), is “any set of circumstances that
threatens the stability or public confidence in the financial system”. The European
Central Bank (ECB) defines it as a risk of financial instability “so widespread that
it impairs the functioning of a financial system to the point where economic growth
and welfare suffer materially”. A comprehensive review of systemic risk is given in
De Bandt and Hartmann (2000), Acharya et al (2010) and Brunnermeier and Oehmke
(2012). Several authors have come to the same conclusion that the likelihood of major
systemic crisis is related to

(1) the degree of correlation among the holdings of financial institutions,
(2) how sensitive they are to changes in market prices and economic conditions,
(3) how concentrated the risks are among those financial institutions,

(4) how closely linked they are with each other and the rest of the economy (Acharya
and Richardson 2009; Brunnermeier and Pedersen 2009; Diebold and Yilmaz
2015).

Several systemic risk measures are discussed in the literature. Among them are
Banking System’s (Portfolio) Multivariate Density (BSPMD; Segoviano and Good-
hart 2009), conditional value-at-risk (CoVaR; Adrian and Brunnermeier 2010),
absorption ratio (AR; Kritzman et al 2011), marginal expected shortfall (MES;
Acharya et al 2010; Brownlees and Engle 2011), distressed insurance premium (DIP;
Huang et al 2012), dynamic causality index (DCI) and principal component analy-
sis systemic (PCAS) risk measures (Billio et al 2012) and network connectedness
measures (NCMs; Diebold and Yilmaz 2014). The BSPMD embeds banks’ distress
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interdependence structures, which capture distress dependencies among the banks in
the system; CoVaR measures the value-at-risk (VaR) of the financial system, condi-
tional on an institution being under financial distress; AR measures the fraction of
the total variance of a set of (V) financial institutions explained or “absorbed” by a
finite number (K < N) of eigenvectors; MES measures the exposure of each indi-
vidual firm to shocks of the aggregate system; DIP measures the insurance premium
required to cover distressed losses in the banking system; the DCI captures how inter-
connected a set of financial institutions is by computing the fraction of significant
Granger causality relationships among their returns; PCAS captures the contribution
of an institution to the multivariate tail dynamics of the system; and NCMs aggregate
the contribution of each variable to the forecast error variance of other variables across
multiple return series.

Systemic risks are the major contributors to financial crises. Since the 1990s, it
has been observed that financial crises appear in clusters (for instance, the East Asian
crisis in 1997, the Russia and Long-Term Capital Management (LTCM) crisis in
1998, the Brazil crisis in 1999, the dot-com crisis in 2000, the Argentina crisis in
2001, the Iceland and Turkey crises in 2006, the China crisis in 2007, the global
financial crisis in 2007-9 and the European crisis in 2010-13). As to whether systemic
risks can be reliably identified in advance, Bernanke (2013) analyzed the global
financial crisis by distinguishing between triggers and vulnerabilities of the system
that caused the event. This distinction is helpful and allows us to identify which factors
to focus on to guard against a repetition of the global financial crisis. The triggers
are the events that began the crisis. One prominent trigger of the global financial
crisis were the losses suffered by holders of subprime mortgages. Tang et al (2010)
discussed how triggers for crises differ, and examples include sovereign debt default,
risk management strategies, sudden stops in capital flows, collapses of speculative
bubbles, inconsistencies between fundamentals and policy settings and a liquidity
squeeze. Billio et al (2012) found liquidity and credit problems to be the triggers of
both the LTCM crisis and the global financial crisis.

The vulnerabilities are the preexisting structural weaknesses of the financial system
that amplified the initial shocks (Bernanke 2013). Examples of such factors include a
lack of macroprudential focus in regulation and supervision, high levels of leverage
and complex interconnectedness. In the absence of these vulnerabilities, the triggers
might produce sizable losses to certain firms, investors or asset classes, but generally
they would not lead to a global recession. Many authors have found complex financial
interdependencies to be channels that magnify initial shocks to the system (Acemoglu
et al 2015; Billio et al 2012; DasGupta and Kaligounder 2014; Diebold and Yilmaz
2014, 2015; Gai et al 2011; Tang et al 2010). Tang et al (2010) showed that financial
crises are indeed alike, as all linkages are statistically important across all crises. They
identified three potential channels for contagion effects:
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(1) idiosyncratic channels, which provide a direct link from the source asset market
to international asset markets;

(2) market channels, which operate through either the bond or stock markets;

(3) country channels, which operate through the asset markets of a country jointly.

Billio et al (2012) found that the 2007-9 period experienced a higher level of inter-
connectedness and systemic vulnerability than the LTCM. This allowed the authors
to explain why the impact of the global financial crisis affected a much broader seg-
ment of financial markets and threatened the viability of several important financial
institutions to a greater extent than the LTCM. Acemoglu et al (2015) showed that,
beyond a certain point, dense interconnections serve as a mechanism for the propaga-
tion of shocks, leading to a more fragile financial system. Diebold and Yilmaz (2015)
showed that the impact of systemic risk depends on the collective action and connect-
edness of financial institutions as well as interaction between financial markets and
the macroeconomy.

Bernanke (2013) argued that shocks are inevitable, but identifying and addressing
vulnerabilities is key to ensuring a robust financial system. To understand vulnerabili-
ties, researchers and regulators are currently focusing on network analyses to identify
complex connectivities in financial markets. Some of the applications of network
tools include measuring the degree of connectivity of particular financial institutions
to determine systemic importance, forecasting the likely contagion channels of insti-
tutional default or distress and visualizing the “risk map” of exposure concentrations
and imbalances in the system (Bisias et al 2012). To ensure a robust financial system,
it is of crucial importance to

(a) identify systemically important institutions,
(b) identify specific structural aspects of the system that are particularly vulnerable,
(c) identify potential mechanisms for shock propagation in the system.

Early studies on systemic risk networks focused on linkages arising from actual
exposures based on balance sheet information. However, due to data accessibility
issues, little empirical work has been done in this area (Cont et al 2013; Georg 2013).
Meanwhile, several statistical and econometric methods have been advanced to study
interdependencies, contagion and spillover effects from observed market data. The
commonly discussed approaches in recent literature include the following: Granger
causality (Billio ef al 2012), variance decomposition (Diebold and Yilmaz 2014), tail
risk (Hautsch et al 2015) and partial correlation (Barigozzi and Brownlees 2016).
Most of these approaches often ignore the problem of network uncertainty and highly
complex structures. In this paper, we discuss a Bayesian approach to network inference
that helps to address the above problems.

www.risk.net/journal Journal of Network Theory in Finance
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4 GRAPHICAL MODELS IN MULTIVARIATE ANALYSIS

Graphical models have become popular for modeling patterns in complex systems
due to their ability to provide an intuitive interpretation of the interactions. The graphs
present a way of visualizing the relationships between variables in order to distinguish
between direct and indirect interactions. The idea of connecting the multivariate time
series literature and graphical models is gradually becoming a vibrant field of research
in economics and finance. We relate graphical models to multivariate statistical analy-
sis, specifically in multivariate regression problems, with possible applications in
financial econometrics.

4.1 Multivariate (multiple) regression

A typical multivariate multiple regression model is given by
Y =BX + U, 4.1)

where X and Y are vectors of exogenous and response variables, respectively, B
is a coefficient matrix, and U is a vector of errors. The common approach in much
empirical research is to fit the above model and test for restrictions. In testing for the
statistical significance of each of the estimated coefficients, we typically specify an
acceptable maximum probability of rejecting the null hypothesis when it is true, ie,
committing a type I error. In multiple hypothesis testing, the type I errors committed
increase with the number of hypotheses, which may have serious consequences for the
conclusions and generalization of the results. Several approaches have been proposed
to deal with this problem: see Shaffer (1995) and Drton and Perlman (2007) for a
review and discussion of multiple hypothesis testing.

Graphical models provide a convenient framework for exploring multivariate
dependence patterns. By considering (4.1) as a causal (dependency) pattern of ele-
ments in ¥ on elements in X, the coefficient matrix under a null hypothesis of single
restrictions is B;; = 0if y; does not depend on x;, and B;; # 0 otherwise. We define
a binary connectivity matrix, G, such that G;; = 1implies x; — y; <= B;; # 0.
Thus, G can be interpreted as a (directed) graph of the conditional dependencies
between elements in X and Y. B can be represented as

B =(Go®), (4.2)

where @ is a coefficient matrix and the operator (o) is the element-by-element Hada-
mard product (ie, B;; = G;; ®;;). There is a one-to-one correspondence between B
and @ conditional on G, such that B;; = &;; if G;; = 1, and B;; = 0if G;; = 0.
Thus, we interpret @ (B) as the unconstrained (respectively, constrained) regression
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coefficient matrix. For example,

X1 X2 X3 X4 X5

y1 = 13x1+ 0.5x3 + uy y1 (1.3 0 05 0 0
y2 = 0.9x1+ 0.5x5 + us B= y, 109 0 0 0 05
y3= x2 + 0.7x4 + uj ys \O 1 0 07 0
4.3)
X1 X2 X3 X4 X5 X1 X2 X3 X4 X5
Y1 1 0 1 0 0 Y1 1.3 ay 0.5 75 as
G= y |1 0 0 0 1| ?= y»|09 ay as as 05}
y3 \O 1 0 1 0 y3 \az 1 ag 0.7 a9
4.4)
wherea; € R,i = 1,...,9, are expected to be statistically not different from zero by

definition. The expression (4.4) presents an interesting alternative for modeling (4.3).
Instead of estimating the unconstrained coefficient matrix, @, and performing multiple
hypothesis tests, a more efficient alternative is to infer G as a variable selection
matrix to estimate only the relevant coefficients in B. Thus, nonzero elements in B
correspond to nonzero elements in G. Inference of G, taking into account all possible
dependence configurations, automatically handles the multiple testing problem in
multivariate multiple regression models.

In most regression models, the parameters to be determined are { B, X}, }, where X,
is the covariance matrix of U . In graphical models, inference of the graph structure is
central to the model estimation, and the set of parameters, 6, describes the strength of
the dependence among variables. Hence, by relating graphical models to multivariate
regressions, § must be equivalent to the regression parameters, ie, 0 = {B, X, }.

Let Y and X denote an n), x 1 and an n, x 1 vector of dependent and explanatory
variables, respectively. Let Z = (Y’, X)" bethe n = (n,, +ny) x 1 vector of stacked
Y and X . Suppose the joint distribution, Z, follows the distribution Z ~ M, (0, 271),
where ¥ = 27! is an n x n covariance matrix. The joint distribution of Z can be
summarized with a graphical model, (G, 8), where G is of dimension 1, X n, and
consists of directed edges from elements in X to elements in Y. Therefore, estimating
the model parameters associated with G is equivalent to estimating £2, ie, 8 = £2.
Given £2, the parameters of model (4.1) can be found from ¥ = 27! as

B=23x,% Y= — T Xt Ty, (4.5)

XX

where X is ny X ny covariances between X and Y, X, is ny, X ny covariances
among Y and X, is ny X ny covariances among X. For further computational
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aspects of graphical models, see Heckerman and Geiger (1994) and Lenkoski and
Dobra (2011).

4.2 Applications in econometrics and finance

We now present potential applications of graphical models in econometrics and
finance.

4.2.1 Structural model estimation

Vector autoregressive (VAR) models are widely used to estimate and forecast multi-
variate time series in macroeconomics. It is generally known that such models do not
have direct economic interpretations. However, due to their ability to forecast dynam-
ics in macroeconomic variables, such a limitation is overlooked. Structural VARs
(SVARSs), however, have direct economic interpretations, but these are not estimable
due to identification issues. For SVAR identification, the standard approach relies
on a reduced-form VAR to determine the relationships among shocks as a means of
providing economic intuition about the structural dynamics. To achieve this, some
researchers impose structures provided by a specific economic model, in which case
the empirical results will only be as credible as the underlying theory (Kilian 2013).
Moreover, in many cases, there are not enough credible exclusion restrictions to
achieve identification.
Following (4.2), the SVAR model can be expressed in a graphical model form as

P D
Yo=Y BiYii+er =) (Gio®)Yiy+e, (4.6)
i=0 i=0

where (Gg o @) and (G5 o @y), s = 1, are the graphical models representing the
cross-sectional and temporal dependences, respectively.!

4.2.2 Time-varying model estimation

Fixed or time-varying parameter models are standard applications in most empirical
works. These approaches to modeling real-world phenomenons implicitly assume that
interactions between variables are stable over time, and only the parameters vary or
are fixed. This assumption may have consequences for the performance of estimated
models. Some empirical works have shown that financial networks especially exhibit

! See Ahelegbey et al (2016) for an application of graphical models to identifying restrictions in
SVAR. See also Swanson and Granger (1997), Dahlhaus and Eichler (2003), Demiralp and Hoover
(2003), Corander and Villani (2006) and Moneta (2008) for estimation of causal structures in time
series and VAR models.
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random fluctuations over various time scales (Billio et al 2012), which must be incor-
porated into modeling dynamics in observed data. A typical time-varying model of
(4.1) is given by

Y =B/ X1+ U 4.7)

Following the expression in (4.2), the coefficient matrix of (4.7) can be expressed as
B[:G0¢t, Bt:GtO¢, Bt:GtO(pt. (48)

The first expression of (4.8) follows the typical time-varying parameter models com-
monly discussed in most empirical papers, where the graph is invariant over time. The
other two expressions (4.8) present cases of time-varying structures of dependence.
The state of the world is not constant over time, so devoting our attention to modeling
dynamics of the structure of interaction seems to be a more interesting line of research
in order to understand the ever-transforming modern economic and financial system.?

4.2.3 High-dimensional model estimation

There is an increasing interest in high-dimensional models and big data analysis. This
has become necessary, as many studies have shown that information from large data
sets enriches existing models, produces better forecasts for VAR models and also
reveals the connectedness of the financial system. Graphical models are therefore
relevant for high-dimensional modeling, as they offer interpretations of information
extracted from large data sets.’

The graphical approach can be used to build models that serve as alternatives
to the factor methods when dealing with large data sets. In factor-augmented VAR
models, information is extracted from a large number of variables to build factors to
augment the VAR. Following the justification of this approach (Bernanke et al 2005),
graph search algorithms can be applied to select relevant predictors from a large set
of exogenous variables, which can be used to augment the VAR. This method will
provide a more interpretable model than the factor approach.

4.2.4 CAPM-like model estimation

A fundamental model in financial theory is the capital asset pricing model (CAPM;
Sharpe 1964). This is an extension of the portfolio theory of Markowitz (1952). This

2 See Bianchi et al (2014) for an example of a graphical factor model with Markov-switching
graphs and parameters for modeling contagion. See also Carvalho and West (2007) for graphical
multivariate volatility modeling induced by time-varying covariances across series.

3 See Ahelegbey er al (2014) for a discussion on modeling sparsity in large graphical VAR models
with uncertainty on the lag order. See also Jones et al (2005) and Scott and Carvalho (2008)
for discussions on approaches for penalizing globally or locally “dense” graphs when estimating
high-dimensional models.
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approach has received much criticism due to problems of empirical evidence. Fama
and French (2004) summarized the popularity of the CAPM as follows:

The CAPM’s empirical problems may reflect theoretical failings, the result of many
simplifying assumptions. But they may also be caused by difficulties in implementing
valid tests of the model.

Graphical models can be applied to decompose asset return correlations into market
specific and idiosyncratic effects, as in the classical CAPM models.*

4.2.5 Portfolio selection problem

Portfolio risk analysis is typically based on the assumption that the securities in the
portfolio are well diversified. A well-diversified portfolio is one that is exposed only to
market risk within asset classes and includes a variety of significantly different asset
classes. Precisely, a well-diversified portfolio is made up of asset classes that are
highly uncorrelated and are considered to be complementary. The lesser the degree
of correlation, the higher the degree of diversification, and the lower the number
of asset classes required. Portfolios that contain securities with several correlated
risk factors do not meet this diversification criteria. Despite unprecedented access to
information, some portfolios, by construction, contain a predominant factor, and most
risk-modeling techniques are unable to capture this contagion.

To measure diversification more accurately, the graphical approach can be applied
to study the structure of interconnection among the asset classes. Since the arbitrage
pricing theory (APT) model of Roll (1977) and Ross (1976) and the return-based
style model of Sharpe (1992) are regression models, the graphical approach provides
a useful technique for portfolio selection by explicitly modeling the dependence of

the factors or asset classes.’

4.2.6 Risk-management-style assessment

Sharpe (1992) introduced a return-based analysis to measure management style and
performance. The analysis is based on the idea that a manager builds a portfolio
according to a specific investment philosophy, and investments reflect a style. The
approach is based on a style-regression model to determine the “effective mix”, given
by the estimated model, which represents the return from the style, while the residuals
reflect the performance due to the “selection” (active management).

4See Ahelegbey and Giudici (2014) for a discussion on Bayesian hierarchical graphical models,
which allow correlations to be decomposed into a country (market) effect plus a bank-specific
(idiosyncratic) effect.

5 See Shenoy and Shenoy (2000) and Carvalho and West (2007) for an application of graphical
models in the context of financial time series for predictive portfolio analysis.
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FIGURE 1 Network model for returns on investment and style measurement.

N/

Y is the amount invested, S is the annual increase in market stocks, E is a measure of the fund manager’s style
and R is the return.

Suppose we are interested in modeling the annual return on an investment. This will
depend on factors such as the amount invested (Y'), the annual stock market increase
() and the experience or style of the fund manager (E). A simple network to model
this interaction is displayed in Figure 1, where R = f(E, S, Y), and the returns are
a functionof Y, S and E.

This can serve as a benchmark to assess the performance of fund managers. For
instance, since the fund manager’s level of experience may be unknown, a qualitative
measure can be applied to rank their experience, and a probabilistic inference can be
obtained on the likely level of experience, given information on the other variables in
the network.®

5 BAYESIAN INFERENCE PROCEDURE FOR STRUCTURE
LEARNING

Network structure learning using standard frequentist techniques presents multiple
testing problems. It also involves exploring all candidate structures of the model,
which poses a challenge since the space of possible structures increases super-
exponentially (Chickering et al 2004). The standard practice of identifying a single
model that summarizes these relationships often ignores the uncertainty problem.
The Bayesian methodology has proved to be more efficient in addressing uncertain-
ties and complexities in the inference problem than standard frequentist techniques
(Heckerman et al 1995). The Bayesian approach to network modeling is a class of
probabilistic graphical models, where each node represents a random variable, and
the links express probabilistic relationships between these variables. The network
captures the way in which the joint distribution over all the random variables can
be decomposed into a product of factors, each depending only on a subset of the
variables.

¢ See Ammann and Verhofen (2007) for a network application for mutual fund managers behavior
analysis.
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The description of the Bayesian inference is completed with the elicitation of prior
distributions on the graphs and parameters, the posterior approximations and graph
estimation.

5.1 Prior distribution

Modeling the joint distribution of (G, £2) from a Bayesian perspective can be
expressed in a natural hierarchical structure P(G, $2) = P(G)P($2 | G). In the
absence of genuine prior knowledge of the network of interactions, the common
approach is to assume a uniform prior for G, ie, P(G) o 1. (For discussions on
other graph priors, see Friedman and Koller (2003), Jones et al (2005) and Scott and
Carvalho (2008).)

The standard parameter prior for graphical models is often conditioned on the
graphs. Two main classes of such priors are commonly discussed in the literature.
The first is based on DAG models that permit an unconstrained precision matrix £2
(see Consonni and Rocca 2012; Geiger and Heckerman 2002; Grzegorczyk 2010;
Heckerman et al 1995). The second is based on decomposable undirected graph
(UG) models, which allow constraints or no constrains on £2 (see Carvalho and Scott
2009; Roverato 2002; Wang and Li 2012). An unconstrained §2 often characterizes
a complete graph with no missing edges. The standard parameter prior for Gaussian
DAG models with zero expectations is a Wishart distribution, whereas that of UG
models is a G-Wishart or hyper-inverse Wishart distribution.

We follow the standard parameter prior for Gaussian DAG models, with density
given by

1

|27V expi—3 (2. )} (5.1)
where (A, B) = tr(A’ B) denotes the trace inner product, v > n + 1 is the degrees of

freedom parameter, S is a prior sum of squares matrix and K, (v, S) is the normalizing
constant:

Kn(v,8) = 2“"/2|§|—“/2Fn(§),

b .
1 —
Iy(a) = nb®-D/4 1_[ F(a +— l), (5.2)

i=1

where Iy (a) is the multivariate generalization of the Gamma function, I"(-). In this
application, we set v = n + 2 and S = v[,, where [, is the n-dimensional identity
matrix.
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5.2 Posterior approximation

Let Z; = (Y/, X[)', where Y; represents the set of dependent variables at time ¢
and X, is the set of explanatory variables. Suppose that Z; ~ N, (0, 27!), where
n is the number of elements in Z;. Let D = (Z4,..., Zr) be a complete series of
the observed variables. Then, the likelihood function P(D | £2, G) is multivariate
Gaussian with density

P(D | 2,G) = 2n)"T2|2|T2 exp{—1 (2, §)}, (5.3)

where § = Zthl Z;Z} is the n x n sum of squares matrix. Since G is unknown, we
estimate the graph by integrating out £2 analytically to produce a marginal likelihood
function

)—an

Ky(v,S) B9

P(D|G) = / P(D|2,6)P(2]G)d2 =(2n
where S = S + S is the posterior sum of squares matrix. The graph posterior is
given by P(G | D) = P(G)P(D | G). Based on the uniform prior assumption
over G, maximizing P(G | D) is equivalent to maximizing P(D | G). Following
the standard Bayesian paradigm, (5.4) can be factorized into a product of local terms,
each involving a response variable (y;) and its set of selected predictors (7;):

l"_y[ P(DVim) | G) 5:5)

P@IG) =]][P@I16oi.m) =] i
H . P(D@) | G)

i=1 i=
where m; = {j = 1,...,nx: G;; = 1}, ny, is the number of equations and G (y;, ;)
is the subgraph of G, with links from 7; to y;. D7) and D) are submatrixes
of D, consisting of (y;, 7;) and 7;, respectively. The closed form of (5.5) is

S v/2 ng .
P(i)k | G) = (j_[)—nkT/Z |—k,k rv+T+1 l)/2)

— . . (5.6
|Skxl D220 (v +1-1)/2)

where k € {(y;, 7;), 7;} is of dimension g, D is a submatrix of D associated with
k, and |Sy ;| and |Sk x| are the determinants of the prior and posterior sum of the
square matrixes of DF.

5.3 Graph estimation

We sample the graph following the MCMC algorithm in Madigan and York (1995).
The scheme is such that, at the rth iteration, given G”~V, the sampler proposes a
new graph G ™) with acceptance probability

P(D|GY) PGW) 0GPV |GW)

9 1 9
P(D | GTD) P(GTD) QGO [ GT-D)
6.7

AG® | GTV) = min

www.risk.net/journal Journal of Network Theory in Finance

17



18

D. F. Ahelegbey

where Q(G™ | G" D) and Q(GU~D | G™) are the forward and reverse proposal
distribution, respectively. The proposal distribution assigns a uniform probability to
all possible edges that can be reached from the current state (G ) by adding or
deleting a single edge. If the new graph G is accepted, then the graph at the rth
iteration is set to G = G™): otherwise, G = G—1 7

6 FINANCIAL APPLICATION

We now illustrate the effectiveness of the Bayesian approach to network inference in
analyzing return and volatility connectedness of financial time series.

6.1 Financial system interconnectedness

We study the structure of interconnectedness among the four major sectors of the US
financial system, following Billio et al (2012). The data consists of monthly return
indexes for hedge funds (HF), banks (BK), brokers (BR) and insurance companies
(IN) in the United States from January 1994 to December 2008. Single hedge-fund
data was obtained from the Lipper TASS database. Data for individual banks, brokers
and insurers was obtained from the Center for Research in Security Prices database.
The monthly returns of all companies with standard industrial classification (SIC)
codes 6000-6199, 6200-6299 and 6300-6499 were used to construct value-weighted
indexes for banks, brokers and insurers, respectively.

We estimate the temporal dependence pattern in a VaR with lag order (p = 1), cho-
sen according to a Bayesian information criterion (BIC). We examine the network for
two sample periods (1994-2000 and 2001-8). Table 1 shows the posterior probabili-
ties of the presence of edges in the network. The left (respectively, right) panel shows
the edge posterior probabilities in the network for the period 1994-2000 (respectively,
2001-8). Bold values indicate links for which posterior probabilities are greater than
0.5 under a 95% credibility interval. The edges are directed from column labels (at
t — 1) to row labels (at 7). The edge posterior probabilities in the first period (1994—
2000) are very low compared with the second (2001-8). Thus, we find no evidence of
significant linkages in the first period. However, in the second period, we find strong
interconnectedness among the institutions. More specifically, we find evidence of
an autoregressive effect among hedge funds, ie, P(HF,_; — HF,; | D) = 0.95,
and a strong effect of insurers on brokers, P(IN;_; — BR; | ») = 0.98;
insurers on banks, P(IN;—;y — BK; | D) = 0.82; insurers on hedge funds,
P(IN;—; — HF; | &) = 0.71; banks on brokers, P(BK;_; — BR; | D) = 0.75;
and brokers on insurers, P(BR;—; — IN; | D) = 0.64.

7See Ahelegbey et al (2016) for discussions on the convergence diagnostics of the MCMC,
estimation of the edge posterior probabilities and a pseudo-code of the algorithm.
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TABLE 1 Marginal posterior probabilities of linkages among institutions between 1994—
2000 and 2001-8.

January 1994-December 2000 January 2001-December 2008

HF,_1+ BR;,—1 BK;—1 IN,—y HF,_4 BR;,y BK;—q1 IN;4

HF; 0.23 0.21 0.19 0.19 0.95 0.23 0.29 0.71
BR; 0.18 0.18 0.18 0.19 0.16 0.18 0.75 0.98
BK; 0.26 0.20 0.30 0.19 0.33 0.31 0.50 0.82
IN; 0.18 0.20 0.27 0.20 0.33 0.64 0.34 0.42

Bold values indicate links with probabilities greater than 0.5 under a 95% credibility interval.

FIGURE 2 Network of hedge funds (HF), brokers (BR), banks (BK) and insurance (IN)
between (a) 1994—2000 and (b) 2001-8, without self-loops.

(a) (b)

HF HF

BK BR BK BR

N

IN IN

The blue (red) links are lagged positive (negative) effects.

The network representation of the results of Table 1 is shown in Figure 2. This fig-
ure reveals the direction and sign (represented by the colored arrows) of the linkages
among the institutions. The blue (respectively, red) links are lagged positive (respec-
tively, negative) effects. We see no links in the first period. In the second period,
we find a negative effect of banks on brokers, a bidirectional positive link between
insurers and brokers and a positive effect of insurers on banks and hedge funds. These
results corroborate the findings of Billio et al (2012), providing evidence of a higher
vulnerability in the system between 2001 and 2008. We also find that insurers are
central to the spread of risk in the system during the 2001-8 period.

6.2 Volatility connectedness in the euro area

Volatility networks (also referred to as “fear connectedness”) have become increas-
ingly important due to their ability to track the fear of investors and identify risk
transmission mechanisms in the financial system (Diebold and Yilmaz 2014). We
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TABLE 2 Description of EURO STOXX 600 super-sectors.

No Name ID No Name ID
1 Banks* BK 11 Media MD
2 Insurance companies™ IN 12  Travel & leisure TL
3 Financial services™* FS 13 Chemicals CH
4 Real estate* RE 14  Basic resources BR
5 Construction & materials CM 15 Oil & gas oG
6 Industrial goods & services IGS 16 Telecommunication TC
7  Automobiles & parts AP 17  Health care HC
8 Food & beverage FB 18 Technology TG
9 Personal & household goods PHG 19  Utilities uT

10 Retail RT

* The financial sector variables.

analyze the “fear connectedness” in the European stock market using intraday high—
low price indexes of the nineteen super-sectors of EURO STOXX 600, obtained from
Datastream and covering the period September 1, 2006 to September 19, 2014. See
Table 2 for a list of the super-sectors that represent the largest euro area companies by
the Industry Classification Benchmark (ICB). The institutions cover countries such
as Austria, Belgium, Finland, France, Germany, Greece, Ireland, Italy, Luxembourg,
the Netherlands, Portugal and Spain.

Let plh’t and p}’t denote the highest and lowest prices of stock i on day 7. We obtain
the intraday price range as a measure of the realized volatilities

1
RVis = 1iog (08 Py —log pi )*. (6.1)

We study the connectedness of the log volatilities as the dependence pattern in a
VaR(1). We characterize the dynamics of the connectedness using a rolling estima-
tion with a window size of 100 days. We compare the Granger causality network
(henceforth GCnet) with that of the Bayesian method (henceforth BGnet).

We present in Figure 3 the dynamics of the total connectedness index of the GCnet
(in blue) and the BGnet (in red) with their respective BIC scores over the sample
period. We notice a significant difference in the total number of interconnections
among the institutions (see Figure 3(a)). We also see that the GCnet records higher
linkages than the BGnet. This is not surprising, since the Granger causality approach
deals only with bivariate time series and is unable to distinguish between direct and
mediated causal influences in multivariate settings. The Bayesian method, however,
considers single and multiple testing possibilities, and it is therefore able to identify
direct and mediated causal effects. The BIC score (see Figure 3(b)) shows that the
BGnet produces relatively better structures than the GCnet.
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FIGURE 3 Dynamics of total connectedness index and network BIC scores over the
period 2007—-2014, obtained from a rolling estimation with a window size of 100 days.
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(a) Total connectedness index. (b) BIC of connectedness. The index of Granger causality is in blue and the Bayesian
method is in red.

We compare the rank positions of the eigenvector centrality on the estimated net-
works. Eigenvector centrality is a measure of the importance of a variable in the
transmission of systemic information and the spread of risks. (See Billio et al (2012)
and Dungey et al (2012) for further discussions.) Figure 4 shows the evolution of the
Spearman correlations over the sample period. The distribution of the correlations
seems negatively skewed, with the extremely negative correlated rank recorded for
the window ending November 12, 2008. Figure 5 shows the network of the window

www.risk.net/journal Journal of Network Theory in Finance

21



22

D. F. Ahelegbey

FIGURE 4 Spearman correlations of centrality rank on the estimated networks over the
sample period.

0.8 1
0.6
0.4 !
0.2
0 ]
02} ]
0.4t 1
-0.6 1
-0

Spearman rank correlation

Nov Aug June Mar
5 20 8 19

Oct July May Oct
6 17 1 2

¥
2007 2007 2008 2009 2010 2010 2011 2012 2013 2014

.8
Jan
23

FIGURE 5 Volatility network for period ending November 12, 2008.
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(a) GCnet (BIC = —3716.2). (b) BGnet (BIC = —4547.9). Edges are lagged dependencies.

ending November 12, 2008. The GCnet looks more connected than the BGnet; how-
ever, the associated BIC score favors the latter. Table 3 shows the top and bottom
five ranked institutions from the two networks. We notice that utilities, chemicals and
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TABLE 3 The top and bottom five super-sectors ranked by eigenvector centrality (EC) of
the GCnet and BGnet for the period ending November 12, 2008.

Granger causality Bayesian method
(EC) (EC)
Rank ID Name EC ID Name EC
1 RT Retail 0.3811 CH Chemicals 0.4189
2 FB Food & 0.3219 HC Health care 0.3639
beverage
3 IN  Insurance 0.2940 UT Utilities 0.2971
4 CM Construction & 0.2940 TC Telecom 0.2821
materials
5 MD Media 0.2688 BR Basic resources 0.2714
15 TG Technology 0.1591 AP Automobiles & parts 0.1531
16 UT  Utilities 0.1591 RE Real estate 0.1531
17 CH Chemicals 0.0859 PHG Personal & household 0.0947
goods
18 BR Basic resources 0.0711 FB Food & beverage 0.0731
19 OG Oil&gas 0.0414 TL Travel & leisure 0.0731

basic resources are ranked low in the GCnet but high in the BGnet. Also, food &
beverage ranks highly in the GCnet but lowly in the BGnet.

Finally, we focus on the centrality of the financial sector of the market. Figures 6(a)
and 6(b) show the dynamics of the rank differences and the most central institutions.
Figures 6(c) and 6(d) also show the frequency of the sign rank differences and the
frequency of the most central institution, respectively. We remind the reader that in
rank terms, 1 means higher centrality and 4 means lower centrality. Also, the rank
difference is the difference between the rank on the GCnet and that on the BGnet.
Thus, a negative rank difference denotes a higher (respectively, lower) centrality on
the GCnet (respectively, BGnet). The evolution of the rank differences in Figure 6(a)
shows many deviations from the reference line (in blue) for all four institutions. The
reference line indicates equal centrality ranks of institutions by the two estimations.

Figure 6(b) shows many periods of differences in the most central institution pre-
dicted by the two methods. For instance, GCnet found real estate to be more central
than banks for most of 2007 to 2009, while the BGnet shows the opposite. The fre-
quency of the sign rank differences (in Figure 6(c)) indicates results that are the
complete opposite, such that, in most of the sample, banks and insurers are ranked
relatively low on GCnet and high on the BGnet. Similarly, financial services and real
estate are ranked relatively high on GCnet and low on the BGnet. Thus, a researcher
using Granger causality will identify financial services to be most central in the spread
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FIGURE 6 Centrality in the financial sector of European stock market. Rank value 1 (4)

means highest (lowest) centrality. [Figure continues on next page.]
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(a) Institutional rank differences. (b) Most central institution: (i) Granger causality; (ii) Bayesian method. A negative
(positive) sign of rank difference means a higher (lower) centrality by the GCnet and a lower (higher) centrality by

the BGnet.
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FIGURE 6 Continued.
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of risk, and banks the least, while a researcher applying the Bayesian method will
find banks to be the most central, and real estate the least.

In many real-world interactions, dependencies among random variables are more
complex than pairwise. The Bayesian approach to network selection discussed in this
paper is designed to handle joint estimation and large-scale multiple testing problems.
Thus, it produces more suitable graphs than Granger causality to analyze complex
interactions. From the BGnet, we find evidence that banks and insurers are more
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central in the “fear connectedness” expressed by market participants in the financial
sector of the euro area.

7 CONCLUSION

This paper presents a state-of-the-art review of the interface between statistics and
econometrics in the inference and application of Bayesian graphical models. We
specifically highlight connections and possible applications of network models in
financial econometrics in the context of systemic risk. Using the monthly return
indexes of Billio et al (2012) for hedge funds, banks, brokers and insurers, we find
evidence of a higher connectedness between 2001 and 2008 in the US financial system.
We also find evidence that insurers play a central role in the vulnerability of the system,
which amplified the global financial crisis. Further empirical study on the financial
super-sectors of the European stock market reveals banks and insurers to be central
figures in the “fear connectedness” (Diebold and Yilmaz 2014) expressed by market
participants in the euro area. A comparison of the estimated networks shows that
the Bayesian method produces dependence patterns that are more suitable than those
produced by Granger causality to capture complex interdependencies.
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