3,553 research outputs found

    Multimodal Subspace Support Vector Data Description

    Get PDF
    In this paper, we propose a novel method for projecting data from multiple modalities to a new subspace optimized for one-class classification. The proposed method iteratively transforms the data from the original feature space of each modality to a new common feature space along with finding a joint compact description of data coming from all the modalities. For data in each modality, we define a separate transformation to map the data from the corresponding feature space to the new optimized subspace by exploiting the available information from the class of interest only. We also propose different regularization strategies for the proposed method and provide both linear and non-linear formulations. The proposed Multimodal Subspace Support Vector Data Description outperforms all the competing methods using data from a single modality or fusing data from all modalities in four out of five datasets.Comment: 26 pages manuscript (6 tables, 2 figures), 24 pages supplementary material (27 tables, 10 figures). The manuscript and supplementary material are combined as a single .pdf (50 pages) fil

    Semi-supervised Deep Generative Modelling of Incomplete Multi-Modality Emotional Data

    Full text link
    There are threefold challenges in emotion recognition. First, it is difficult to recognize human's emotional states only considering a single modality. Second, it is expensive to manually annotate the emotional data. Third, emotional data often suffers from missing modalities due to unforeseeable sensor malfunction or configuration issues. In this paper, we address all these problems under a novel multi-view deep generative framework. Specifically, we propose to model the statistical relationships of multi-modality emotional data using multiple modality-specific generative networks with a shared latent space. By imposing a Gaussian mixture assumption on the posterior approximation of the shared latent variables, our framework can learn the joint deep representation from multiple modalities and evaluate the importance of each modality simultaneously. To solve the labeled-data-scarcity problem, we extend our multi-view model to semi-supervised learning scenario by casting the semi-supervised classification problem as a specialized missing data imputation task. To address the missing-modality problem, we further extend our semi-supervised multi-view model to deal with incomplete data, where a missing view is treated as a latent variable and integrated out during inference. This way, the proposed overall framework can utilize all available (both labeled and unlabeled, as well as both complete and incomplete) data to improve its generalization ability. The experiments conducted on two real multi-modal emotion datasets demonstrated the superiority of our framework.Comment: arXiv admin note: text overlap with arXiv:1704.07548, 2018 ACM Multimedia Conference (MM'18

    Multimodal Affective State Recognition in Serious Games Applications

    Get PDF
    A challenging research issue, which has recently attracted a lot of attention, is the incorporation of emotion recognition technology in serious games applications, in order to improve the quality of interaction and enhance the gaming experience. To this end, in this paper, we present an emotion recognition methodology that utilizes information extracted from multimodal fusion analysis to identify the affective state of players during gameplay scenarios. More specifically, two monomodal classifiers have been designed for extracting affective state information based on facial expression and body motion analysis. For the combination of different modalities a deep model is proposed that is able to make a decision about player’s affective state, while also being robust in the absence of one information cue. In order to evaluate the performance of our methodology, a bimodal database was created using Microsoft’s Kinect sensor, containing feature vectors extracted from users' facial expressions and body gestures. The proposed method achieved higher recognition rate in comparison with mono-modal, as well as early-fusion algorithms. Our methodology outperforms all other classifiers, achieving an overall recognition rate of 98.3%

    M3ER: Multiplicative Multimodal Emotion Recognition Using Facial, Textual, and Speech Cues

    Full text link
    We present M3ER, a learning-based method for emotion recognition from multiple input modalities. Our approach combines cues from multiple co-occurring modalities (such as face, text, and speech) and also is more robust than other methods to sensor noise in any of the individual modalities. M3ER models a novel, data-driven multiplicative fusion method to combine the modalities, which learn to emphasize the more reliable cues and suppress others on a per-sample basis. By introducing a check step which uses Canonical Correlational Analysis to differentiate between ineffective and effective modalities, M3ER is robust to sensor noise. M3ER also generates proxy features in place of the ineffectual modalities. We demonstrate the efficiency of our network through experimentation on two benchmark datasets, IEMOCAP and CMU-MOSEI. We report a mean accuracy of 82.7% on IEMOCAP and 89.0% on CMU-MOSEI, which, collectively, is an improvement of about 5% over prior work
    • …
    corecore