7 research outputs found

    Dawn of autonomous vehicles: review and challenges ahead

    Get PDF
    This paper reviews the state of the art on autonomous vehicles as of 2017, including their impact at socio-economic, energy, safety, congestion and land-use levels. This impact study focuses on the issues that are common denominators and are bound to arise independently of regional factors, such as (but not restricted to) change to vehicle ownership patterns and driver behaviour, opportunities for energy and emissions savings, potential for accident reduction and lower insurance costs, and requalification of urban areas previously assigned to parking. The challenges that lie ahead for carmakers, law and policy makers are also explored, with an emphasis on how these challenges affect the urban infrastructure and issues they create for municipal planners and decision makers. The paper concludes with strengths, weaknesses, opportunities, and threats analysis that integrates and relates all these aspects.info:eu-repo/semantics/publishedVersio

    A Review on Energy, Environmental, and Sustainability Implications of Connected and Automated Vehicles

    Full text link
    Connected and automated vehicles (CAVs) are poised to reshape transportation and mobility by replacing humans as the driver and service provider. While the primary stated motivation for vehicle automation is to improve safety and convenience of road mobility, this transformation also provides a valuable opportunity to improve vehicle energy efficiency and reduce emissions in the transportation sector. Progress in vehicle efficiency and functionality, however, does not necessarily translate to net positive environmental outcomes. Here, we examine the interactions between CAV technology and the environment at four levels of increasing complexity: vehicle, transportation system, urban system, and society. We find that environmental impacts come from CAV-facilitated transformations at all four levels, rather than from CAV technology directly. We anticipate net positive environmental impacts at the vehicle, transportation system, and urban system levels, but expect greater vehicle utilization and shifts in travel patterns at the society level to offset some of these benefits. Focusing on the vehicle-level improvements associated with CAV technology is likely to yield excessively optimistic estimates of environmental benefits. Future research and policy efforts should strive to clarify the extent and possible synergetic effects from a systems level to envisage and address concerns regarding the short- and long-term sustainable adoption of CAV technology.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149443/1/EEICAV_Taiebat et al (2018)_Environmental Science & Technology.pdfDescription of EEICAV_Taiebat et al (2018)_Environmental Science & Technology.pdf : Main articl

    Dynamic Vehicular Trajectory Optimization for Bottleneck Mitigation and Safety Improvement

    Get PDF
    Traffic bottleneck is defined as a disruption of traffic flow through a freeway or an arterial, which can be divided as two categories: stationary bottleneck and moving bottleneck. The stationary bottleneck is mainly formed by the lane drops in the multi-lane roadways, while the moving bottleneck are due to the very slowing moving vehicles which disrupt the traffic flow. Traffic bottlenecks not only impact the mobility, but also potentially cause safety issues. Traditional strategies for eliminating bottlenecks mainly focus on expanding supply including road widening, green interval lengthening and optimization of intersection channelization. In addition, a few macroscopic methods are also made to optimize the traffic demand such as routing optimization, but these studies have some drawbacks due to the limitations of times and methodologies. Therefore, this research utilizes the Connected and Autonomous Vehicles (CAV) technology to develop several cooperative trajectory optimization models for mitigating mobility and safety impact caused by the urban bottlenecks. The multi-phases algorithms is developed to help solve the model, where a multi-stage-based nonlinear programming procedure is developed in the first phase to search trajectories that eliminate the conflicts in the bottleneck and minimize the travel time and the remaining ones refine the trajectories with a mixed integer linear programming to minimize idling time of vehicles, so that fuel consumption and emissions can be lowered down. Sensitivity analyses are also conducted towards those models and they imply that several indices may significantly impact the effectiveness and even cause the models lose efficacy under extreme values. Various illustrative examples and sensitivity analyses are provided to validate the proposed models. Results indicate that (a) the model is effective to mitigate the mobility and safety impact of bottleneck under the appropriate environment; (b) the model could simultaneously optimize the trajectories of vehicles to lower down fuel consumption and emissions; (c) Some environment indices may significantly impact the models, and even cause the model to lose efficacy under extreme values. Application of the developed models under a real-world case illustrates its capability of providing informative quantitative measures to support decisions in designing, maintaining, and operating the intelligent transportation management

    Energy and Emissions Conscious Optimal Following for Automated Vehicles with Diesel Powertrains

    Full text link
    The emerging application of autonomous driving provides the benefit of eliminating the driver from the control loop, which offers opportunities for safety, energy saving and green house gas emissions reduction by adjusting the speed trajectory. The technological advances in sensing and computing make it realistic for the vehicle to obtain a preview information of its surrounding environment, and optimize its speed trajectory accordingly using predictive planning methods. Conventional speed following algorithms usually adopt an energy-centric perspective and improve fuel economy by means of reducing the power loss due to braking and operating the engine at its high fuel efficiency region. This could be a problem for diesel-powered vehicles, which rely on catalytic aftertreatment system to reduce overall emissions, as reduction efficiency drops significantly with a cold catalyst that would result from a smoother speed profile. In this work, control and constrained optimization techniques are deployed to understand the potential for and achieve concurrent reduction of fuel consumption and emissions. Trade-offs between fuel consumption and emissions are shown using results from a single objective optimal planning problem when the calculation is performed offline assuming full knowledge of the whole cycle. Results indicate a low aftertreatment temperature when energy-centric objectives are used, and this motivates the inclusion of temperature performance metric inside the optimization problem. An online optimal speed planner is then designed for concurrent treatment of energy and emissions, with a limited but accurate preview information. An objective function comprising an energy conscious term and an emissions conscious term is proposed based on its effectiveness of 1) concurrent reduction of fuel and emissions, 2) flexible balancing between the emphasis on fuel saving or emissions reduction based on performance requirements and 3) low computational complexity and ease of numerical treatment. Simulation results of the online optimal speed planner over multiple drive cycles are presented, and for the vehicle simulated in this work, concurrent reduction of fuel and emissions is demonstrated using a specific powertrain, when allowing flexible modification of the drive cycle. Hardware-in-the-loop experiment is also performed over the Federal Test Procedure (FTP) drive cycle, and shows up to 15% reduction in fuel consumption and 70% reduction in NOx emissions when allowing a flexible following distance. Finally, the stringent requirement of accurate preview information is relaxed by designing a robust re-formulation of the energy and emissions conscious speed planner. Improved fuel economy and emissions are shown while satisfying the constraints even in the presence of perturbations in the preview information. A Gaussian mixture regression-based speed prediction is applied to test the performance of the speed following strategy without assuming knowledge of the preview information. A performance degradation is observed in simulation results when using the predicted velocity compared with an accurate preview, but the speed planner preserves the capability to improve fuel and tailpipe emissions performance compared with a non-optimal controller.PHDMechanical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/170004/1/huangchu_1.pd

    MAVEN Deliverable 7.2: Impact Assessment - Technical Report

    Get PDF
    This deliverable focuses on an important topic within the MAVEN project - evaluation of the project impact. This is an important step that will allow us to say what the results and impact of the different technologies, functionalities as well as assumptions are. It covers different dimensions of the impact assessment as stated in the Deliverable D7.1 - Impact assessment plan [10]. The field tests proved that the technology in the vehicle works together with the infrastructure and the solution is technically feasible. This was demonstrated also during particular events and is reported in the attached test protocols. At the same time, the emulation and simulation in Dominion software proved the functionality, for example with respect to the cooperative perception or safety indicators. The tests also proved that the key performance indicator "minimum time to the collision" decreases when applying the cooperative sensing. Also, the number of human interventions needed was zero in all the tests. This deliverable also discussed selected results of a detailed user survey aiming at understanding the expected impacts and transition of automated vehicles. The overall number of respondents reached 209. The responses have revealed some interesting facts. For example, over 80% of the respondents believe that CAVs will decrease the number of traffic accidents. Similarly, about 70% of the respondents expect improvements in traffic congestions. Over 82% of respondents declared that they would accept some detour when driving if it helps the overall traffic situation. The literature review, however, indicated that autonomous vehicles will have either a positive or a negative effect on the environment, depending on the policies. For example, opening cars as a mode of transport to new user groups (seniors, children etc.) together with improvements of the traffic, flow parameters can increase the traffic volume on roads. Policy makers shall focus on the integration of the CAVs into a broader policy concept including car or ride-sharing, electromobility and others. In order to evaluate the transition, for example, the influence of different penetration rates of CAVs on the performance, a microscopic traffic simulation was performed. Here the particular MAVEN use cases, as well as their combination, was addressed. The results of the simulation are rather promising. The potential for improvements in traffic performance is clearly there. It was demonstrated that a proper integration of CAVs into city traffic management can, for example, help with respect to the environmental goals (Climate Action of the European Commission) and reduce CO2 emissions by up to 12 % (a combination of GLOSA and signal optimization). On corridors with a green wave, a capacity increase of up to 34% was achieved. The conclusions from this project can be used not only by other researchers but mainly by traffic managers and decision-makers in cities. The findings can get a better idea about the real impacts of particular use cases (such as green wave, GLOSA and others) in the cities. An important added value is also the focus on the transition phase. It was demonstrated that already for lower penetration rates (even 20% penetration of automated vehicles), there are significant improvements in traffic performance. For example, the platooning leads to a decrease of CO2 emissions of 2,6% or the impact indicator by 17,7%
    corecore