4 research outputs found

    Cartographic modelling for automated map generation

    Get PDF

    Dynamic Speed and Separation Monitoring with On-Robot Ranging Sensor Arrays for Human and Industrial Robot Collaboration

    Get PDF
    This research presents a flexible and dynamic implementation of Speed and Separation Monitoring (SSM) safety measure that optimizes the productivity of a task while ensuring human safety during Human-Robot Collaboration (HRC). Unlike the standard static/fixed demarcated 2D safety zones based on 2D scanning LiDARs, this research presents a dynamic sensor setup that changes the safety zones based on the robot pose and motion. The focus of this research is the implementation of a dynamic SSM safety configuration using Time-of-Flight (ToF) laser-ranging sensor arrays placed around the centers of the links of a robot arm. It investigates the viability of on-robot exteroceptive sensors for implementing SSM as a safety measure. Here the implementation of varying dynamic SSM safety configurations based on approaches of measuring human-robot separation distance and relative speeds using the sensor modalities of ToF sensor arrays, a motion-capture system, and a 2D LiDAR is shown. This study presents a comparative analysis of the dynamic SSM safety configurations in terms of safety, performance, and productivity. A system of systems (cyber-physical system) architecture for conducting and analyzing the HRC experiments was proposed and implemented. The robots, objects, and human operators sharing the workspace are represented virtually as part of the system by using a digital-twin setup. This system was capable of controlling the robot motion, monitoring human physiological response, and tracking the progress of the collaborative task. This research conducted experiments with human subjects performing a task while sharing the robot workspace under the proposed dynamic SSM safety configurations. The experiment results showed a preference for the use of ToF sensors and motion capture rather than the 2D LiDAR currently used in the industry. The human subjects felt safe and comfortable using the proposed dynamic SSM safety configuration with ToF sensor arrays. The results for a standard pick and place task showed up to a 40% increase in productivity in comparison to a 2D LiDAR

    Sixth Biennial Report : August 2001 - May 2003

    No full text

    Individual differences in navigating and experiencing presence in virtual environments

    Get PDF
    The effort of making Virtual Environments (VEs) more useful and satisfactory to use lie at the core of usability research. Because of their development and widespread accessibility, VEs are being used by an ever-increasing diversity of users, whose individual differences impact on both task performance and level of satisfaction. This aspect raises a major challenge in terms of designing adaptive VEs, suitable not for the average user but for each individual user. One way to address this challenge is through the study of individual differences and their implications, which should lead to new effective ways to accommodate them. Adaptivity reflects the system’s capability to automatically tailor itself to dynamically changing user behaviour. This capability is enabled by a user model, acquired on the basis of identifying the user’s patterns of behaviour. This thesis addresses the issue of studying and accommodating individual differences with the purpose of designing adaptive VEs. The individual differences chosen to be investigated are those that impact particularly on two fundamental aspects underlying each interaction with a VE, namely navigation and sense of presence. Both these aspects are related to the perceived usability of VEs. The impact that a set of factors like empathy, absorption, creative imagination and willingness to be transported within the virtual world has on presence has been investigated and described through a prediction equation. Based on these findings, a set of guidelines has been developed for designing VEs able to accommodate these individual differences in order to support users to experience a higher level of presence. The individual differences related to navigation within VE have been investigated in the light of discriminating between efficient versus inefficient search strategies. Building a user model of navigation affords not only a better understanding of user spatial behaviour, but also supports the development of an adaptive VE which could help low spatial users to improve their navigational skills by teaching them the efficient navigational rules and strategies
    corecore