2,858 research outputs found

    Emotion on the Road—Necessity, Acceptance, and Feasibility of Affective Computing in the Car

    Get PDF
    Besides reduction of energy consumption, which implies alternate actuation and light construction, the main research domain in automobile development in the near future is dominated by driver assistance and natural driver-car communication. The ability of a car to understand natural speech and provide a human-like driver assistance system can be expected to be a factor decisive for market success on par with automatic driving systems. Emotional factors and affective states are thereby crucial for enhanced safety and comfort. This paper gives an extensive literature overview on work related to influence of emotions on driving safety and comfort, automatic recognition, control of emotions, and improvement of in-car interfaces by affect sensitive technology. Various use-case scenarios are outlined as possible applications for emotion-oriented technology in the vehicle. The possible acceptance of such future technology by drivers is assessed in a Wizard-Of-Oz user study, and feasibility of automatically recognising various driver states is demonstrated by an example system for monitoring driver attentiveness. Thereby an accuracy of 91.3% is reported for classifying in real-time whether the driver is attentive or distracted

    AutoEmotive: bringing empathy to the driving experience to manage stress

    Get PDF
    With recent developments in sensing technologies, it's becoming feasible to comfortably measure several aspects of emotions during challenging daily life situations. This work describes how the stress of drivers can be measured through different types of interactions, and how the information can enable several interactions in the car with the goal of helping to manage stress. These new interactions could help not only to bring empathy to the driving experience but also to improve driver safety and increase social awareness.MIT Media Lab ConsortiumNational Science Foundation (U.S.) (Grant No. NSF CCF- 1029585

    Driver frustration detection from audio and video in the wild

    Get PDF
    We present a method for detecting driver frustration from both video and audio streams captured during the driver's interaction with an in-vehicle voice-based navigation system. The video is of the driver's face when the machine is speaking, and the audio is of the driver's voice when he or she is speaking. We analyze a dataset of 20 drivers that contains 596 audio epochs (audio clips, with duration from 1 sec to 15 sec) and 615 video epochs (video clips, with duration from 1 sec to 45 sec). The dataset is balanced across 2 age groups, 2 vehicle systems, and both genders. The model was subject-independently trained and tested using 4-fold cross-validation. We achieve an accuracy of 77.4% for detecting frustration from a single audio epoch and 81.2% for detecting frustration from a single video epoch. We then treat the video and audio epochs as a sequence of interactions and use decision fusion to characterize the trade-off between decision time and classification accuracy, which improved the prediction accuracy to 88.5% after 9 epochs

    Designing for frustration and disputes in the family car

    Get PDF
    This article appears with the express permission of the publisher, IGI Global.Families spend an increasing amount of time in the car carrying out a number of activities including driving to work, caring for children and co-ordinating drop-offs and pickups. While families travelling in cars may face stress from difficult road conditions, they are also likely to be frustrated by coordinating a number of activities and resolving disputes within the confined space of car. A rising number of in-car infotainment and driver-assistance systems aim to help reduce the stress from outside the vehicle and improve the experience of driving but may fail to address sources of stress from within the car. From ethnographic studies of family car journeys, we examine the work of parents in managing multiple stresses while driving, along with the challenges of distractions from media use in the car. Keeping these family extracts as a focus for analysis, we draw out some design considerations that help build on the observations from our empirical work.Microsoft Research and the Dorothy Hodgkin Awar

    On driver behavior recognition for increased safety:A roadmap

    Get PDF
    Advanced Driver-Assistance Systems (ADASs) are used for increasing safety in the automotive domain, yet current ADASs notably operate without taking into account drivers’ states, e.g., whether she/he is emotionally apt to drive. In this paper, we first review the state-of-the-art of emotional and cognitive analysis for ADAS: we consider psychological models, the sensors needed for capturing physiological signals, and the typical algorithms used for human emotion classification. Our investigation highlights a lack of advanced Driver Monitoring Systems (DMSs) for ADASs, which could increase driving quality and security for both drivers and passengers. We then provide our view on a novel perception architecture for driver monitoring, built around the concept of Driver Complex State (DCS). DCS relies on multiple non-obtrusive sensors and Artificial Intelligence (AI) for uncovering the driver state and uses it to implement innovative Human–Machine Interface (HMI) functionalities. This concept will be implemented and validated in the recently EU-funded NextPerception project, which is briefly introduced

    Affective automotive user interfaces

    Get PDF
    Technological progress in the fields of ubiquitous sensing and machine learning has been fueling the development of user-aware human-computer interaction in recent years. Especially natural user interfaces, like digital voice assistants, can benefit from understanding their users in order to provide a more naturalistic experience. Such systems can, for example, detect the emotional state of users and accordingly act in an empathic way. One major research field working on this topic is Affective Computing, where psycho-physiological measures, speech input, and facial expressions are used to sense human emotions. Affective data allows natural user interfaces to respond to emotions, providing promising perspectives not only for user experience design but also for safety aspects. In automotive environments, informed estimations of the driver’s state can potentially avoid dangerous errors and evoking positive emotions can improve the experience of driving. This dissertation explores Affective Automotive User Interfaces using two basic interaction paradigms: firstly, emotion regulation systems react to the current emotional state of the user based on live sensing data, allowing for quick interventions. Secondly, emotional interaction synthesizes experiences which resonate with the user on an emotional level. The constituted goals of these two interaction approaches are the promotion of safe behavior and an improvement of user experience. Promoting safe behavior through emotion regulation: Systems which detect and react to the driver’s state are expected to have great potential for improving road safety. This work presents a model and methods needed to investigate such systems and an exploration of several approaches to keep the driver in a safe state. The presented methods include techniques to induce emotions and to sample the emotional state of drivers. Three driving simulator studies investigate the impacts of emotionaware interventions in the form of implicit cues, visual mirroring and empathic speech synthesis. We envision emotion-awareness as a safety feature which can detect if a driver is unfit or in need of support, based on the propagation of robust emotion detection technology. Improving user experience with emotional interaction: Emotional perception is an essential part of user experience. This thesis entails methods to build emotional experiences derived from a variety of lab and simulator studies, expert feedback, car-storming sessions and design thinking workshops. Systems capable of adapting to the user’s preferences and traits in order to create an emotionally satisfactory user experience do not require the input of emotion detection. They rather create value through general knowledge about the user by adapting the output they generate. During this research, cultural and generational influences became evident, which have to be considered when implementing affective automotive user interfaces in future cars. We argue that the future of user-aware interaction lies in adapting not only to the driver’s preferences and settings but also to their current state. This paves the way for the regulation of safe behavior, especially in safety-critical environments like cars, and an improvement of the driving experience.Aktuelle Fortschritte in den Bereichen des Machine Learning und Ubiquitous Computing ermöglichen es heute adaptive Mensch-Maschine-Schnittstellen zu realisieren. Vor allem natürliche Interaktion, wie wir sie von Sprachassistenten kennen, profitiert von einem verbesserten VerstĂ€ndnis des Nutzerverhaltens. Zum Beispiel kann ein Assistent mit Informationen über den emotionalen Zustand des Nutzers natürlicher interagieren, vielleicht sogar Empathie zeigen. Affective Computing ist das damit verbundene Forschungsfeld, das sich damit beschĂ€ftigt menschliche Emotionen durch Beobachtung von physiologischen Daten, Sprache und Mimik zu erkennen. Dabei ermöglicht Emotionserkennung natürliche Interaktion auf Basis des Fahrer/innenzustands, was nicht nur vielversprechend in Bezug auf die Gestaltung des Nutzerelebnisses klingt, sondern auch Anwendungen im Bereich der Verkehrssicherheit hat. Ein Einsatz im Fahrkontext könnte so vermeidbare UnfĂ€lle verringern und gleichzeitig Fahrer durch emotionale Interaktion begeistern. Diese Dissertation beleuchtet Affective Automotive User Interfaces – zu Deutsch in etwa Emotionsadaptive Benutzerschnittstellen im Fahrzeug – auf Basis zweier inhaltlicher SĂ€ulen: erstens benutzen wir AnsĂ€tze zur Emotionsregulierung, um im Falle gefĂ€hrlicher FahrerzustĂ€nde einzugreifen. Zweitens erzeugen wir emotional aufgeladene Interaktionen, um das Nutzererlebnis zu verbessern. Erhöhte Sicherheit durch Emotionsregulierung: Emotionsadaptiven Systemen wird ein großes Potenzial zur Verbesserung der Verkehrssicherheit zugeschrieben. Wir stellen ein Modell und Methoden vor, die zur Untersuchung solcher Systeme benötigt werden und erforschen AnsĂ€tze, die dazu dienen Fahrer in einer Gefühlslage zu halten, die sicheres Handeln erlaubt. Die vorgestellten Methoden beinhalten AnsĂ€tze zur Emotionsinduktion und -erkennung, sowie drei Fahrsimulatorstudien zur Beeinflussung von Fahrern durch indirekte Reize, Spiegeln von Emotionen und empathischer Sprachinteraktion. Emotionsadaptive Sicherheitssysteme können in Zukunft beeintrĂ€chtigten Fahrern Unterstützung leisten und so den Verkehr sicherer machen, vorausgesetzt die technischen Grundlagen der Emotionserkennung gewinnen an Reife. Verbesserung des Nutzererlebnisses durch emotionale Interaktion: Emotionen tragen einen großen Teil zum Nutzerlebnis bei, darum ist es nur sinnvoll den zweiten Fokuspunkt dieser Arbeit auf systeminitiierte emotionale Interaktion zu legen.Wir stellen die Ergebnisse nutzerzentrierter Ideenfindung und mehrer Evaluationsstudien der resultierenden Systeme vor. Um sich den Vorlieben und Eigenschaften von Nutzern anzupassen wird nicht zwingend Emotionserkennung benötigt. Der Mehrwert solcher Systeme besteht vielmehr darin, auf Basis verfügbarer Verhaltensdaten ein emotional anspruchsvolles Erlebnis zu ermöglichen. In unserer Arbeit stoßen wir außerdem auf kulturelle und demografische Einflüsse, die es bei der Gestaltung von emotionsadaptiven Nutzerschnittstellen zu beachten gibt. Wir sehen die Zukunft nutzeradaptiver Interaktion im Fahrzeug nicht in einer rein verhaltensbasierten Anpassung, sondern erwarten ebenso emotionsbezogene Innovationen. Dadurch können zukünftige Systeme sicherheitsrelevantes Verhalten regulieren und gleichzeitig das Fortbestehen der Freude am Fahren ermöglichen

    Environnement virtuel gĂ©nĂ©rateur d’émotions

    Get PDF
    Les Ă©motions jouent un rĂŽle important dans la prise de dĂ©cision quotidienne. En effet, elles influencent grandement la maniĂšre dont les individus interagissent avec leur environnement. Dans cette Ă©tude nous avons premiĂšrement conçu un environnement virtuel de conduite automobile, puis crĂ©Ă© des scĂ©narios gĂ©nĂ©rateurs d’émotions Ă  l’aide de la mĂ©thode Belief-Desire-Intention. Nous avons Ă©valuĂ© l’efficacitĂ© de ces scĂ©narios Ă  l’aide d’un groupe de 30 personnes et d’un casque Ă©lectroencĂ©phalogramme pour mesurer leurs Ă©motions. On observe que plus de 70% des scĂ©narios conçus avec cette mĂ©thode ont gĂ©nĂ©rĂ© l’émotion que l’on avait anticipĂ©e chez 52% Ă  76% des participants. La deuxiĂšme phase de cette expĂ©rience porte sur la rĂ©duction d’émotions avec un agent correcteur. Nous avons notĂ© une efficacitĂ© de la rĂ©duction des Ă©motions allant de 36.4% jusqu’à 70.0% des participants Ă  travers les diffĂ©rents scĂ©narios.Emotions play an important role in daily decision-making. Indeed, they greatly influence how individuals interact with their environment. In this study, we first designed a virtual driving environment and various emotion-inducing scenarios using the Belief-Desire-Intention method. We evaluated the effectiveness of these scenarios with a group of 30 people and an EEG headset to measure the emotions. Over 70% of scenarios designed with this method induced the emotion that had been anticipated in 52% to 76% of the participants. The second phase of this experiment is the reduction of emotions with a corrective agent. We noted an efficiency in reducing emotions ranging from 36.4% to 70.0% of the participants through the different scenarios

    Anger effects on driver situation awareness and driving performance

    Get PDF
    Research has suggested that emotional states have critical effects on various cognitive processes, which are important components of situation awareness (Endsley, 1995b). Evidence from driving studies has also emphasized the importance of driver situation awareness for performance and safety. However, to date, little research has investigated the relationship between emotional effects and driver situation awareness. In our experiment, 30 undergraduates drove in a simulator after induction of either anger or neutral affect. Results showed that an induced angry state can degrade driver situation awareness as well as driving performance as compared to a neutral state. However, the angry state did not have an impact on participants\u27 subjective judgment or perceived workload, which might imply that the effects of anger occurred below their level of conscious awareness. One of the reasons participants showed a lack of compensation for their deficits in performance might be that they were not aware of severe impacts of emotional effects on driving performance

    Towards hybrid driver state monitoring : review, future perspectives and the role of consumer electronics

    Get PDF
    The purpose of this paper is to bring together multiple literature sources which present innovative methodologies for the assessment of driver state, driving context and performance by means of technology within a vehicle and consumer electronic devices. It also provides an overview of ongoing research and trends in the area of driver state monitoring. As part of this review a model of a hybrid driver state monitoring system is proposed. The model incorporates technology within a vehicle and multiple broughtin devices for enhanced validity and reliability of recorded data. Additionally, the model draws upon requirement of data fusion in order to generate unified driver state indicator(-s) that could be used to modify in-vehicle information and safety systems hence, make them driver state adaptable. Such modification could help to reach optimal driving performance in a particular driving situation. To conclude, we discuss the advantages of integrating hybrid driver state monitoring system into a vehicle and suggest future areas of research

    17 Human-Car confluence: “Socially-Inspired driving mechanisms”

    Get PDF
    With self-driving vehicles announced for the 2020s, today’s challenges in Intelligent Transportation Systems (ITS) lie in problems related to negotiation and decision making in (spontaneously formed) car collectives. Due to the close coupling and interconnectedness of the involved driver-vehicle entities, effects on the local level induced by cognitive capacities, behavioral patterns, and the social context of drivers, would directly cause changes on the macro scale. To illustrate, a driver’s fatigue or emotion can influence a local driver-vehicle feedback loop, which is directly translated into his or her driving style, and, in turn, can affect driving styles of all nearby drivers. These transitional, yet collective driver state and driving style changes raise global traffic phenomena like jams, collective aggressiveness, etc. To allow harmonic coexistence of autonomous and self-driven vehicles, we investigate in this chapter the effects of socially-inspired driving and discuss the potential and beneficial effects its application should have on collective traffic
    • 

    corecore