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ABSTRACT 

DYNAMIC VEHICULAR TRAJECTORY OPTIMIZATION FOR BOTTLENECK 
MITIGATION AND SAFETY IMPROVEMENT  

 
 

by  

Wenqing Chen 

 

The University of Wisconsin-Milwaukee, 2019 
Under the Supervision of Professor Jie Yu 

 

Traffic bottleneck is defined as a disruption of traffic flow through a freeway or an arterial, 

which can be divided as two categories: stationary bottleneck and moving bottleneck. The 

stationary bottleneck is mainly formed by the lane drops in the multi-lane roadways, while the 

moving bottleneck are due to the very slowing moving vehicles which disrupt the traffic flow. 

Traffic bottlenecks not only impact the mobility, but also potentially cause safety issues.  

Traditional strategies for eliminating bottlenecks mainly focus on expanding supply including 

road widening, green interval lengthening and optimization of intersection channelization. In 

addition, a few macroscopic methods are also made to optimize the traffic demand such as 

routing optimization, but these studies have some drawbacks due to the limitations of times and 

methodologies. 

Therefore, this research utilizes the Connected and Autonomous Vehicles (CAV) 

technology to develop several cooperative trajectory optimization models for mitigating mobility 

and safety impact caused by the urban bottlenecks. The multi-phases algorithms is developed to 

help solve the model, where a multi-stage-based nonlinear programming procedure is developed 
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in the first phase to search trajectories that eliminate the conflicts in the bottleneck and minimize 

the travel time and the remaining ones refine the trajectories with a mixed integer linear 

programming to minimize idling time of vehicles, so that fuel consumption and emissions can be 

lowered down. Sensitivity analyses are also conducted towards those models and they imply that 

several indices may significantly impact the effectiveness and even cause the models lose 

efficacy under extreme values. 

Various illustrative examples and sensitivity analyses are provided to validate the 

proposed models. Results indicate that (a) the model is effective to mitigate the mobility and 

safety impact of bottleneck under the appropriate environment; (b) the model could 

simultaneously optimize the trajectories of vehicles to lower down fuel consumption and 

emissions; (c) Some environment indices may significantly impact the models, and even cause 

the model to lose efficacy under extreme values. Application of the developed models under a 

real-world case illustrates its capability of providing informative quantitative measures to 

support decisions in designing, maintaining, and operating the intelligent transportation 

management. 
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 INTRODUCTION 

1.1 Background 

Traffic bottleneck is defined as a disruption of traffic flow through a freeway or an arterial 

(Daganzo, C.F., 1997), which can be divided as two categories: stationary bottleneck and moving 

bottleneck. The stationary bottleneck is mainly formed by the lane drops in the multi-lane 

roadways, while the moving bottleneck are due to the very slowing moving vehicles which 

disrupt the traffic flow (Daganzo et al., 1999). Traditional strategies for eliminating bottlenecks 

mainly focus on expanding supply including road widening, green interval lengthening and 

optimization of intersection channelization. A few macroscopic methods are also made to 

optimize the traffic demand such as routing optimization (V.L. Knoop and W. Daemen, 2017).  

One typical urban bottleneck causing congestion is around the curb side bus stops. The 

bus system, with its cost efficiency, design flexibility, and short construction period, has been 

widely developed in urban areas as an alternative way to alleviate traffic congestion and improve 

accessibility. As cities grow in both surface and population, the bus system nowadays often 

struggles to provide satisfying level of service due to limited road space coupled with increasing 

traffic demand, especially in developing countries. For example, it is common to observe serious 

conflicts between buses and cars weaving at a curb side bus station (no matter located near-side 

or far-side). Such a potential weaving section (PWS) often causes traffic bottlenecks 

characterized with aggressive lane changes, frequent stops, excessive delays, and frequent 

accidents especially as road saturation level increases as shown in Figure 1.1.  
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Figure 1.1 Potential weaving section at a near-side bus station. 

Compared with far-side locations, near-side bus stations may cause worse traffic 

congestion in couple with high traffic flow weaving, limited road space, poor geometric design, 

and improper intersection signal timings.  

The bottleneck around linkage between the urban freeway off-ramp and ground 

intersection is also noteworthy. As the top of Figure 1.2 depicts, traffic on the off-ramps may 

suffer difficulty in passing through the ground intersection due to its competition with the ground 

traffic movements.  

 

Figure 1.2 Weaving section on the linkage between off-ramp and ground intersection. 

There’re two main reasons to formulate this bottleneck. The left bottom of Figure 1.2 

illustrates one reason that due to the over short linkage which causes the off-ramp movements 
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blocked so that they cannot merge into the ground traffic flow. The other, depicted by the right 

bottom, is that to reach the target approaching lane, the off-ramp and ground movements may 

mutually weave each other. 

Improving traffic safety is almost the overriding responsibility of transportation 

departments at all levels, especially for reducing the risks at those hazardous intersections with 

deadly accidents.  A report from the United States shows in 2016 there were 2,524,000 crashes 

happened at intersections, where approximately 4470 crashes were fatal (NHTSA 2016). 

There’re two types of bottleneck which take high risk for crashes. The first is high-speed 

signalized intersection, due to the dilemma zone issue; the other is the unsignalized intersection 

where the motorists may choose to traverse unsafe gaps.  

Dilemma zone (DZ), as a segment in the approach of the intersection, is one of the most 

contributing factors towards crashes (nearly 40% of urban crashes are caused by DZ), because 

motorists could neither pass the intersection before the onset of the red phase, causing side-angle 

crashes; nor stop the car safely, resulting in rear-end collision (Gazis et al. 1960). The idea of DZ 

was initially proposed by Gazis, who developed a model, “Type-I Model”, defining DZ as a 

space range, where the vehicle could neither clear the intersection safely nor slow down to stop 

smoothly during the amber phase. Beside the “Type-I Model”, a concept of the “Type-II Model” 

was also raised, expressed as a probability of drivers ‘decision for stop (Zegeer 1977). Field 

observation or graph processing are usually adopted to study DZ boundaries or the drivers’ 

reaction facing DZ. The features of Types I and II DZs are depicted in Figure 1.3. 
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Figure 1.3 Features of Types I and II DZs. 

Unlike signalized intersections where the green light gives the right of way, there’s no 

positive indication to the drivers about when to pass through the prior streams at unsignalized 

intersections. The drivers need to find a safe “gap” themselves. The minimum gap that the driver 

accept is the critical gap. In traditional environment, the critical gap is sensed by human and is 

variable toward different people. For the unsignalized intersections, there exists a hierarchy 

among streams. Some streams have the top priority, while others must yield to higher rank 

streams. In some cases, streams must yield to some streams which also should yield to others.    

The simplest unsignalized intersection, shown in the left part of Figure 1-4, have two 

streams, from which the minor one yields to the major one. Here is only one conflicting point 

(the red circle in the left part of Figure 5) in these simplest intersections. While for those having 

more than two streams, a vehicle may need to avoid several conflicting points, like the right part 

of Figure 1.4 illustrates. 
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Figure 1.4 Traffic movements and regulars at unsignalized intersections. 

1.2 Application of Connected and automated vehicle technology 

Nowadays, with the development of Intelligent Transportation Technology (ITS), it is possible to 

eliminate bottlenecks and improve safety dynamically. As a part of Intelligent Transportation 

Systems, the Connected and automated vehicle technology (CAV), sponsored by the U.S. DOT 

Research and Innovative Technology Administration (RITA)/ITS Joint Program Joint Program 

Office (ITS JPO), focuses on localized Vehicle-to-Vehicle, Vehicle-to-Infrastructure and 

Vehicle-to-Device Systems (V2X) to support safety, mobility and environmental applications 

using vehicle Dedicated Short Range Communications (DSRC)/Wireless, as Figure 1.5 depicts.  
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Figure 1.5 Illustration of connective-vehicle technology. 

Based upon the characteristics of CAV, it can be used to improve the traffic safety and 

efficiency, by adjusting the speed of the traffic movements with the change of traffic 

environment. For the problems listed above, take the near-side bus stop and DZ as examples, 

CAV can be implemented as follows. 

(1) Near-side bus stop 

As Figure 1.6 depicts, under CV environment, the vehicular speed can be guided so that 

there’s no cars inside the weaving section as the bus enters. 
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Figure 1.6 Speed control to prevent weaving at a curb side bus station. 

(2) DZ protection 

Although some kinds of warning systems have been installed to remind motorists of DZ 

protection, they cannot assist the motorists to change their status smoothly and effectively. Under 

the CV environment, the motorists can actively follow the system’s guidance and decelerate 

optimally to acquire other benefits such as travel time and idling time saving. The idea can be 

depicted in Figure 1-7. 
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Figure 1.7 Speed control to prevent weaving at a curb side bus station. 

1.3 Research Objectives 

Therefore, the primary focus of this dissertation is to develop a cooperative vehicular trajectory 

optimization framework, based on the CAV technology, that can assist vehicles optimizing their 

trajectories to proactively prevent the urban bottlenecks. More specifically, the proposed models 

shall have the capabilities to: 

• Determine control boundaries, based on the mechanism of vehicles and utilization of 

temporal and spatial resources; 

• Design detection strategy that can determine if bottleneck or safety risk would emerge; 

• Design cooperative control plans at the transportation nodes such as near-side bus stop, 

and intersections, i.e., to eliminate bottleneck or safety risk; and 

• Update local control strategies, if vehicle doesn’t obey the control command or its status 

changes. 

To accomplish all the above objectives, the proposed framework and models shall have 

the following features: 

• Realistic representation of the complex temporal and spatial interrelations among the 

selected transportation nodes with acceptable computational efficiency; 

• Integration of various levels of control strategies with pre-specified control objectives to 

ensure the effectiveness of the integrated operations under various scenarios; and 

• Development of sufficiently efficient and robust solution algorithms that can solve the 

proposed optimization formulations and generate target control strategies for a 

complicated system. 
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1.4 Dissertation Organization 

Based on the proposed research objectives, this study has organized the primary research tasks 

into eight chapters. The core of those tasks and their interrelations are illustrated in Figure 1.8. 

Introduction

Literature review

Near-side bus stop
• Bottleneck elimination
• Total person travel time 

minimization
• Idling time minimization

Signalized intersection 
• Bottleneck elimination
• Travel time minimization
• Fuel and emission minimization

High-speed intersection
• DZ protection
• Travel time minimization
• Idling time minimization
• Speed fluctuation minimization

Unsignalized intersection
• Travel time minimization
• Idling time minimization
• Gap acceptance

Summary

Safety  prior

Bottleneck 
elimination prior

 

Figure 1.8 Architecture of the thesis outline. 

The remaining chapters of this dissertation are organized as follows: 

• Chapter 2 presents a comprehensive literature review of existing studies on various 

control strategies for traffic bottleneck and safety risk elimination, including both model 

formulations and solution algorithms. The review focuses on identifying the advantages 
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and limitations of those strategies, along with their potential enhancements, including the 

trajectory optimization. 

• Chapters 3 and 4 develops the formulations and solution algorithms for the optimization 

models necessary to execute the cooperative control strategies at signalized intersections, 

including determining the control boundaries, confirming the existence of bottleneck, and 

designing the cooperative control strategies. The cooperative control model is expected to 

eliminate the bottleneck and minimize the average travel time, idling time and speed 

fluctuation of the off-ramp and ground movements 

• Chapter 5 develops the gap-based model on the two-way stop unsignalized intersection. 

The proposed model considers the running status of the target vehicle as well as the 

impact of the downstream vehicles (if exists) and the gap conditions in real-world traffic 

environment. Acceleration/deceleration profile, instead of speed trajectories, is optimized 

for speed guidance. Illustrative examples are provided to validate the proposed algorithm. 

Results indicate that the proposed control algorithm is effective to minimize the fuel 

consumption and emission of the target vehicle under various test scenarios. 

• Chapters 6 designs the cooperative control model that optimizes the vehicular 

trajectories around the near-side bus stop, based on critical issues that need to be 

considered in the design of control strategies. It specifies the required system inputs, the 

principal system components and their key functional features, as well as operational 

interactions. A time rolling horizon-based solution algorithm is introduced to optimize 

the trajectories step by step that minimizes the total person travel time and idling 

duration. 
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• Chapter 7 focuses on high-speed intersections where a dynamic speed control model is 

proposed featuring dilemma zone protection and trajectory optimization. The control 

boundary is divided into two parts where the upstream slow down the over-speed vehicle 

and the downstream optimizes the vehicular trajectory. The time-rolling-horizon-based 

algorithm is also applied to solve the model where the vehicular travel time optimization 

is the primary target. Conditioned on the optimized travel time, idling time and speed 

fluctuation will be minimized in sequence. 

• Chapter 8 summarizes the contributions of this dissertation and provides future research 

directions, including the development of an efficient cooperative control model to address 

the demand surge due to bottleneck and safety risk elimination at transportation nodes, 

and innovative heuristics for solving the proposed model formulations. 
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 LITERATURE REVIEW 

This chapter presents a comprehensive literature review of existing studies on various control 

strategies for traffic bottleneck and safety risk elimination, including both model formulations 

and solution algorithms.  The first section summarizes the traditional research efforts and their 

deficiencies towards the bottlenecks and safety risks. The second section explores the 

improvements of those research outcomes under the connected and autonomous vehicles. 

2.1 Traditional Research toward Bottlenecks And Safety Risks 

2.1.1 Near-side bus stops 

The bus system, with its cost efficiency, design flexibility, and short construction period, has 

been widely developed in urban areas as an alternative to private cars for efficient, reliable and 

comfortable travel. As cities grow in both surface and population, the bus system often struggles 

to provide satisfying level of service due to limited road space coupled with increasing traffic 

demand. For example, it is common to observe serious conflicts between buses and cars weaving 

at a curb side bus station (no matter located near-side or far-side). Such a potential weaving 

section (PWS) often causes traffic bottlenecks characterized with aggressive lane changes, 

frequent stops, excessive delays, and frequent accidents especially as road saturation level 

increases. Compared with far-side locations, near-side bus stations may cause even worse traffic 

congestion due to high traffic flow weaving, limited road space, poor geometric design, and 

improper intersection signal timings.  

The impact of curb side bus stations on traffic flow has been investigated in the literature. 

Previous studies fall into different categories: observational studies, analytical methods, and 

simulation-based studies. Observational studies usually explore field data to examine the effect 
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of bus stations on traffic operations. For examples, it was found that far-side bus stations tend to 

outperform near-side stops in terms of reduced queue, additional vehicle maneuvering space, 

easier lane changes, and fewer delayed right-turning vehicles (Terry and Thomas, 1971). 

However, Fitzpatrick (1997) reached the opposite findings. Yu (2014) established a statistical 

model to quantify the impact of factors such as platform types, bus station lengths, and lane 

numbers. Feng (2015) statistically investigated the joint impacts of bus station locations, 

signalized intersections and traffic conditions. Stephen (2016) proposed a statistical model to 

explore the factors that may affect the bus dwelling time and the time to re-enter to the main 

traffic flow. These studies are informative but not conclusive due to either limited numerical 

scenarios or the lack of detailed analysis of the relationships among important affecting factors 

such as bus frequency, dwelling time, and vehicle volume/distribution in the bus operational 

environment. 

Analytical methods generally open to broader situations with simplified models for 

tractability. Furth (2006) evaluated the impact of harbor-style bus station location on bus delay 

with factors of gravity, queue interference at signalized intersections. As for curb side bus 

stations, queue model was developed to assess disturbance from cars on isolated bus stations, 

without involving signalized intersections (Gu et al., 2011). Gu (2014) further incorporated 

signalized intersections to research the impact of far-side and near-side bus stations on traffic 

efficiency but did not include either oversaturated conditions or instant traffic disturbances such 

as lane changes, gaps in front of the dwelling bus and turning vehicles.  
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2.1.2 Intersections 

Signalized intersections are one of the most important elements in the urban transportation 

system. As cities grow in both surface and population, the signalized intersections often struggle 

to provide satisfying level of service due to limited road space coupled with increasing traffic 

demand, resulting in over-long travel time and eco-problems. In the United States, the 

transportation sector uses up nearly 75% of petroleum and emits the second largest carbon 

dioxides due to the poor operation performance (EPA 2016; Davis et al., 2010). Research 

findings also indicate that bad driving behaviors resulted from the severe bottlenecks constitute 

the major contribution to carbon emission and petroleum consumption (Toshiaki and Takumi, 

2008). Traditional strategies have little effectiveness for improving the operation research around 

the signalized intersections (Mensing et al., 2011). Therefore, innovative technologies are 

urgently needed to address these challenges. 

2.1.3 Dilemma zone on high-speed signalized intersections 

Dilemma zone (DZ), a segment in the approach of the intersection, is one of the most 

contributing factors towards those crashes, since motorists can neither pass the intersection 

before the onset of the red phase, causing side-angle crashes; nor stop the car safely, resulting in 

rear-end collision (Gazis et al., 1960). The idea of DZ was initially proposed by Gazis (1960), 

who developed a model, “Type-I Model”, defining DZ as a space range, where the vehicle can 

neither clear the intersection safely nor slow down to stop smoothly during the yellow phase. 

Beside the “Type-I Model”, a concept of the “Type-II Model” was also raised, expressed as a 

probability of motorists ‘decision for stop (Zegeer 1977). Field observation or graph processing 

are usually adopted to study DZ boundaries or the motorists’ reaction facing DZ. A common 

sense is that DZ range depends on the motorist’s behaviors and the types of vehicles (Liu et al. 



 
 

15 
 

2007). Other literatures also show a boundaries range of between 2 to 6 seconds for DZ 

(Parsonson et al., 1974; Chang et al., 1985; Bonneson and McCoy 1996). In studying with the 

motorists’ behaviors, Van der Horst and Wilmink illustrated that they depend on some objective 

and subjective factors, such as motorist’s emotion, personality, and vehicular speed, et al (Horst 

and Wilmink 1986). They developed a decision-making process model and some parameters in 

that model are adopted by some later research (Widodo et al., 2000a; Wu et al., 2010; Asadi and 

Vahidi 2010; Tielert et al., 2010; Marzoug et al., 2015).  

The traditional studies towards DZ protection are mainly divided into two categories: one 

belongs to the motorist side, trying to alert the motorists in advance; the other belongs to 

infrastructure, extending the green time to insure the vehicles pass before the onset of the red 

phase.  Over the motorist ride, Moon et al. (Moon et al., 2003) developed an integrated system 

for assessing a DZ warning system for signalized intersections by a serial of field tests. Results 

from the tests indicated that the system can be implemented at signalized intersections to avoid 

the DZ, and to reduce red-light violations and intersection collisions. Martin et al. (Martin et al., 

2003) considered the two-advanced warning (AWS) systems presently used in Utah. It found that 

the setup and performance of the two systems were different. The Texas Transportation Institute 

has developed a new system named the Advanced Warning for End of Green System (AWEGS) 

for application of DZ protection (Sunkari et al., 2005). The system was implemented at two sites 

in Waco and Brenham, Texas. The result indicated that AWEGS consistently improved the DZ 

protection at intersections and reduced red light running by approximately 40%. Another system 

is called the Pre-signal Indication System (PSIS) which uses a flashing green or yellow signal at 

the last of the green phase (Factor et al., 2012; Wu et al., 2017). 
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Over the infrastructure side, Ma et al. (2010) presents an extensive investigation 

regarding the impacts of green signal countdown devices (GSCD) on the intersection safety, 

based on field observation of critical motorist and vehicle related parameters at two similar 

intersections (one with GSCD and the other without GSCD) in Shanghai. Also, some studies 

combined those two categories together (Zimmerman et al., 2012; McCoy and Pesti. 2003b; 

Wang et al., 2016).  

2.2 Bottlenecks And Safety Risk Elimination Based on CAV 

In the past two decades, wireless communication technologies have been widely used in the 

transportation system. As a part of Intelligent Transportation Systems, the Connected-vehicle 

program (formerly called VII or Intellidrive), sponsored by the U.S. DOT Research and 

Innovative Technology Administration (RITA)/ITS Joint Program Joint Program Office (ITS 

JPO), focuses on localized Vehicle-to-Vehicle, Vehicle-to-Infrastructure and Vehicle-to-Device 

Systems (V2X) to support safety, mobility and environmental applications using vehicle 

Dedicated Short Range Communications (DSRC)/Wireless Access for Vehicular Environments 

(WAVE) (ITS AMERICA, 2014). In US, major Connected-vehicle projects have been initiated 

in the states of California, Michigan, and Arizona (Amanna, 2009). In California, a “sniffer” 

working with a 170-type controller (and conceivably with any controller) is established, 

combined with a message set, which provides wireless DSRC signal state information to 

approaching, equipped cars (Dallinger et al., 2013).  Michigan DOT developed a self-supporting 

test bed in 2005. The aim of this program is to provide a real-world laboratory to validate 

products and technologies related to Connected-vehicle (Underwood et al., 2008; Krueger, 

2005). Connected-vehicle-related activities in Arizona are focused on providing emergency 
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services and supporting incident management activities. The Emergency VII (E-VII) program 

has identified four key capabilities to improve incident response (Saleem and Nodes, 2008). 

2.2.1 CAV on signalized intersection 

Leveraging the DSRC technology, approaching vehicles’ speeds, positions, and other 

information with signal data could be obtained at a signalized intersection. Such technologies 

offer the possibility for vehicles to receive advanced information from signal lights and alter 

speed trajectories to minimize idling at the stop line of signalized intersection (Chen et al., 2011).  

Some studies in this regard aim at minimizing vehicular delay time. In 2014, Guler 

proposed an algorithm to enumerate various patterns of cars discharging before the stop bar to 

minimize the vehicular delay using connected-vehicle technology (Guler et al., 2014). Li and 

Wang developed some trajectories for cars to safely and resulting in minimized delay time (Li 

and Wang, 2006). In 2012, based on game theory for a cooperative adaptive cruise control 

system at an intersection, an algorithm was developed to let every single vehicle to avoid conflict 

and have minimized delay (Zohdy and Rakha, 2012). Abu-Lebdeh proposed an algorithm to 

study the benefit of the intellidrive technology in terms of delay (Abu-Lebdeh, 2013).  

For those delay minimized-related researches, speed trajectories recommended may not 

be the best for reducing fuel consumption and emission. Therefore, use of ITS technology to 

propose a fuel-optimal strategy is on the agenda of the eco-driving research (Barth and 

Boriboonsomsin, 2009; Widodo et al., 2002). In advance, under the connected vehicle 

technology, a few researches utilized the signal information to reduce fuel consumption and 

emissions (Wu, G et al., 2002; Asadi and Vahidi, 2010; Tielert et al., 2010; Malakorn and Park, 

2010). In 2012, the RITA released a report on eco-driving by controlling speed trajectories of 

vehicles using V2I technology (US.DOT, 2012), which is based upon the Rakha’s research 



 
 

18 
 

(Rakha and Kamalanathsharma, 2011). In this report, multiple scenarios are studied at 

intersections according to the upcoming signal changing information and vehicle’s position and 

speed. In addition to an isolated intersection, an algorithm for vehicles moving along a signalized 

arterial is also developed and tested by simulations (Barth et al., 2011).  

2.2.2 Advanced research at unsignalized intersections 

Unlike signalized intersections where the green light indicates the right of way, there’s no 

definite indication to the drivers regarding when to pass through the prior streams at unsignalized 

intersections. Instead, there usually exist hierarchies of moving priorities among streams. Traffic 

streams with lower priorities need to yield and find a safe ‘gap’ to pass through those streams 

with higher priorities. While for the yield rule, there exist huge risks based upon sight blocking. 

For example, if there exists a construction at the corner of the intersection, it may block the 

drivers’ sights on both the higher and lower priority lanes, posing a potential risk. Accordingly, 

studies on unsignalized intersections (or try to eliminate signal control) mainly focus on crash 

avoidance based on connected-vehicle technology. For example, Milanés et al. (2010) developed 

a fuzzy-based intersection control algorithm for autonomous vehicles and validated it by a test in 

Spain. Kamal et al. (2015) used a predictive control model to integrate automated vehicles at an 

unsignalized intersection to avoid collision. Dresner and Stone (2008) proposed an intersection 

algorithm for autonomous vehicles to avoid crash at unsignalized intersections. Lee and Park 

(2012) developed a cooperative vehicle intersection control algorithm without the need signal 

control. For this algorithm, the fuel consumption and car emissions are neglected to some extent. 

Speed alteration sharply to avoid a crash may cause huge fuel consumption and emission, which 

is not environmental friendly. In addition, it is more complicated to develop speed guidance 
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algorithms at an unsignalized intersection, as the ‘gap’, used to determine when to cross, is 

dynamic and lacks regularity. 

2.2.3 Real-time bus control 

With the development of real-time wireless communication technology (e.g. connected vehicle, 

vehicle to infrastructure communication), TSP strategies have been advanced in recent years. For 

examples, Hu et al. (2015) developed an algorithm that reached the maximum coverage of TSP 

buses and reduced the risk of competing movements. Despite its effectiveness in reducing bus 

delay, implementation of TSP is usually at the cost of general traffic operational performance. 

The key issue of conflicts between general traffic and buses has not been resolved, especially at 

the bus stations. 

2.2.4 Active DZ protection 

Recently, several preliminary studies have been investigated towards applying the real-time 

communication theory for DZ protection. Sharma et al. (2012) developed a prototype Yellow 

Onset Motorist Assistance (YODA) system, consisting of a pole-mounted unit (StreetWave) and 

an in-vehicle unit (MobiWave), to advise the motorists on whether it is safe to proceed through 

the intersection. Hsu et al. (2014) developed an on-board system which can alert the motorists to 

slow down to avoid DZ according to the real time driving status, such as speed and position. 

Dong et al. (2014) presents a dilemma-zone (DZ) avoidance-guiding system for vehicles 

approaching an intersection. The purpose of the system is to assist motorists in determining the 

driving behavior and to prevent vehicles from being caught in DZ.  
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2.3 Summary of Critical Issues 

This chapter illustrates current research towards the traffic bottleneck and safety studies 

including latest model improvements and their benefits in the future transportation system.  

There’re still several drawbacks need further investigation, which are summarized as follows: 

1. Despite its effectiveness in reducing bus delay, implementation of TSP is usually at the 

cost of general traffic operational performance; 

2. The key issue of conflicts between general traffic and buses has not been resolved, 

especially at the bus stations. Different station layouts within and across real-time crash 

studies pose doubts on the consistency of findings in different studies; 

3. For the freeway entrances and unsignalized intersections, existing methods are unable to 

prevent weaving effectively; and 

4. On the high-speed and unsignalized intersections, although some warning systems can 

remind the motorists of changing speed, while this inactive deceleration may generate 

other issues such as drastic speed fluctuation or long-time idling. 
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 SINGLE VEHICLE-BASED TRAJECTORY OPTIMIZATION FOR 

CONNECTED AND AUTOMATED VEHICLES AT A SIGNALIZED 

INTERSECTION 

This chapter develops a single vehicle-based trajectory optimization model for connected and 

automated vehicles at a signalized intersection. The proposed model applies when the congestion 

is detected given the speed, occupancy, location of approaching vehicles and signal timing 

information. A three-phase solution algorithm is developed to solve the model, where a multi 

stage based nonlinear programming procedure is developed in Phase I to search trajectories that 

minimizes the average travel time, while Phases II and III refine the trajectories with a mixed 

integer linear programming to minimize average idling time and speed fluctuation of the platoon 

in sequence. Illustrative examples are provided to validate the proposed model. Results indicate 

that it is effective to prevent congestion while minimizing average travel time, idling time and 

speed fluctuation. Sensitivity analyses with respect to the impact of initial speeds of the target 

vehicle on the speed control performance are also conducted, which may help further improve 

the speed guidance performance by pre-adjusting vehicle speeds before they enter the control 

scope. 

3.1 Introduction 

Signalized intersections are one of the most important elements in the urban transportation 

system. As cities grow in both surface and population, the signalized intersections often struggle 

to provide satisfying level of service due to limited road space coupled with increasing traffic 

demand, resulting in over-long travel time and eco-problems. In the United States, the 

transportation sector uses up nearly 75% of petroleum and emits the second largest carbon 
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dioxides due to the poor operation performance. Research findings also indicate that bad driving 

behaviors resulted from the severe bottlenecks constitute the major contribution to carbon 

emission and petroleum consumption. Traditional strategies have little effectiveness for 

improving the operation research around the signalized intersections. Therefore, innovative 

technologies are urgently needed to address these challenges. 

In the past two decades, the connected and automated vehicle (CAV) technologies has 

been widely researched, sponsored by the U.S. DOT Research and Innovative Technology 

Administration (RITA)/ITS Joint Program Joint Program Office (ITS JPO), focuses on localized 

Vehicle-to-Vehicle, Vehicle-to-Infrastructure and Vehicle-to-Device Systems (V2X) to support 

safety, mobility and environmental applications. In the United States, major CAV projects have 

been initiated in the states of California, Michigan, and Arizona. In California, a “sniffer” 

working with a 170-type controller is established, combined with a message set, which provides 

wireless DSRC signal state information to approaching, equipped cars. Shladover and Kuhn 

validated the CAV probe data for adaptive signal control, incident detection and weather 

condition monitoring systems. In Michigan, the DOT developed a self-supporting test bed in 

2005. The aim of this program is to provide a real-world laboratory to validate products and 

technologies related to CAV. CAV-related studies in Arizona are originally concentrated on 

emergency service and adaptive control strategies. For example, Samaranayake et al presented a 

novel air pollution estimation method that models the highway traffic state, highway traffic-

induced air pollution emissions, and pollution dispersion, and describe a prototype 

implementation for the San Francisco Bay Area. The model is based on the availability of real-

time traffic estimates on highways, which is obtained using a traffic dynamics model and an 

estimation algorithm that augments real-time data from both fixed sensors and probe vehicles. 
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M. Ramezani and N. Geroliminis integrated the collective effect of dispersed probe vehicle data 

with traffic flow shockwave analysis and data mining techniques to estimate queue profiles. Z. 

Wang et al. proposeed a nonlinear model predictive control (MPC) approach for emission 

mitigation via longitudinal control of intelligent vehicles in a congested platoon. The proposed 

vehicle control strategies are tested using a series of simulations, and results verify that localized 

and instantaneous control of a few intelligent vehicles could reduce emissions of a platoon of 

vehicles. 

There are a handful of studies focused on trajectory optimization for intersection 

operation under real-time communication. Li and Wang have proposed safe vehicular trajectories 

resulting in minimized delay time. Chen et al developed an algorithm assuming that vehicles are 

able to receive information in advance from signal lights through DSRC and alter their speeds to 

minimize idling at the stop line. Zohdy and Rakha developed a game theory-based algorithm to 

allow each single vehicle to avoid conflict and incur minimized delay for a cooperative adaptive 

cruise control system at an intersection. Using connected-vehicle technology, a cooperative 

vehicle intersection control algorithm is developed without the need signal control. Abu-Lebdeh 

proposed an algorithm to study the benefits of the Intellidrive technology in terms of vehicular 

delay. Guler et al. have proposed an algorithm to enumerate various vehicle discharging patterns 

before the stop line and minimize vehicular delay using the connected-vehicle technology. Wan 

et al. proposed a Speed Advisory System (SAS) for pre-timed traffic signals and obtained the 

fuel minimal driving strategy as an analytical solution to a fuel consumption minimization 

problem. Wei et al. developed a set of integer programming and dynamic programming models 

for scheduling longitudinal trajectories with both system-wide safety and throughput 

requirements taken into consideration. However, very limited efforts have been made for 
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cooperative trajectory optimization that alters vehicle arrival patterns to proactively eliminate 

weaving conflicts at a bottleneck. Other researches are conducted toward connected and 

automated vehicles at an isolated. A review of literature indicates that most previous studies on 

vehicular speed control algorithms are designed for individual optimization objective. However, 

very limited efforts have been made for cooperative trajectory optimization that alters vehicle 

arrival patterns to proactively eliminate bottleneck while minimizing travel time and lower down 

speed fluctuation and idling time. 

Therefore, this study contributes to developing a platoon-based trajectory optimization 

model for CAV that can effectively and simultaneously shorten the average travel time, idling 

time and speed fluctuation of platoon through the signalized intersection (Figure 3.1). Due to the 

wireless communication, the real-time location and speed of each vehicle as well as the signal 

information can be acquired, helping predict the future traffic situation. As the left part of Figure 

4.2 illustrates, if the vehicle is expected to hit the red and cannot speed up to avoid hitting, the 

system will guide the vehicle to slow down until the next green comes. On the contrary, if 

acceleration can dodge hitting red, the system will guide the vehicle to speed up and pass the 

stop line before the red displays.  

The proposed model applies when the congestion is detected given the speed, occupancy, 

location of approaching vehicles and signal timing information. It enables vehicle-vehicle and 

vehicle-signal cooperation through a three-phase optimization process. A three-phase algorithm 

is developed to solve the model, where a multi-stage-based nonlinear programming (NLP) 

procedure is developed in Phase I to search trajectories that minimizes the average travel time, 

while Phases II and III refine the trajectories with the mixed integer linear programming (MILP) 

to minimize average idling time and speed fluctuation of the platoon in sequence. 
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In order to explore the benefits of entire connected and automated environment, the 

penetration rate of the connected and automated vehicles is set as 100%. Besides, the automation 

level analyzed in this chapter refer to the high automation, which means human can drive but 

they don’t need to, as the vehicle can drive itself. Therefore, human factors such as response 

manipulating time can be fully neglected. 

 

Figure 3.1 Trajectory optimization to prevent congestion. 

3.2 Illustration of Control Model 

3.2.1 Notation 

To facilitate the presentation of model and its solution algorithm, indices and parameters used 

hereafter are listed in Table 3.1.  

Table 3.1 Symbols and Parameters. 

Indices 
𝑝𝑝 Index of vehicles on a lane, 𝑝𝑝 = 1,2, … 
𝑠𝑠 Index of stages, 𝑠𝑠 = 0,1,2, … 
𝑡𝑡 Index of times, 𝑡𝑡 = 0,1,2, … 

General Constants and Variables 
𝑥𝑥𝑝𝑝0 Initial distance between the stop line and the pth vehicle (m) 
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 Length of the control scope (m) 
𝑥𝑥′ Initial location of the nearest downstream vehicle (m) 
ℎ𝑝𝑝0 Initial headway between the pth and p-1th (p>1) vehicles (m) 



 
 

34 
 

ℎ10 Initial headway between the leading and its nearest downstream vehicles 
(m), which is assigned by a very large number if no downstream vehicles 
exist 

𝑣𝑣10 Initial speed of the first vehicle (m/s); 
𝑙𝑙 Average vehicle length (m) 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 Minimum cruising speed (m/s) 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 Maximum speed limit (m/s) 
𝑎𝑎 Maximum acceleration rate (m/s2) 
-𝑑𝑑 Maximum deceleration rate (m/s2) 
𝑇𝑇𝑇𝑇𝑇𝑇  Time to red indication when the platoon enters the control scope (s), which 

is negative and its absolute value equals to the duration since the red light 
has appeared, if the signal light displays red at the instant 

𝐶𝐶 Signal cycle length (s) 
𝑟𝑟 Duration of red interval (s) 
𝑔𝑔 Duration of green interval (s) 
𝑇𝑇 Ranges of red interval 
𝑠𝑠∗ Final stage of the multi-stage-based NLP in Phase I 
𝑡𝑡𝑝𝑝∗  Number of decision variables of the pth vehicle for MILP 
𝐼𝐼∗ Optimal average idling time (s) 
𝐷𝐷𝑝𝑝,𝑠𝑠 Accumulated travel distance of the pth vehicle at the sth stage (m) 

𝑑𝑑𝑝𝑝,𝑠𝑠(𝑡𝑡) Accumulated travel distance of the pth vehicle at the tth second within the sth 
stage (m) 

𝑑𝑑𝑠𝑠′(𝑡𝑡) Accumulated travel distance of the downstream vehicle at the tth second 
within the sth stage (m) 

𝑦𝑦𝑝𝑝,𝑠𝑠 Indicator for idling of the pth vehicle at the sth stage 
𝑡𝑡𝑝𝑝,𝑠𝑠 Travel time for the pth vehicle at the sth stage (s) 

𝑡𝑡𝑝𝑝,𝑠𝑠∗ 
Travel time of the pth vehicle in the last stage 𝑠𝑠∗, using time rolling horizon 
method (s) 

∆𝑝𝑝,𝑠𝑠 Difference in travel time between the sth and s+1th stages (s) 
𝐻𝐻 Time interval between two successive stages (s) 
𝑡𝑡𝑝𝑝 Travel time for the pth vehicle to pass the intersection (s) 

Decision Variables 
𝑣𝑣𝑡𝑡
𝑝𝑝 Speed of the pth vehicle at the tth second (m/s) 

Auxiliary Variables 
𝐼𝐼𝑡𝑡
𝑝𝑝 Indicator for idling for the pth vehicle at the tth second 
𝑈𝑈𝑡𝑡
𝑝𝑝 Indicator for speed fluctuation for the pth vehicle at the tth second 
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3.2.2 Description of Control Logic 

The architecture of the control logic is depicted by a flow chart (see Figure 3.2), which is 

consisted of four components: (1) platoon detection; (2) bottleneck determination; (3) trajectory 

optimization; and (4) status tracking. 

 

Figure 3.2 Architecture of the control logic. 

Platoon Detection 

This is the first step of the control mechanism that is activated when the leading vehicle 

of a platoon enters the control scope. Here, the control scope should be initially determined, 

since an over short scope cannot provide enough space for the vehicle to change its status 

according to the control guidance, while the over-long scope may cause waste of time and space 

resources.  

�−
1

2𝑑𝑑
∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

2 +
1

2𝑎𝑎
∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚

2 ≤ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠
𝐶𝐶 ∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠

 (1) 

According to formulas (1), the control scope 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 should be determined to make sure: 

1) the vehicle has enough space to stop before the stop line; 2) the vehicle has enough space to 

accelerate to the maximum speed limit; and 3) vehicular travel time with the minimum cruising 

speed to the stop line should be no greater than the cycle length when no congestion presents. 
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It should be noted that the platoon is defined as a list of vehicles where the headway 

between every two vehicles are less than 5 second. If the headway is larger than 5s, the two 

vehicles belong to different platoons. 

Congestion Determination 

The congestion is determined based on the prediction that the platoon with the current 

speed will be blocked by the downstream vehicles or signal control, which should be satisfied 

with either of the following formulas.  

ℎ10 + 𝑥𝑥′ − 𝑣𝑣10𝑡𝑡′ ≤ 2𝑣𝑣10 (2) 
  
  

⎩
⎪
⎨

⎪
⎧𝑇𝑇𝑇𝑇𝑇𝑇 + 𝜏𝜏 <

𝑥𝑥10

𝑣𝑣10
< 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝜏𝜏 + 𝑟𝑟,      𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 0

𝑥𝑥10

𝑣𝑣10
< 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟 𝑜𝑜𝑟𝑟 

𝑥𝑥10

𝑣𝑣10
> 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑐𝑐,𝑇𝑇𝑇𝑇𝑇𝑇 < 0 

 (3) 

where, 𝑥𝑥′ is the current location of the nearest downstream; 𝑣𝑣10 is the initial speed of the 

first vehicle; 𝑡𝑡′ is the travel time of that vehicle to clear the intersection, which could be acquired 

by the system control towards the downstream platoon; and 𝑇𝑇𝑇𝑇𝑇𝑇 is time to red interval when the 

platoon enters the control scope, which is negative and its absolute value equals to the duration 

since the red light has appeared, if the signal light displays red at the instant. 

If congestion is confirmed, the control logic will proceed to the next component, as 

optimizing trajectory of the platoon. Otherwise, the control logic will skip to the last component, 

as the status tracking. 

Status Tracking 

If no congestion will happen or the trajectory optimization is finished, the system will 

keep tracking the platoon status to check if the status is violated. If so, the control logic will go 
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back to the component of congestion determination, and re-process the following steps, until the 

platoon entirely clears the intersection. 

3.2.3 Model Formulation 

If the congestion is determined, a platoon-based trajectory optimization model will be 

formulated, as illustrated below. 

Decision Variables 

The set of decision variables is the speed profile of each vehicle inside the platoon, given 

by: 

𝑣𝑣𝑡𝑡
𝑝𝑝= speed of the pth vehicle at the tth second (m/s). 

Objective functions 

The objectives of the model include: (a) minimizing the average travel time for vehicles 

in the platoon; (b) conditioned on the outcome of objective (a), minimizing the average idling 

time; and (c) conditioned on the outcomes of objectives (b) and (c), minimizing the average 

speed fluctuation, given by: 

Objective (a): 

𝑚𝑚𝑚𝑚𝑚𝑚
1
𝑚𝑚
�𝑡𝑡𝑝𝑝

𝑚𝑚

𝑝𝑝=1

 (4) 

 

Objective (b): 

𝑚𝑚𝑎𝑎𝑥𝑥
1
𝑚𝑚
��𝐼𝐼𝑡𝑡

𝑝𝑝

𝑡𝑡𝑝𝑝

𝑡𝑡=1

𝑚𝑚

𝑝𝑝=1

 (5) 

 

Objective (c): 
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𝑚𝑚𝑚𝑚𝑚𝑚
1
𝑚𝑚
��𝑈𝑈𝑡𝑡

𝑝𝑝

𝑡𝑡𝑝𝑝

𝑡𝑡=1

𝑚𝑚

𝑝𝑝=1

 (6) 

 

where, 𝑡𝑡𝑝𝑝 is the travel time of the pth vehicle; 𝐼𝐼𝑡𝑡
𝑝𝑝 is a binary idling indicator of the pth 

vehicle at the tth second, given by the following formula,  

𝐼𝐼𝑡𝑡
𝑝𝑝 = �0, 𝑣𝑣𝑡𝑡

𝑝𝑝 = 0 ∩  𝑣𝑣𝑡𝑡−1
𝑝𝑝 = 0 

1,                                      𝑜𝑜.𝑤𝑤.
, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ �1, 𝑡𝑡𝑝𝑝�  (7) 

and 𝑈𝑈𝑠𝑠
𝑝𝑝 is a binary indicator for speed fluctuation of the vehicle the pth vehicle at the sth second, 

illustrated by formula (8). 

𝑈𝑈𝑡𝑡
𝑝𝑝 = �0, 𝑣𝑣𝑡𝑡+1

𝑝𝑝 − 𝑣𝑣𝑡𝑡
𝑝𝑝 =  𝑣𝑣𝑡𝑡−1

𝑝𝑝 − 𝑣𝑣𝑡𝑡−2
𝑝𝑝

1,                                              𝑜𝑜.𝑤𝑤.
 , 𝑝𝑝 ∈ [1,𝑚𝑚]; 𝑡𝑡 ∈ �2, 𝑡𝑡𝑝𝑝 − 1� (8) 

 

Constraints 

The general form of constraints for the model, excepting for the inner connections among 

those objective functions, are illustrated below. 

Vehicular speed should not exceed the maximum speed, given by: 

0 ≤ 𝑣𝑣𝑡𝑡
𝑝𝑝 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝 ∈ [1,𝑚𝑚]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑝𝑝� (9) 

 

Furthermore, if the vehicle is cruising, the speed should be beyond a minimum cruising 

speed, given by: 

𝑣𝑣𝑡𝑡
𝑝𝑝 ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 𝑣𝑣𝑡𝑡

𝑝𝑝 = 𝑣𝑣𝑡𝑡−1
𝑝𝑝 , 𝑝𝑝 ∈ [1,𝑚𝑚]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑝𝑝� (10) 

 

Vehicular acceleration and deceleration rates should be within the reasonable range, 

given by: 

−𝑑𝑑 ≤ 𝑣𝑣𝑡𝑡
𝑝𝑝 − 𝑣𝑣𝑡𝑡−1

𝑝𝑝 ≤ 𝑎𝑎, 𝑝𝑝 ∈ [1,𝑚𝑚]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑝𝑝� (11) 
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A safe distance should be always kept between vehicles to avoid rear-end collision. To 

linearly express the constraint, the “two-second rule” rule is applied herein, which is defined as 

a rule of thumb by which a driver may maintain a safe trailing distance at any speed. The rule is 

that a driver should ideally stay at least two seconds behind any vehicle that is directly in front of 

his or her vehicle, given by: 

ℎ𝑝𝑝0 +
1
2�

�𝑣𝑣𝑞𝑞
𝑝𝑝−1 + 𝑣𝑣𝑞𝑞−1

𝑝𝑝−1
𝑡𝑡

𝑞𝑞=1

� −
1
2�

�𝑣𝑣𝑞𝑞
𝑝𝑝 + 𝑣𝑣𝑞𝑞−1

𝑝𝑝
𝑡𝑡

𝑞𝑞=1

� ≥ 2𝑣𝑣𝑡𝑡
𝑝𝑝, 𝑝𝑝 ∈ [1,𝑚𝑚]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑝𝑝� (12) 

ℎ10 +
1
2�

�𝑣𝑣𝑞𝑞′ + 𝑣𝑣𝑞𝑞−1′
𝑡𝑡

𝑞𝑞=1

� −
1
2�

�𝑣𝑣𝑞𝑞1 + 𝑣𝑣𝑞𝑞−11
𝑡𝑡

𝑞𝑞=1

� ≥ 2𝑣𝑣𝑡𝑡1, 𝑝𝑝 ∈ [1,𝑚𝑚]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑝𝑝� (13) 

 

Formulas (12) and (13) insure all vehicles in the platoon could keep a safe distance, 

where the set of  𝑣𝑣𝑡𝑡′ introduced in formula (13) are the speed of the last downstream vehicle.  

Red light violation shall also be completely avoided with the following formulas, as 

Figure 3.3 depicts. 

1
2
�𝑣𝑣𝑞𝑞

𝑝𝑝 + 𝑣𝑣𝑞𝑞−1
𝑝𝑝

𝑟𝑟−1

𝑞𝑞=1

≤ 𝑥𝑥𝑝𝑝0, 𝑝𝑝 ∈ [1,𝑚𝑚]; 𝑟𝑟 ∈ 𝑇𝑇 ∩ �1, 𝑡𝑡𝑝𝑝� (14) 

 

 

Figure 3.3 Range of red duration under various initial signal information. 

Regarding formula (14), the range of 𝑇𝑇 is determined by the initial signal information 

𝑇𝑇𝑇𝑇𝑇𝑇, denoted as the time to red indication. If the signal displays red when the platoon enters the 

control scope, the value of  𝑇𝑇𝑇𝑇𝑇𝑇 would be negative and its absolute value equals to the duration 

https://en.wikipedia.org/wiki/Rule_of_thumb
https://en.wikipedia.org/wiki/Assured_Clear_Distance_Ahead
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since the red signal has displayed. Therefore, the remaining red duration under the current cycle 

can be estimated with [0,𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟]. Accordingly, the range of 𝑇𝑇 at the zth cycle can be 

illustrated as: 

𝑇𝑇 = [0,𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟] ∪ [𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑧𝑧𝐶𝐶,𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟 + 𝑧𝑧𝐶𝐶],𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 0, z = 1,2, … (15) 
 

 

While if the signal displays yellow or green initially, the red duration at the current cycle 

is estimated with [𝑇𝑇𝑇𝑇𝑇𝑇,𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇]. Then the range of 𝑇𝑇 at the zth cycle can be given by: 

𝑇𝑇 = [𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑧𝑧𝐶𝐶,𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟 + 𝑧𝑧𝐶𝐶],𝑇𝑇𝑇𝑇𝑇𝑇 > 0, z = 1,2, … (16) 
 

Finally, the entire platoon should clear the intersection, given by: 

1
2
�𝑣𝑣𝑞𝑞

𝑝𝑝 + 𝑣𝑣𝑞𝑞−1
𝑝𝑝

𝑡𝑡𝑝𝑝

𝑞𝑞=1

≥ 𝑥𝑥𝑝𝑝0,𝑝𝑝 ∈ [1,𝑚𝑚]; (17) 

 

3.3 Solution Algorithm 

3.3.1 A Three-phase algorithm  

This study provides a three-phase algorithm to solve the platoon-based trajectory optimization 

model, whose mechanism is depicted in Figure 3.4, where Phase I features a multi-stage-based 

NLP to minimize the average travel time for the platoon; Phase II develops a MILP to further 

minimize the average idling time, conditioned on the travel time of each vehicle determined in 

Phase I; and Phase III advances another MILP to ultimately minimize the average speed 

fluctuation of the platoon, conditioned on the outcomes of Phases I and II. 



 
 

41 
 

 

Figure 3.4 Architecture of the three-phase algorithm. 

3.3.2 Minimization of average travel time 

Average Travel Time Optimization-A Multi-Stage Decision Process 

The estimation of travel time is based on the vehicular speed, while it is not stable during a long 

interval due to the fluctuating speed. Thus, it is difficult to use any “one-off” algorithm to 

optimize the travel time. Instead, the time rolling horizon-based algorithm applies, as the travel 

time can be estimated based on the feasible speed at the current stage, and it can be updated stage 

by stage. Accordingly, a multi-stage optimization process is developed in this study, where in 

each stage a NLP is used to find the optimal speed for each vehicle inside the platoon that could 

minimize the average travel time (Figure 3.5).  

Regarding the time interval between two successive stages, denoted as 𝐻𝐻, it should be as 

short as possible while be sufficient for any vehicle to switch the status between idling and 

traveling with the maximum speed limit.  

As the left part of Figure 3.4 shows, the multi-stage-based NLP is terminated when all 

vehicles in the platoon clear the intersection. Otherwise, it is assumed that those vehicles who 

have passed the stop line still participate in the optimization process.  
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Figure 3.5 Multi-stage process for optimization of average travel time. 

3.3.3 State Transfer Functions 

Update speed 

Given the time interval 𝐻𝐻, the time indices at the sth and s+1th stages are 𝑠𝑠𝐻𝐻 and 𝑠𝑠𝐻𝐻 + 𝐻𝐻, 

respectively. Thus, the speed at each second through the sth to s+1th stages can be estimated 

with: 

𝑣𝑣𝑡𝑡
𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧ 𝑣𝑣𝑠𝑠𝑠𝑠

𝑝𝑝 ,                                                                                                        𝑡𝑡 = 𝑠𝑠𝐻𝐻
𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝 ,                                                                                           𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻

max�𝑣𝑣𝑠𝑠𝑠𝑠
𝑝𝑝 + 𝑚𝑚𝑠𝑠

𝑝𝑝(𝑡𝑡 − 𝑠𝑠𝐻𝐻), 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝 �,               𝑚𝑚𝑡𝑡 < 0, 𝑠𝑠𝐻𝐻 < 𝑡𝑡 < 𝑠𝑠𝐻𝐻 + 𝐻𝐻 

min�𝑣𝑣𝑠𝑠𝑠𝑠
𝑝𝑝 + 𝑚𝑚𝑠𝑠

𝑝𝑝(𝑡𝑡 − 𝑠𝑠𝐻𝐻), 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝 �,        𝑚𝑚𝑠𝑠 > 0, 𝑠𝑠𝐻𝐻 + 𝐻𝐻 < 𝑡𝑡 < 𝑠𝑠𝐻𝐻 + 𝐻𝐻

 (18) 

 

where, 𝑚𝑚𝑠𝑠
𝑝𝑝 is illustrated by the following formula. 

𝑚𝑚𝑠𝑠
𝑝𝑝 = �

𝑎𝑎, 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝 > 𝑣𝑣𝑠𝑠𝑠𝑠

𝑝𝑝

−𝑑𝑑, 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝 ≤ 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠

𝑝𝑝  (19) 

Formulas (18) and (19) demonstrate the process of speed update where the vehicle spends 

the maximum acceleration or deceleration rate on updating the speed and then cruises if there’s 

still time left to the next stage. 

Update accumulated travel distance 

Given the process of speed update, the accumulated travel distance at the s+1th stage can 

be updated with: 
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𝐷𝐷𝑝𝑝,𝑠𝑠+1 = 𝐷𝐷𝑝𝑝,𝑠𝑠 + 𝑑𝑑𝑝𝑝,𝑠𝑠(𝑡𝑡)|𝑡𝑡=𝑠𝑠𝑠𝑠+𝑠𝑠 , 𝐷𝐷0,𝑝𝑝 = 0 (20) 
 

where, 𝑑𝑑𝑝𝑝,𝑠𝑠(𝑡𝑡) is the travel distance at the tth second through the sth to s+1th stages, 

estimated with: 

𝑑𝑑𝑝𝑝,𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧1

2
�𝑣𝑣𝑡𝑡

𝑝𝑝 + 𝑣𝑣𝑠𝑠𝑠𝑠
𝑝𝑝 �(𝑡𝑡 − 𝑠𝑠𝐻𝐻),                                                            𝑣𝑣𝑡𝑡

𝑝𝑝 ≠ 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝  

𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝 2 − 𝑣𝑣𝑠𝑠𝑠𝑠

𝑝𝑝 2

2𝑚𝑚𝑠𝑠
𝑝𝑝 + 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠 �𝑡𝑡 − 𝑠𝑠𝐻𝐻 −

𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝 − 𝑣𝑣𝑠𝑠𝑠𝑠

𝑝𝑝

2𝑚𝑚𝑠𝑠
𝑝𝑝 � , 𝑣𝑣𝑡𝑡

𝑝𝑝 = 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑝𝑝  

 (21) 

 
Update travel time 

The multi-stage-based estimation of travel time is illustrated in Figure 3.5. At the sth 

stage, it can be estimated with: 

𝑡𝑡𝑝𝑝,𝑠𝑠 = �
𝑥𝑥𝑝𝑝0 − 𝐷𝐷𝑝𝑝,𝑠𝑠

𝑣𝑣𝑡𝑡
𝑝𝑝 + 𝑦𝑦𝑡𝑡

𝑝𝑝 + 𝑠𝑠𝐻𝐻, 𝑠𝑠 > 0

0,                                 𝑠𝑠 = 0
, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 (22) 

where, 𝑦𝑦𝑡𝑡
𝑝𝑝 is an indicator for the idling speed given by the following formula. If  𝑣𝑣𝑡𝑡

𝑝𝑝 is 

zero, the travel time will be assigned by a very large number.  

𝑦𝑦𝑡𝑡
𝑝𝑝 = �0,                   𝑣𝑣𝑡𝑡 > 0 

0.0001, 𝑣𝑣𝑡𝑡 = 0, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 ; 𝑠𝑠 > 0 (23) 

 

It can be found from formula (22) that if at the sth stage the vehicle has already cleared 

the intersection, the value 𝑥𝑥0 − 𝐷𝐷𝑠𝑠 is negative, resulting in the travel time is less than 𝑠𝑠𝐻𝐻. 

Given the travel time at the sth stage, it can be updated at the s+1th stage with: 

𝑡𝑡𝑝𝑝,𝑠𝑠+1 = 𝑡𝑡𝑝𝑝,𝑠𝑠 + ∆𝑡𝑡𝑝𝑝,𝑠𝑠 (24) 
 

where, 

∆𝑡𝑡𝑝𝑝,𝑠𝑠 =

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑝𝑝

0 − 𝐷𝐷𝑝𝑝,𝑠𝑠 − 𝑑𝑑𝑝𝑝,𝑠𝑠(𝑡𝑡)
𝑣𝑣𝑡𝑡
𝑝𝑝 + 𝑦𝑦𝑡𝑡

𝑝𝑝 −
𝑥𝑥0 − 𝐷𝐷𝑝𝑝,𝑠𝑠

𝑣𝑣𝑡𝑡−𝑠𝑠
𝑝𝑝 + 𝑦𝑦𝑡𝑡−𝑠𝑠

𝑝𝑝 + 𝐻𝐻, 𝑠𝑠 > 0

𝑥𝑥𝑝𝑝0 − 𝐷𝐷𝑝𝑝,𝑠𝑠 − 𝑑𝑑𝑝𝑝,𝑠𝑠(𝑡𝑡)
𝑣𝑣𝑡𝑡
𝑝𝑝 + 𝑦𝑦𝑡𝑡

𝑝𝑝 + 𝐻𝐻,                                      𝑠𝑠 = 0
, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻 (25) 
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Then, the update of average travel time for the platoon is given by: 

𝑇𝑇𝑝𝑝,𝑠𝑠+1 = 𝑇𝑇𝑝𝑝,𝑠𝑠 +
1
𝑚𝑚
�∆𝑡𝑡𝑝𝑝,𝑠𝑠

𝑚𝑚

𝑝𝑝=1

, s > 0 (26) 

3.3.4 Objective Function 

The objective of the multi-stage-based NLP is to minimize the average travel time stage by stage. 

At the s+1th stage, the objective function can be given by: 

𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝑠𝑠 +
1
𝑚𝑚
�∆𝑡𝑡𝑝𝑝,𝑠𝑠

𝑚𝑚

𝑝𝑝=1

� (27) 

 

Essentially, it can be converted to: 

𝑚𝑚𝑚𝑚𝑚𝑚
1
𝑚𝑚
��

𝑥𝑥𝑝𝑝0 − 𝐷𝐷𝑝𝑝,𝑠𝑠
∗ − 𝑑𝑑𝑠𝑠,𝑝𝑝(𝑡𝑡)

𝑣𝑣𝑡𝑡
𝑝𝑝 + 𝑧𝑧𝑝𝑝,𝑡𝑡

�
𝑚𝑚

𝑝𝑝=1

, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻 (28) 

 

where, 𝐷𝐷𝑝𝑝,𝑠𝑠
∗  is the optimized accumulated travel distance at the sth stage, and 𝑧𝑧𝑝𝑝,𝑡𝑡 is an 

indicator to determine if the travel time should be assigned by a very large value, given by: 

𝑧𝑧𝑝𝑝,𝑡𝑡 = �
0,                           𝑣𝑣𝑡𝑡

𝑝𝑝 > 0
0.0001,                𝑣𝑣𝑡𝑡

𝑝𝑝 = 0
, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻 (29) 

 

The multi-stage-based NILP is terminated at the 𝑠𝑠∗th stage when all vehicles have cleared 

the intersection. The final stage 𝑠𝑠∗ should satisfy the following formula. 

𝐷𝐷𝑝𝑝,𝑠𝑠∗ > 𝑥𝑥𝑝𝑝0, ∀𝑝𝑝 (30) 

3.3.5 Constraints  

The constraints of the model, illustrated from formulas (9) to (17), should be converted to the 

stage-based form, as shown in follows. 

Constraint of speed limit, given by: 
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0 ≤ 𝑣𝑣𝑡𝑡
𝑝𝑝 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝 ∈ [2,𝑚𝑚]; 𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻 (31) 

 

Constraint of cruising speed limit, illustrated by formula (10), can eliminate the “if” 

condition, illustrated as: 

𝑣𝑣𝑡𝑡
𝑝𝑝 ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑝𝑝 ∈ [2,𝑚𝑚];  𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻 (32) 

 

Constraint of acceleration/deceleration can be loosened herein, as the process of speed 

update has been determined. 

Constraint of safe distance maintenance, illustrated by formulas (12) and (13), can be 

converted as:  

ℎ𝑝𝑝0 + 𝐷𝐷𝑝𝑝−1,𝑠𝑠
∗ + 𝑑𝑑𝑝𝑝−1,𝑠𝑠(𝑡𝑡) − 𝐷𝐷𝑝𝑝−1,𝑠𝑠

∗ − 𝑑𝑑𝑝𝑝−1,𝑠𝑠(𝑡𝑡) ≥ 2𝑣𝑣𝑡𝑡
𝑝𝑝,

𝑝𝑝 ∈ [2,𝑚𝑚];  𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻, 𝑠𝑠𝐻𝐻 + 𝐻𝐻 + 1, … 
(33) 

ℎ10 + 𝐷𝐷𝑠𝑠′ + 𝑑𝑑𝑠𝑠′(𝑡𝑡) − 𝐷𝐷1,𝑠𝑠
∗ − 𝑑𝑑1,𝑠𝑠(𝑡𝑡) ≥ 2𝑣𝑣𝑡𝑡1, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻, 𝑠𝑠𝐻𝐻 + 𝐻𝐻 + 1, … (34) 

 

Constraint of red violation prevention, illustrated by formula (14), should be added a 

condition that the constraint only works if the vehicle at the previous stage does not exceed the 

stop line, given by: 

𝐷𝐷𝑝𝑝,𝑠𝑠−1
∗ + 𝑑𝑑𝑝𝑝,𝑠𝑠(𝑡𝑡) ≤ 𝑥𝑥𝑝𝑝0 𝑚𝑚𝑖𝑖𝐷𝐷𝑝𝑝,𝑠𝑠−1

∗ ≤ 𝑥𝑥𝑝𝑝0, 𝑡𝑡 ∈ [𝑠𝑠𝐻𝐻 + 𝐻𝐻, 𝑠𝑠𝐻𝐻 + 𝐻𝐻 + 1, … ] ∩ 𝑇𝑇 (35) 
 

Constraint of clearing the intersection can be loosened here, as it is the condition for 

terminating the multi-stage-based NLP.  

3.4 MILP for Further Optimization 

3.4.1 Further Optimization of Vehicular Trajectories-A Linear Process 

Although Phase I would generate the speed profiles that could minimize the average travel time, 

they may not be optimal for idling time and speed fluctuation (See Figure 3.6 for illustration). 
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Therefore, Phases II and III are introduced to further minimize the idling time and speed 

fluctuation in sequence. These optimization processes could be fulfilled by MILP, as both the 

objective functions and constraints could be expressed linearly. Another reason is the travel time 

is determined by Phase I, which means the number of decision variables can be acquired, given 

by: 

𝑡𝑡𝑝𝑝∗ = �𝑡𝑡𝑝𝑝,𝑠𝑠∗� + 1 (36) 
 

 

Figure 3.6 Patterns of over-long idling time and speed fluctuation. 

 
Accordingly, the time interval between the last two decision variables is 𝑡𝑡𝑝𝑝,𝑠𝑠∗ + 1 − 𝑡𝑡𝑝𝑝∗ , 

instead of one second. Then the accumulated travel distance can be linearly estimated with: 

𝑑𝑑𝑝𝑝,𝑡𝑡 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

2
�𝑣𝑣𝑞𝑞

𝑝𝑝 + 𝑣𝑣𝑞𝑞−1
𝑝𝑝

𝑡𝑡−1

𝑞𝑞=0

,                                                                         𝑡𝑡 < 𝑡𝑡𝑝𝑝∗

1
2
�𝑣𝑣𝑡𝑡𝑝𝑝∗

𝑝𝑝 + 𝑣𝑣𝑡𝑡𝑝𝑝∗−1
𝑝𝑝 � �𝑡𝑡𝑝𝑝,𝑠𝑠∗ + 1 − 𝑡𝑡𝑝𝑝∗� +

1
2
� 𝑣𝑣𝑞𝑞

𝑝𝑝 + 𝑣𝑣𝑞𝑞−1
𝑝𝑝

𝑡𝑡𝑝𝑝∗−1

𝑞𝑞=0

, 𝑡𝑡 = 𝑡𝑡𝑝𝑝∗
 (37) 

 
 

The objective function for average idling time is given by: 

𝑚𝑚𝑎𝑎𝑥𝑥
1
𝑚𝑚
�𝐼𝐼𝑡𝑡

𝑝𝑝

𝑡𝑡𝑝𝑝∗

𝑡𝑡=1

 (38) 

 
 

The objective functions for average speed fluctuation conditions on the outcomes of 

optimization of average idling time, given by: 
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𝑚𝑚𝑎𝑎𝑥𝑥
1
𝑚𝑚
�𝑈𝑈𝑡𝑡

𝑝𝑝

𝑡𝑡𝑝𝑝∗

𝑡𝑡=1

    𝑠𝑠. 𝑡𝑡.�𝐼𝐼𝑡𝑡
𝑝𝑝

𝑡𝑡𝑝𝑝∗

𝑡𝑡=1

= 𝐼𝐼∗ 

 

(39) 

 
 

where, 𝐼𝐼∗ is the outcome of formula (38). 

3.4.2 Constraints 

The constraints shared by the two MILP include those depicted in the model section, while they 

should be converted to the linear form so that they can be used herein, as illustrated below. 

The constraints of speed limit, acceleration/deceleration limit, and safe distance 

maintenance, illustrated by formulas (9), (11), (12) and (13), can be directly used, while for 

cruising speed limit, as formula (10) shows, should be converted to the linear form, given by: 

�𝑣𝑣𝑡𝑡
𝑝𝑝 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚�𝑀𝑀1 ≥ �𝑣𝑣𝑡𝑡

𝑝𝑝 − 𝑣𝑣𝑡𝑡−1
𝑝𝑝 � − 𝛼𝛼𝑡𝑡

𝑝𝑝𝑀𝑀, , 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (40) 
  
  

�𝑣𝑣𝑡𝑡
𝑝𝑝 − 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚�𝑀𝑀1 ≥ �𝑣𝑣𝑡𝑡−1

𝑝𝑝 − 𝑣𝑣𝑡𝑡
𝑝𝑝� − �1 − 𝛼𝛼𝑡𝑡

𝑝𝑝�𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (41) 
 
 

From formulas (40) and (41), two large positive penalty constants 𝑀𝑀 and 𝑀𝑀1 (𝑀𝑀 ≫ 𝑀𝑀1), 

together with the binary variable 𝛼𝛼𝑡𝑡, are used to get the rid of the “if-else” condition. 

The constraint of red violation avoidance, given by formula (14), should be converted 

with: 

�𝑑𝑑𝑝𝑝,𝑡𝑡 − 𝑥𝑥0
𝑝𝑝�𝑀𝑀1 ≤ �𝑑𝑑𝑝𝑝,𝑡𝑡−1 − 𝑥𝑥0

𝑝𝑝� − 𝛽𝛽𝑡𝑡
𝑝𝑝𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (42) 

�𝑑𝑑𝑝𝑝,𝑡𝑡 − 𝑥𝑥0
𝑝𝑝�𝑀𝑀1 ≥ �𝛽𝛽𝑡𝑡

𝑝𝑝 − 1�𝑀𝑀 + 𝑀𝑀1, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (43) 
 
 

In Formulas (42) and (43), the binary variable 𝛽𝛽𝑡𝑡, together with the large penalty 

constants 𝑀𝑀 and 𝑀𝑀1 can linearly express the “if” condition. 
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The constraint of clearing the intersection by formula (12), should be added an additional 

formula to ensure the value of last speed variable is greater than zero, given by: 

1
2
�𝑣𝑣𝑞𝑞

𝑝𝑝 + 𝑣𝑣𝑞𝑞−1
𝑝𝑝

𝑡𝑡𝑝𝑝∗

𝑞𝑞=1

≥ 𝑥𝑥0
𝑝𝑝, 𝑝𝑝 ∈ [1,𝑚𝑚] (44) 

𝑣𝑣𝑡𝑡𝑝𝑝∗𝑀𝑀 ≥ 𝑀𝑀1, 𝑝𝑝 ∈ [1,𝑚𝑚]  (45) 
 
 

Finally, the definitions of 𝐼𝐼𝑡𝑡
𝑝𝑝 and 𝑈𝑈𝑡𝑡

𝑝𝑝, given by formulas (43) and (44), should also be 

converted to linear forms, given by: 

0 ≤ 𝐼𝐼𝑡𝑡
𝑝𝑝 ≤ 1, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (46) 

  
𝐼𝐼𝑡𝑡
𝑝𝑝 ≤ �𝑣𝑣𝑡𝑡

𝑝𝑝 + 𝑣𝑣𝑡𝑡−1
𝑝𝑝 �𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (47) 

  
�1 − 𝐼𝐼𝑡𝑡

𝑝𝑝�𝑀𝑀1 ≤ 𝛾𝛾𝑡𝑡
𝑝𝑝𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (48) 

  
�𝑣𝑣𝑡𝑡

𝑝𝑝 + 𝑣𝑣𝑡𝑡−1
𝑝𝑝 �𝑀𝑀1 ≤ �1 − 𝛾𝛾𝑡𝑡

𝑝𝑝�𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (49) 
  

0 ≤ 𝑈𝑈𝑡𝑡
𝑝𝑝 ≤ 1, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (50) 

  
�1 − 𝑈𝑈𝑡𝑡

𝑝𝑝�𝑀𝑀 ≤ �𝑣𝑣𝑡𝑡+1
𝑝𝑝 − 𝑣𝑣𝑡𝑡

𝑝𝑝 − 𝑣𝑣𝑡𝑡−1
𝑝𝑝 + 𝑣𝑣𝑡𝑡−2

𝑝𝑝 �𝑀𝑀1 + 𝛿𝛿𝑡𝑡
𝑝𝑝𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (51) 

  
𝑈𝑈𝑡𝑡
𝑝𝑝𝑀𝑀1 ≤ (1 − 𝛿𝛿𝑡𝑡)𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (52) 

  
�𝑣𝑣𝑡𝑡+1

𝑝𝑝 − 𝑣𝑣𝑡𝑡
𝑝𝑝 − 𝑣𝑣𝑡𝑡−1

𝑝𝑝 + 𝑣𝑣𝑡𝑡−2
𝑝𝑝 �𝑀𝑀1 ≤ 𝛿𝛿𝑡𝑡

𝑝𝑝𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (53) 
  

−�𝑣𝑣𝑡𝑡+1
𝑝𝑝 − 𝑣𝑣𝑡𝑡

𝑝𝑝 − 𝑣𝑣𝑡𝑡−1
𝑝𝑝 + 𝑣𝑣𝑡𝑡−2

𝑝𝑝 �𝑀𝑀1 ≤ 𝛿𝛿𝑡𝑡
𝑝𝑝𝑀𝑀, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (54) 

  
�𝑣𝑣𝑡𝑡+1

𝑝𝑝 − 𝑣𝑣𝑡𝑡
𝑝𝑝 − 𝑣𝑣𝑡𝑡−1

𝑝𝑝 + 𝑣𝑣𝑡𝑡−2
𝑝𝑝 �𝑀𝑀1 + 𝜀𝜀𝑡𝑡

𝑝𝑝𝑀𝑀 ≥ 𝛿𝛿𝑡𝑡
𝑝𝑝, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (55) 

  
�𝑣𝑣𝑡𝑡+1

𝑝𝑝 − 𝑣𝑣𝑡𝑡
𝑝𝑝 − 𝑣𝑣𝑡𝑡−1

𝑝𝑝 + 𝑣𝑣𝑡𝑡−2
𝑝𝑝 �𝑀𝑀1 + �1 − 𝜀𝜀𝑡𝑡

𝑝𝑝�𝑀𝑀 ≥ 𝛿𝛿𝑡𝑡
𝑝𝑝, 𝑝𝑝 ∈ [1,𝑚𝑚];  𝑡𝑡 ∈ [1, 𝑡𝑡𝑝𝑝∗] (56) 

 
 

Formulas (46) to (49) use 𝑀𝑀, 𝑀𝑀1 and a binary variable 𝛾𝛾𝑡𝑡
𝑝𝑝 to linearly express the values 

of 𝐼𝐼𝑡𝑡
𝑝𝑝. While from formulas (50) to (56), two binary variables 𝛿𝛿𝑡𝑡

𝑝𝑝 and 𝜀𝜀𝑡𝑡
𝑝𝑝, together with 𝑀𝑀 and 

𝑀𝑀1, linear express the definition of 𝑈𝑈𝑡𝑡
𝑝𝑝. 
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3.5 AN ILLUSTRATIVE EXAMPLE 

3.5.1 Scenarios Establishment 

In this section, some examples are illustrated to validate the proposed platoon-based trajectory 

optimization model. Ten vehicles are selected to form a platoon and various scenarios are 

established related to TTR. We chose ten vehicles because we think ten vehicles of platoon has 

an appropriate length. We need to consider two limitations: overlong platoon may cause delay 

for more than two cycles; and over short platoon cannot reflect all the benefits of the speed 

control. 

The parameter settings in this example are summarized in Table 3.2. Note that the initial 

speed and headway of each vehicle in the platoon are set as identical. 

Table 3.2 Summary of Parameter Settings. 

Parameter
s Denotation 

Scenarios 
Scenario 

1 
Scenario 

2 
Scenario 

3 
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 Control Scope (m) 200 200 200 
𝑥𝑥′ Location of downstream vehicle 100 - 85 
𝑙𝑙 Average vehicle length (m) 6 6 6 
ℎ𝑝𝑝0 Headway (Identical) (m) 21 21 21 
𝑣𝑣0
𝑝𝑝 Initial speed (Identical) 12 10 10 
𝑣𝑣0′  Initial speed of downstream vehicle (m/s) 10 - 0 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 Minimum cruising speed (m/s) 6 6 6 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 Maximum speed limit (m/s) 17 17 17 
𝑎𝑎 Maximum acceleration rate (m/s) 2.8 2.8 2.8 
−𝑑𝑑 Maximum deceleration rate (m/s) -1.4 -1.4 -1.4 
𝑇𝑇𝑇𝑇𝑇𝑇 Time to red (s) 15 20 -35 
𝑟𝑟 Red interval (s) 60 60 60 
𝑔𝑔 Green interval (s) 30 30 30 
𝜏𝜏 Yellow interval (s) 5 5 5 

3.5.2 Evaluation of Travel Time 

In this section, the travel time of each vehicle and the average travel time of the platoon under 
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the control and non-control environments are compared with three scenarios (Figure 3.7). Here, 

the control environment refers to speed control and therefore, non-control refers to no speed 

control. Since we are tracking a whole platoon when it is approaching the intersection, there will 

be only three results, when the speed control is needed: (1) the whole platoon accelerates to pass 

the intersection before the red light displays; (2) the whole platoon decelerates until the next 

green interval comes, and then passes the intersection; and (3) the platoon is divided into two 

sub-platoons, the downstream of which accelerates to pass the intersection, and the upstream of 

which slows down or even stop until the next green displays. According to the above results, we 

designed three relative scenarios. 

It can be illustrated that Scenario 1 shows significant difference in travel times for the 

leading and second vehicles of the platoon approaching the intersection under control and non-

control environments. Such a difference is due to the fact that those vehicles under control passes 

the intersection without obstruction from the red light or downstream vehicles when following 

the control. Nonetheless, without the control the vehicles may experience the process of cruising, 

deceleration, and idling, resulting in much longer travel time. In Scenario 2, the second and third 

vehicles experience the similar situation as that in Scenario 1, while the difference in travel time 

for the leading vehicle is not significant, as even without control the leading vehicle could clear 

the intersection with no blockage. For other samples, the difference in travel time is due to the 

elimination of loss time under the control, as no idling happens. In summary, the average travel 

time of the platoon with the control is shorter than the one without the control. 
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Figure 3.7 Comparison of travel time under the control and non-control environments with 

various scenarios. 

Figure 3.8 further depicts the trajectory of each vehicle under the control environment. 

For scenarios 1 and 2, the platoon is divided into sub-platoons where the leading one accelerate 

to clear the intersection while the following one decelerate until the next green interval come. 

For scenario 3, the idling downstream vehicle let the whole platoon entirely decelerate to clear 

the intersection without idling. 

 

Figure 3.8 Trajectory of platoon under the control environment with various scenarios. 
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3.5.3 Evaluation of Idling Time and Speed Fluctuation 

The idling time and speed fluctuation of each vehicle and the average values with various 

scenarios are compared under the control and non-control environments (Table 3.3). Note that all 

values are set as integer. The results indicate that under the control environment, the idling time 

and speed fluctuation of each vehicle have significant improvement, compared with the those 

under non-control environment. Furthermore, the average idling time and speed fluctuation of 

platoon under the control environment are also lower than those without control. 

Table 3.3 Comparison of Idling Time and Speed Fluctuation Under the Control and Non-

Control Environments. 

Vehicle 
index 

Scenarios 
Scenario 1 Scenario 2 Scenario 3 

Idling time (s) 
Speed fluctuation 

(times) Idling time (s) 
Speed fluctuation 

(times) Idling time (s) 
Speed fluctuation 

(times) 
With 

control 
Without 
control 

With 
control 

Without 
control 

With 
control 

Without 
control 

With 
control 

Without 
control 

With 
control 

Without 
control 

With 
control 

Without 
control 

1 0 45 1 2 0 0 1 3 0 0 1 3 
2 0 44 1 3 0 61 1 2 0 0 1 3 
3 0 44 1 3 0 61 1 2 0 0 1 4 
4 0 44 1 2 0 62 1 3 0 27 1 3 
5 0 43 1 3 0 62 1 3 0 27 1 3 
6 0 43 1 3 0 62 1 2 0 26 1 2 
7 0 42 1 2 0 62 1 3 0 26 1 2 
8 0 42 1 3 0 61 1 1 0 26 1 3 
9 0 44 1 3 0 61 1 1 0 26 1 2 

10 0 42 1 2 0 61 1 1 0 26 1 2 
Ave 0 43 1 3 0 61 1 2 0 26 1 3 

 
To further explore the benefits of lower idling time and speed fluctuation, this study 

utilizes the VT-micro model to compare the fuel consumption of the platoon under the control 

and non-control environments.  
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This research adopts the microscopic fuel consumption and emission model, the VT-

micro Model, as it has been proved to be accurate and easy for calibration. The model is given 

by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 = 𝑒𝑒𝑥𝑥𝑝𝑝���𝐿𝐿𝑚𝑚,𝑗𝑗𝑠𝑠 𝑣𝑣𝑚𝑚
3

𝑗𝑗=1

3

𝑚𝑚=1

𝑎𝑎𝑗𝑗�  (57) 

 
 

where, 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 is the instantaneous fuel consumption rate; 𝐿𝐿𝑚𝑚,𝑗𝑗𝑠𝑠  are the model coefficients 

for 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 at speed power 𝑚𝑚 and acceleration power 𝑗𝑗; 𝑣𝑣 is the instantaneous speed; and 𝑎𝑎 is the 

instantaneous acceleration rate.  

The results are depicted by Figures 3.9 and 4.10. 

 

Figure 3.9 Trajectory of platoon under the control environment with various scenarios. 

It can be illustrated by Figure 3.9 that in Scenario 1 the leading and second vehicle 

consume much lower fuel with control, compared with that under non-control environment, due 

to the significant difference in travel time. The second and third vehicles in Scenario 2 have the 

similar situation.  
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For other results, the fuel consumption under the control environment is still lower, due 

to the optimal idling time and speed fluctuation. The difference in fuel consumption for those 

samples is not as huge as the previous one, as the travel time with and without control are close. 

 

Figure 3.10 Fuel consumption rate for the leading vehicle with and without control in 

scenarios 1 and 3. 

Figure 3.10 discusses the fuel consumption rate of the leading vehicle in Scenarios 1 and 

3 in detail (Scenario 2 is neglected here as it is similar to Scenario 1). It can be found that the 

fuel consumption trajectory of the vehicle undergoing control is smoother than the one without 

control. For Scenario 1, the fuel consumption curve with control ends much earlier, compared 

with that without control, resulting in significant energy save. While for Scenario 2, the curve 

without control ends a little bit later than the one with control, due to the loss time. Furthermore, 

for the curve without control, as the vehicle aggressively accelerates to pass the intersection, a 

peak emerges at the end. 

3.5.4 Sensitivity Analysis 

In this section, a sensitivity analysis is designed to explore the level of average travel time with 

different initial platoon speed (assume all vehicular speeds are identical), which may further 

improve the control performance by pre-adjusting the platoon’s speed before it enters the control 
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scope. The average travel time with initial speeds ranging from 6 m/s to 16 m/s with increment 

step size of 1 m/s, under Scenarios 1 and 3, are summarized in Figure 3.11. 

 

Figure 3.11 Impact of initial speeds on average travel time. 

As shown in Figure 3.11, when the signal initially displays green, as TTR>0, the average 

travel time of platoon declines with the increase of its initial speed. This is probably due to the 

fact that the higher the initial speed the higher the flexibility for the target vehicle to adjust its 

speed to avoid blockage by signal control. Nonetheless, if TTR<0, the initial speed seems have 

little impact on the average travel time, due to the inevitable blockage by signal control. 

3.6 Conclusions 

This chapter proposes a single vehicle-based trajectory optimization control model for CAV at a 

signalized intersection. The initial objective of the model is to minimize the average travel time 

of the platoon. Then, based on the optimal travel time, the speed trajectory of each vehicle is 

further optimized to minimize the average idling time and speed fluctuation in sequence. A 

three-phased algorithm is proposed to solve the model, where Phase I features a multi-stage-

based NLP to minimize the average travel time for the platoon; Phase II develops a MILP to 



 
 

56 
 

further minimize the average idling time, conditioned on the travel time of each vehicle 

determined in Phase I; and Phase III advances another MILP to ultimately minimize the average 

speed fluctuation of the platoon, conditioned on the outcomes of Phases I and II.  

This study provides several illustrative examples to validate the control model. Firstly, 

the study compares the travel time of each vehicle in the platoon and the resulted average travel 

time with and without the control.  Results show that both the vehicular travel time and platoon’s 

average travel time decrease significantly. Secondly, this study compares the fuel consumption 

of each vehicle and the average value of the platoon under the control and non-control 

environments. Results indicate that due to the lower travel time, idling time and speed 

fluctuation, the fuel consumption with control is significantly lower than that without control. 

Furthermore, the time-varying fuel consumption of the leading vehicle in the platoon with 

respect to control and non-control environments are compared and the fuel consumption curve 

under control is much smoother. Finally, this study compares the level of average travel time 

under different initial speeds of a platoon. Results show that when signal displays green initially, 

the average travel time declines with the increase of initial speed, while no obvious relationship 

is found when the signal initially displays red. Such findings may help further improve the speed 

guidance performance by pre-adjusting vehicle speeds before they enter the control scope. 

Analysis results of the illustrative examples indicate the validity and effectiveness of the 

proposed control model. On-going work of this study is to test the model in real-world CAV 

systems. 

 

 

 



 
 

57 
 

 A PLATOON-BASED SPEED CONTROL ALGORITHM AT A 

SIGNALIZED INTERSECTION 

This chapter extends the model in Chapter 3 by proposing a dynamic speed control algorithm for 

a platoon of vehicles at a signalized intersection to mitigate traffic bottleneck. Both the running 

status of the target platoon and the impact of the anterior platoon are considered and analyzed. 

Acceleration/deceleration profile, instead of speed trajectories, is used in this research as the 

optimization objective to prevent drivers from idling and to let them clear the intersection during 

the green light as possible as they can. When a platoon is mixed with vehicles obeying or 

disobeying the system’s guidance, the proposed algorithm will group those vehicles into new 

platoons according to their permutations. Three illustrative examples are provided to validate the 

proposed algorithm using fuel consumption as the measuring standard. Results indicate that 

when the platoon needs to accelerate to pass the intersection, a smaller headway causes less fuel 

consumption; while a larger headway results in less fuel consumption if vehicles decelerate to 

pass the intersection. In addition, the leading vehicle is found to consume more fuel if it disobeys 

the system’s advice, but if the leading vehicle obeys the system’s advice, it is found that the fuel 

consumption for the following vehicles, even disobeying the advice, may not increase obviously. 

4.1 Introduction 

In recent years, public attention to the environmental pollution and energy shortage is growing 

rapidly. In the United States, the transportation sector uses up nearly 75% of petroleum and emits 

the second largest carbon dioxides. Research findings indicate that urban node bottlenecks 

constitute the major contribution to carbon emission and petroleum consumption...  
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In the past two decades, wireless communication technologies have been widely used in 

the transportation system. As a part of Intelligent Transportation Systems, the Connected-vehicle 

program (formerly called VII or Intellidrive), sponsored by the U.S. DOT Research and 

Innovative Technology Administration (RITA)/ITS Joint Program Joint Program Office (ITS 

JPO), focuses on localized Vehicle-to-Vehicle, Vehicle-to-Infrastructure and Vehicle-to-Device 

Systems (V2X) to support safety, mobility and environmental applications using vehicle 

Dedicated Short Range Communications (DSRC)/Wireless Access for Vehicular Environments 

(WAVE). In US, major Connected-vehicle projects have been initiated in the states of California, 

Michigan, and Arizona. In California, a “sniffer” working with a 170-type controller (and 

conceivably with any controller) is established, combined with a message set, which provides 

wireless DSRC signal state information to approaching, equipped cars.  Michigan DOT started 

developing a self-supporting test bed info-structure in 2005. The aim of this program is to 

provide a real-world laboratory to test products and technologies related to Connected-vehicle. It 

aims to provide a geographically scalable system that adopts national standards and is 

coordinated by USDOT’s Connected-vehicle Consortium. Connected-vehicle-related activities in 

Arizona are focused on supporting emergency responders and incident management activities. 

The Emergency VII (E-VII) program has identified four key capabilities to improve incident 

response. 

Leveraging the DSRC technology, approaching vehicles’ speeds, positions, and other 

information with signal data could be obtained at a signalized intersection. Such technologies 

offer the possibility for vehicles to receive advanced information from signal lights and alter 

speed trajectories to minimize idling at the stop line of signalized intersection (18-20). Figure 4.1 

shows the operational process of this technology. Two pictures at the bottom of Figure 4.1 
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illustrate the concept of dynamic speed control that prevents vehicles from idling. In the left 

picture, the vehicle follows the system’s advice to decelerate gradually to pass the intersection 

and then accelerate back to the original speed. In the right picture, the vehicle accelerates to cross 

the stop bar and then decelerates back to its original speed. 

 

Figure 4.1 Dynamic speed control using V2X. 

Many studies in this regard aim at minimizing vehicular delay time; hence the speed 

trajectories recommended may not be the best for saving fuel consumption and emission. In 

2012, the RITA released a report on eco-driving by controlling speed trajectories of vehicles 

using V2I technology. In this report, multiple scenarios are studied at intersections according to 

the upcoming signal changing information and vehicle’s position and speed. In addition to an 

isolated intersection, an algorithm for vehicles moving along a signalized arterial is also 

developed and tested by simulations.  

A review of the literature indicates that previous research efforts, focused on minimizing 

fuel consumption or vehicular delay, lack consideration of many real-world operational 
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constraints. For example, a platoon rather than a single vehicle shall be considered during speed 

control. Also, it is necessary to consider the impact of vehicles’ incompliance to speed guidance 

as well as the interactions among platoons. 

As an extension, this research contributes to developing a dynamic speed control 

algorithm to mitigate traffic bottleneck in the measure of fuel consumption, by optimizing the 

acceleration/deceleration profile for a platoon consisting of obedient and disobedient vehicles 

rather than the speed trajectories of only one vehicle. Furthermore, besides the signal timing and 

phasing information, we also analyze the impact of the anterior platoon (for example, queued 

vehicles) in detail. Finally, this research compares the results of fuel consumption under different 

headways and permutations (different positions of obedient and disobedient vehicles). 

Illustrative examples will be provided to validate the proposed algorithm. 

4.2 Methodology 

4.2.1 Various speed trajectories under the same travel time 

Figure 4.2 shows two time-space diagrams representing an acceleration scenario and a 

deceleration scenario for a single vehicle traverse a signalized intersection. In part (a), the driver 

needs to accelerate to pass the stop line, while the driver in part (b) needs to decelerate until the 

signal light turns green, if he/she hopes to avoid idling.   

javascript:void(0);
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Figure 4.2 Speed trajectories of a single vehicle under different scenarios. 

Figure 4.2 indicates five types of speed trajectories corresponding to the acceleration and 

deceleration scenarios, given by:  

• Type 1: The driver accelerates smoothly to pass the stop line during green when he/she 

knows the possibility of hitting the red light if keeping his/her original speed; 

• Type 2: The driver accelerates sharply near the stop line and clears the intersection during 

the green light; 

• Type 3: The driver cruises at the original speed and idles until the signal light turns green; 

• Type 4: The driver decelerates smoothly to pass the stop line when the signal light just 

turns green; and 

• Type 5: The driver decelerates sharply at first and cruises the remaining distance until the 

signal light turns green. 

For the same travel distances, the above five speed trajectories result in different levels of 

fuel consumption. In part (a), the Type 2 trajectory results in more fuel consumption than Type 

Time (s)

Distance (m)

Time (s)

Distance (m)

1.Smooth 
Acceleration

2.Sharply 
Acceleration

3.Idling

4.Smooth Deceleration

5.Sharply Deceleration

(a) (b)



 
 

62 
 

1. Similarly, the Type 4 trajectory consumes less fuel than the Type 3 and Type 5 in part (b). It is 

considered that the Type 1 trajectory and the Type 4 trajectory are optimal trajectories for fuel 

consumption, which encourage drivers to keep a gradual acceleration/deceleration status to pass 

the stop line during green, rather than accelerating/decelerating sharply (see Figure 4.3 for 

comparison). 

 

Figure 4.3 Comparison between optimal speed and non-optimal speed trajectories under 

the same travel time. 

It should be noted that there might be a special case where drivers have options to choose 

Type 1 trajectory and Type 4 trajectory at the same time. In this situation, Type 1 trajectory is 

suggested due to its savings in travel time. 

4.2.2 Assumptions 

The following assumptions need to be made to develop the dynamic speed control algorithm in 

this chapter: 

Assumption 1: A platoon of vehicles is divided into two groups, the “obedient vehicles” 

(OV) and “disobedient vehicles” (DOV). Both groups of vehicles can accomplish real-time 

communication with infrastructures (V2I) and among themselves (V2V); 
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Assumption 2: When an OV follows another OV or a DOV, there exist no car-following 

behavior; when a DOV follows a DOV or an OV, it follows a car-following model. 

Assumption 3: When two OVs alter their speeds according to the same speed guidance, 

they make alterations simultaneously, which means the space/time headway between them is 

unchanged; 

Assumption 4: Effective green and red time used, and the amber time is not considered; 

and 

Assumption 5: Vehicles in a platoon share the same speeds and space headways until they 

change their running situations.  

4.2.3 Acceleration/deceleration models 

In order to reach the target speed, the vehicle needs to accelerate or decelerate from its original 

speed. In this study, we consider a vehicle maintains a constant acceleration/deceleration rate 

during its speed alteration process, given by: 

𝑎𝑎𝑚𝑚 =
𝑣𝑣𝑡𝑡 − 𝑣𝑣0

𝑡𝑡
 (1) 

𝑑𝑑𝑚𝑚 =
𝑣𝑣𝑡𝑡 − 𝑣𝑣0

𝑡𝑡
 (2) 

where, 𝑣𝑣0 is the vehicle’s original speed; 𝑣𝑣t is the target speed, 𝑡𝑡 is the time for 

acceleration/deceleration; 𝑎𝑎𝑚𝑚 is the acceleration rate for the nth vehicle and 𝑑𝑑𝑚𝑚 is the deceleration 

rate for the nth vehicle. In this study, the acceleration/deceleration rates are used as the 

optimization objectives for speed control of a platoon of vehicles.  

4.2.4 Car-following model 

According to Assumption 2, when a DOV follows a DOV or an OV, a car-following model 

applies. This chapter chooses the linear GM car-following model (23) due to its simplicity, 

accuracy and sensibility. The model is given by: 

javascript:void(0);
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𝑎𝑎𝑚𝑚+1(𝑡𝑡 + 𝑇𝑇) = 𝜆𝜆[𝑣𝑣𝑚𝑚(𝑡𝑡) − 𝑣𝑣𝑚𝑚+1(𝑡𝑡)] (3) 
where 𝑎𝑎𝑚𝑚+1 is the acceleration rate for the (n+1)th vehicle at the time (𝑡𝑡 + 𝑇𝑇); 𝜆𝜆 is denoted as the 

sensitivity coefficient; 𝑣𝑣𝑚𝑚(𝑡𝑡) and 𝑣𝑣𝑚𝑚+1(𝑡𝑡) are speeds for the nth vehicle and the (n+1)th vehicle at 

the time 𝑡𝑡, respectively. Note that the proposed speed control algorithm offers the flexibility to 

accommodate other forms of car-following models. 

4.2.5 Fuel consumption model  

This research adopts the microscopic fuel consumption model, the VT-CPFM-1 Model, as it has 

been proved to be simple, accurate, and easy for calibration. The model is given by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 =

⎩
⎪⎪
⎨

⎪⎪
⎧
𝑒𝑒𝑥𝑥𝑝𝑝���𝐿𝐿𝑚𝑚,𝑗𝑗𝑠𝑠 𝑣𝑣𝑚𝑚

3

𝑗𝑗=1

3

𝑚𝑚=1

𝑎𝑎𝑗𝑗�   𝑖𝑖𝑜𝑜𝑟𝑟 𝑎𝑎 ≥ 0

𝑒𝑒𝑥𝑥𝑝𝑝���𝑀𝑀𝑚𝑚,𝑗𝑗
𝑠𝑠 𝑣𝑣𝑚𝑚

3

𝑗𝑗=1

3

𝑚𝑚=1

𝑎𝑎𝑗𝑗�   𝑖𝑖𝑜𝑜𝑟𝑟 𝑎𝑎 < 0

 (4) 

where, 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 is the instantaneous fuel consumption rate (l/s); 𝐿𝐿𝑚𝑚,𝑗𝑗𝑠𝑠  are the model coefficients for 

𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 at speed power 𝑚𝑚 and acceleration power 𝑗𝑗 under positive acceleration; 𝑀𝑀𝑚𝑚,𝑗𝑗
𝑠𝑠  is the model 

coefficients for 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 at speed power 𝑚𝑚 and acceleration power 𝑗𝑗 under negative acceleration; 𝑣𝑣 

is the instantaneous speed (m/s); and 𝑎𝑎 is the instantaneous acceleration rate (m/s2). 

4.2.6 Impact of anterior platoon and signal timing 

When the target platoon enters the communication area, the system shall first judge whether the 

target platoon needs speed control. The system leverages the DSRC to make real-time 

communication between vehicles and the infrastructure and among vehicles. Information about 

the anterior vehicle platoon is also used to determine whether the target vehicle platoon requires 

speed control or not. The interactions between the target platoon and its anterior platoon are 

javascript:void(0);
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illustrated in Figure 4.4, in which the solid arrows represent vehicles in the target platoon, and 

the dotted arrows represent vehicles in the anterior platoon. A total of four cases are analyzed.  

Case 1 and Case 2 show that vehicles in the target platoon are not affected by the anterior 

platoon and the signal timing, resulting in no need of speed control. In Case 1, all vehicles in the 

target platoon and the last vehicle in the anterior platoon pass the stop line in the same signal 

cycle. Case 2 indicates that all vehicles in the target platoon pass the stop line in the next cycle. 

Mathematically, the above two cases should satisfy the inequality (5) and (6) simultaneously: 

[ℎ𝑚𝑚(𝑘𝑘𝑚𝑚 − 1) + 𝑋𝑋𝑚𝑚]
𝑣𝑣𝑚𝑚

≤ 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 (5) 

𝑋𝑋𝑚𝑚 > 0 (6) 
where ℎ𝑚𝑚 is the original space headway between two vehicles in the nth platoon (the 

target platoon); 𝑘𝑘𝑚𝑚 is the number of vehicles in the nth platoon; 𝑋𝑋𝑚𝑚 is denoted as the distance 

between the stop line and the first vehicle in the nth platoon, which is recorded when the last 

vehicle in the (n-1)th platoon (the anterior platoon) passes the stop line; It should be noted that if 

the value of 𝑋𝑋𝑚𝑚 is negative, the target platoon will be blocked by the anterior one. 𝑣𝑣𝑚𝑚 is the 

original speed of the nth platoon; 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 is denoted as the minimum safe time headway; 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 is 

the time to red recorded when the last vehicle in the (n-1)th platoon passes the stop line. If the 

signal light is red when the platoon enters the DSRC area, the value of 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 is negative and its 

absolute value equals to the duration since the red light has appeared. 
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Figure 4.4 Impacts of the anterior platoon and the signal light. 

Case 3 and Case 4 indicate that vehicles in the target platoon are affected by the anterior 

platoon or the signal timing, resulting a potential need of speed control. The following inequality 

will hold: 

[ℎ𝑚𝑚(𝑘𝑘𝑚𝑚 − 1) + 𝑋𝑋𝑚𝑚]
𝑣𝑣𝑚𝑚

> 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 (7) 

For Case 3 or Case 4, how to control the platoon’s speed needs further investigation, 

which will be discussed in details in the next section. 

4.2.7 Speed control algorithm for a fully obedient platoon 

In this section, we propose a dynamic speed control algorithm for a platoon consisting of all 

OVs, when they satisfy Case 3 and Case 4 shown in Figure 4.4. When the target platoon enters 

the DSRC range, based upon the signal information, vehicular position, and the original speed, 

the system optimizes the acceleration/deceleration values to ensure as many as possible vehicles 
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Distance (m)
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hit the green when arriving at the stop line. Even if some vehicles have no chance to pass the 

stop line without idling, the system will let them slow down at a minimum deceleration rate to 

save its fuel consumption. Four scenarios are analyzed as shown in Figure 4.5. 

 

Figure 4.5 Speed control algorithm for a fully obedient platoon under different scenarios. 

Scenario 1 

The remaining green time (TTR) is not sufficient for the target platoon to clear the 

intersection but would be sufficient if the platoon accelerates gradually. In addition, if 

accelerating at a reasonable rate, the target platoon would never bump into the anterior platoon. 

Then, vehicles in the target platoon are advised to accelerate and clear the intersection. One can 

compute the suggested acceleration rate with the following equation:  
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𝑎𝑎𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧2ℎ𝑚𝑚(𝑘𝑘𝑚𝑚 − 1) + 2𝑋𝑋 − 2𝑣𝑣𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇

𝑇𝑇𝑇𝑇𝑇𝑇2
,   𝑡𝑡𝑚𝑚−1 = 0 𝑜𝑜𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 > 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

2ℎ𝑚𝑚(𝑘𝑘𝑚𝑚 − 1) + 2𝑋𝑋 − 2𝑣𝑣𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠�

�𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠�
2 ,                  𝑜𝑜.𝑤𝑤.

 (8) 

subject to the constraints: 

�
𝑎𝑎𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,  𝑡𝑡𝑚𝑚−1 = 0 𝑜𝑜𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 > 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 
𝑎𝑎𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠� ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,                  𝑜𝑜.𝑤𝑤.     (9) 

0 < 𝑎𝑎𝑚𝑚 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 (10) 
where, 𝑋𝑋 is the distance between the upstream boundary of the DSRC range to the stop 

line; 𝑎𝑎𝑚𝑚 is the target acceleration rate; 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum acceleration rate; 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is the 

maximum speed allowed for safety; 𝑡𝑡𝑚𝑚−1 is the time spent by the anterior platoon to clear the 

intersection, from the moment when the target platoon enters the DSRC range; 𝑇𝑇𝑇𝑇𝑇𝑇 is the 

remaining time to red when the platoon enters the DSRC area. If the signal light is red when the 

platoon enters the DSRC area, the value of 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 is negative and its absolute value equals to the 

duration since the red light has appeared. If 𝑡𝑡𝑚𝑚−1 = 0 𝑜𝑜𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 > 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠, the target platoon 

is only affected by the signal timing, otherwise, it is affected by the signal timing and the anterior 

platoon simultaneously. 

Scenario 2  

TTR is not sufficient for the target platoon to clear the intersection but would be 

sufficient for part of the platoon if those vehicles accelerate gradually, and the remaining 

vehicles need to either decelerate gradually to pass the intersection during the next green time or 

slow down to make a stop. In this scenario, the target platoon will be split into two parts and the 

first objective is to maximize the number of vehicles that can accelerate to pass the intersection, 

given by: 

𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘𝑚𝑚𝑚𝑚 = (11) 



 
 

69 
 

⎩
⎪
⎨

⎪
⎧𝑣𝑣𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 + 1

2𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇2 − 𝑋𝑋
ℎ𝑚𝑚

+ 1,                𝑡𝑡𝑚𝑚−1 = 0 𝑜𝑜𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 > 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 

𝑣𝑣𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠� + 1
2𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠�

2 − 𝑋𝑋
ℎ𝑚𝑚

+ 1, 𝑜𝑜.𝑤𝑤.

    

0 < 𝑎𝑎𝑚𝑚 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 (12) 
subject to the constraint: 

�
𝑣𝑣𝑚𝑚 + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,                𝑡𝑡𝑚𝑚−1 = 0 𝑜𝑜𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 > 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
𝑣𝑣𝑚𝑚 + 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠� ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,                              𝑜𝑜.𝑤𝑤.  (13) 

Then, the deceleration rate for the remaining vehicles to pass the intersection during the 

next green can be calculated with: 

𝑑𝑑𝑚𝑚 =
2𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘𝑚𝑚𝑚𝑚ℎ𝑚𝑚 + 2𝑋𝑋 − 2𝑣𝑣𝑚𝑚(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇)

(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇)2  (14) 

subject to constraints: 

𝑣𝑣𝑚𝑚 + 𝑑𝑑𝑚𝑚(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇) ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 (15) 
|𝑑𝑑𝑚𝑚| ≤ |𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚| (16) 

where, the deceleration rate is calculated to satisfy that the leading decelerating vehicle 

passes the stop line at the beginning of the next green light. After that, the number vehicles 

decelerating to pass the intersection could be calculated with: 

𝑘𝑘𝑚𝑚𝑛𝑛 =
𝑣𝑣𝑚𝑚(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇 + 𝐺𝐺) + 1

2𝑑𝑑𝑚𝑚(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇 + 𝐺𝐺)2 − 𝑋𝑋
ℎ𝑚𝑚

− 𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘𝑚𝑚𝑚𝑚 + 1 (17) 

where, 𝑇𝑇 is the effective red time; 𝐺𝐺 is the effective green time; 𝑚𝑚𝑎𝑎𝑥𝑥𝑘𝑘𝑚𝑚𝑚𝑚 is the maximum 

number of vehicles to accelerate; 𝑘𝑘𝑚𝑚𝑛𝑛 is the number of vehicles to decelerate 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is the 

minimum speed value allowed; 𝑑𝑑𝑚𝑚 is the deceleration rate; 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the absolute value of the 

minimum deceleration rate. 

The remaining vehicles (may not exist) that have no chance to avoid idling at the stop 

line need to slow down with the minimum deceleration rate to stop until the next green light 

turns on. 

 
Scenario 3 
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TTR is not sufficient for the target platoon to pass the intersection, but all or part of 

vehicles could pass during the next green time without idling by reducing the current speed 

gradually. The suggested deceleration rate can be calculated with the following equation: 

𝑑𝑑𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧

2𝑋𝑋 − 2𝑣𝑣𝑚𝑚(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇)
(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇)2 ,                𝑡𝑡𝑚𝑚−1 = 0 𝑜𝑜𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 > 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 

2𝑋𝑋 − 2𝑣𝑣𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠�

�𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠�
2 ,                                    𝑜𝑜.𝑤𝑤.

 (18) 

subject to constraint (15) plus the following equation: 

Then, the number of vehicles decelerating to pass the intersection could be calculated as: 

𝑘𝑘𝑚𝑚𝑛𝑛 = 

⎩
⎪
⎨

⎪
⎧𝑣𝑣𝑚𝑚(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇𝐺𝐺)

ℎ𝑚𝑚
+
𝑑𝑑𝑚𝑚(𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇 + 𝐺𝐺)2 − 𝑋𝑋

2ℎ𝑚𝑚
+ 1,                𝑡𝑡𝑚𝑚−1 = 0 𝑜𝑜𝑟𝑟 𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 > 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

𝑣𝑣𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 + 𝐺𝐺�
ℎ𝑚𝑚

+
𝑑𝑑𝑚𝑚�𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑇𝑇 − 𝑡𝑡𝑚𝑚−1 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 + 𝐺𝐺�2 − 𝑋𝑋

2ℎ𝑚𝑚
+ 1, 𝑜𝑜.𝑤𝑤.

 (19) 

Other vehicles in the platoon that have no chance to avoid idling at the stop line need to 

slow down with the minimum deceleration rate to stop until the next green light starts. 

 
Scenario 4 

The remaining green time is not sufficient clear all vehicles in the target platoon and 

vehicles cannot avoid idling by either accelerating or decelerating. In this scenario, the algorithm 

will guide drivers to slow down at a minimum deceleration rate to stop until the next green starts.  

4.2.8 Speed control algorithm for a “mixed” platoon  

In a platoon mixed with OVs and DOVs, DOVs don’t follow the system’s speed guidance. 

Instead, they will follow the leading vehicles subject to the car-following model given by Eq. (3). 

Then, the speed control algorithm will re-group vehicles in the “mixed” platoon into several new 

platoons according to their permutations. 
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Figure 4.6 illustrates six different cases of vehicle permutations for an example “mixed” 

platoon consisting of two OVs and two DOVs. The speed control strategies under different cases 

are given by: 

• Case 1: The first two vehicles are DOVs, which compose a new platoon P1. The 

following two OVs form another platoon P2. P1 doesn’t obey the speed guidance, while 

the system will give P2 speed control advices based upon information from the signal 

light and the running status of P1.  

• Case 2: The DOVs and the OVs alternate with the first vehicle being a DOV. The first 

and the last vehicle compose the platoons P1 and P3, respectively, while the two vehicles 

in-between form the platoon P2. Here, P3 and the OV in the P2 obey the speed guidance, 

while P1 and the DOV in P2 don’t. The DOV in P2 will is subject to the car-following 

model.  

• Case 3: The first three vehicles compose the platoon P1 and the last vehicle forms the 

platoon P2. The leading OV in P1 and the P2 follow the system’s guidance while the two 

following DOVs show car-following behaviors. 

• Case 4: The DOV and the OV alternates with the first vehicle being an OV. The first two 

vehicles compose the platoon P1, and the following two vehicles form the platoon P2. In 

each platoon, the leading OV follows the speed guidance and the following DOV is 

subject to the car-following model.  

• Case 5: The first two vehicles are OVs and the following two vehicles are DOVs. No 

need to re-divide the target platoon. The first two vehicles obey the speed guidance, and 

the latter DOVs just follow. 
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• Case 6: The first and the last vehicle are DOVs, and the two vehicles in-between are 

OVs. The first vehicle composes the platoon P1, and the latter three vehicles form the 

platoon P2. P1 doesn’t obey the speed guidance, while the first two vehicles in P2 follow 

the instructions, and the last DOV in P2 just follows the leading OV.  

 

Figure 4.6 Re-group of a platoon mixed with OVs and DOVs. 

After re-grouping vehicles in the “mixed” platoon into several new platoons, the system 

will successively send speed control guidance to those new groups according to the algorithms 

stated in the previous section, even these groups have DOVs.  

If the leading vehicle is an OV, it will follow the system’s guidance. The algorithm to 

optimize its acceleration/deceleration is the same as presented in the previous section. But if a 

following vehicle is a DOV, its acceleration/deceleration at time (𝑡𝑡 + 𝑇𝑇) is calculated with the 

car-following model (Eq. (3)) specified with:  

𝑣𝑣𝑚𝑚(𝑡𝑡) = 𝑣𝑣𝑚𝑚(0) + 𝑎𝑎𝑚𝑚𝑡𝑡 (20) 
𝑇𝑇 = 1 (𝑠𝑠) (21) 
𝜆𝜆 = 0.8 (22) 
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where, 𝑣𝑣𝑚𝑚(𝑡𝑡) and 𝑣𝑣𝑚𝑚(0) are the speeds of the OV ahead of the DOV at time 𝑡𝑡 and at the initial 

time, respectively; 𝑎𝑎𝑚𝑚 is the acceleration rate of the OV suggested by the system.  

After acquiring the value of 𝑎𝑎𝑚𝑚, we update the acceleration rate of the following DOV 

every one second.  

If the leading vehicle is a DOV, it is not subject to speed control until it hits the red 

before the stop line. Here, we set the value of deceleration for the leading DOV to be 2.5m/s2. 

Deceleration rates for the following DOV can be calculated with Eq. (3) and Eqs. (20-22). 

In summary, the logic of the proposed platoon-based speed control algorithm is shown in 

Figure 4.7. 

 

Figure 4.7 Logic of speed control algorithm. 

4.3 Illustrative Examples 

In this section, three examples are presented to validate the proposed speed control algorithm. 

The first example is used to discuss the impact of the anterior platoon, the second one is designed 
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to analyze fuel consumptions under different time headways, and the third is to compare the 

results of fuel consumption under different permutations of vehicles in a “mixed” platoon. 

In the examples, we set the original speed of the target platoon (named PA) at 20m/s. PA 

consists of four vehicles. The distance from the upstream boundary of the DSRC range to the 

stop line is 300m.The safety time headway 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 is set to 0.5s.  

4.3.1 Fuel consumption rate comparison 

There is an anterior platoon (named PB), consisting of four vehicles, 120m ahead of PA. PB will 

pass the intersection at its original speed (15m/s) without any speed alternation. We set the value 

of 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 at 2s and time headway to be 0.6s. Then, one can calculate the value of 𝑋𝑋𝑚𝑚 to be 76m. 

The relationship between [ℎ𝑚𝑚(𝑘𝑘𝑚𝑚 − 1) + 𝑋𝑋𝑚𝑚]/𝑣𝑣𝑚𝑚 and 𝑇𝑇𝑇𝑇𝑇𝑇𝑚𝑚 − 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 satisfies the Eq. (7), 

indicating the PA falls into Case 3 or Case 4 and may need speed control. 

The calculation results indicate that PA needs to follow the system’s guidance to change 

its speed. Then, one can use Eq. (8) to calculate the acceleration rate as approximately 0.67m/s2, 

which is less than the maximum value. It shows that all vehicles in PA could accelerate to pass 

the intersection. Further calculation shows that the PA is in Case 4 and is not affected by the PB. 

The VT-Micro Model is used to calculate the fuel consumption of PA and the time-varying 

comparison of fuel consumption with and without speed control is shown in Figure 4.8. 
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Figure 4.8 Fuel consumption of PA under speed control and free driving. 

As shown in Figure 4.8, the blue line represents the second-by-second fuel consumption 

of PA under speed control, while the red line represents the free driving fuel consumption. It is 

clear that the blue line is almost horizontal, while there is a crest in the red line, indicating a 

dramatic increase in fuel consumption due to the sharp deceleration near the stop line.  

It is clear that the fuel consumption trajectory under speed control ends at 8s, while the 

one for free driving ends at 15s. This is due to the fact that the PA under free driving needs to 

idle for approximately 7 seconds, resulting significantly less fuel consumption of speed control 

than free driving.  

4.3.2 Fuel consumption under various headways 

No anterior platoon is considered in this example. We just compare the total fuel consumptions 

of the PA with the time headways ranging from 0.5s to 2.5s with an increment of 0.5s. We 

analyze the scenario 1 and the scenario 3 (see Figure 4.5). The results are illustrated in Figure 

4.9.  
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Figure 4.9 Total fuel consumption under different scenarios. 

As shown in Figure 4.9, under scenario 1, the total fuel consumption grows with the 

increase of time headway. While under scenario 3, it declines. This is because under scenario 1 

where all vehicles could accelerate to pass the intersection, the bigger the time headway, the less 

the time (TTR) for following vehicles to cross the intersection, causing a larger acceleration rate; 

while under scenario 3 where all vehicles need to decelerate until the green time starts, a larger 

time headway leads to less time for a vehicle to wait for the green light, causing a less 

deceleration rate. 

4.3.3 Fuel consumption under various permutations 

We compare the fuel consumptions under different permutations like Figure 4.6 shows. It is 

considered that the PA consisting of two OV and two DOV falls into scenario 3, where all 

vehicles need to decelerate. The fuel consumptions under different permutations are shown in 

Figure 4.10. 

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.5 1 1.5 2 2.5

To
ta

l F
ue

l C
on

su
m

pt
io

n

Time Headway(s)

Scenario 1
Scenario 3



 
 

77 
 

 

Figure 4.10 Fuel consumption under different permutations. 

As Figure 4.10 shows, if the leading vehicle is a DOV, then its fuel consumption is much 

larger because it doesn’t obey the speed guidance and needs to decelerate sharply to wait for the 

green light. Nevertheless, when the leading vehicle is an OV, it seems that the fuel consumption 

for the following vehicles, even for DOVs, may not increase obviously. This is because the DOV 

follows the OV tightly to pass the intersection.  

4.4 Conclusions 

This chapter extends the single vehicle model by proposing a dynamic speed control algorithm 

toward a vehicle platoon at a signalize intersection. The algorithm not only considers the running 

status of the target platoon but also analyzes the impact of the anterior platoon. 

Acceleration/deceleration rates, instead of speed, are used as the optimized target to guide the 

drivers to avoid idling and to hit the green light as possible as they can. Depending on the status 

of the platoon and signal timing, the speed control algorithms under different scenarios are 

discussed in details. The proposed algorithms not only work for a fully obedient platoon, but also 

for a mixed platoon by re-grouping vehicles into several new platoons according to their 

permutations.  
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The research provides three examples provided to validate the algorithm. In the first one, 

considering the impact of the anterior platoons, we compare the time-varying fuel consumptions 

of the target platoon between the speed control mode and the free driving mode. Results indicate 

that the platoon under free driving will idle for some time, resulting in significantly more fuel 

consumption than the speed control mode using the proposed speed control algorithms.  

In the second example, we compare the levels of fuel consumptions under different time 

headways. Results show that in an acceleration scenario, a smaller headway results in less fuel 

consumption; while in a deceleration scenario, a smaller headway causes a little more fuel 

consumption. 

In the third example, fuel consumptions under different permutations are analyzed. The 

conclusion implies that if the leading vehicle is a DOV, the target platoon’s fuel consumption is 

much larger. However, when the leading vehicle is an OV, it seems that the fuel consumption for 

the following vehicles in the target platoon, even for DOVs, may not increase obviously.  

Analysis results of the illustrative examples indicate the validity and effectiveness of the 

proposed platoon-based speed control algorithm. On-going work of this study is to apply the 

proposed algorithm in real-world projects and evaluate its effectiveness with calibrated fuel 

consumption models. 
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 DYNAMIC VEHICULAR SPEED CONTROL TOWARDS BOTTLE 

MITIGATION AND SAFETY IMPROVEMENT AT AN UNSIGNALIZED 

INTERSECTION 

 
This chapter develops a dynamic vehicular speed control algorithm towards bottleneck 

elimination at an unsignalized intersection using the CAV technology. The proposed algorithm 

considers the running status of the target vehicle as well as the impact of the downstream 

vehicles (if exists) and the gap conditions in real-world traffic environment. 

Acceleration/deceleration profile, instead of speed trajectories, is optimized for speed guidance. 

Illustrative examples are provided to validate the proposed algorithm in the measure of fuel 

consumption and emissions. Results indicate that the proposed control algorithm is effective to 

minimize the fuel consumption and emission of the target vehicle under various test scenarios.  

 

5.1 Introduction 

5.1.1 Regulars and gaps at unsignalized intersections 

Unlike signalized intersections where the green light gives the right of way, there’s no positive 

indication to the drivers about when to pass through the prior streams at unsignalized 

intersections. The drivers need to find a safe “gap” themselves. The minimum gap that the driver 

accept is the critical gap. In traditional environment, the critical gap is sensed by human and is 

variable toward different people. While under the connected-vehicle technology, especially for 

automatic vehicles, the critical gap information could be acquired in advance, which makes it 

uniform to all vehicles.  
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For the unsignalized intersections, there exists a hierarchy among streams. Some streams 

have the top priority, while others have to yield to higher rank streams. In some cases, streams 

have to yield to some streams which also have to yield to others.    

The simplest unsignalized intersection, shown in the left part of Figure 5.1, have two 

streams, from which the minor one yields to the major one. Here is only one conflicting point 

(the red circle in the left part of Figure 5.1) in these simplest intersections. While for those 

having more than two streams, a vehicle may need to avoid several conflicting points, like the 

right part of Figure 5.1 illustrates. 
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Figure 5.1 Traffic movements and regulars at unsignalized intersections. 

Many studies have been conducted towards signalized intersections where the signal 

status is a very important parameter to achieve connected-vehicle efficiency. While in the 

unsignalized intersection, as mentioned above, the gap determines if the vehicle needs stop. 

Here, we function the gap and the vehicle length as the signal status, as Figure 5.2 shows.  
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Figure 5.2 Treat gaps and vehicle length as “signal time”. 

In Figure 5.2, the top part represents three vehicles with two successive unavailable gaps, 

where those unavailable gaps and vehicle length are integrated as a whole unavailable time, as 

the function of “red time”. In the below past, two successive available gaps between three 

vehicles are available times, treated as “green time”, while those vehicle lengths are treated as 

“red time”.  

It should be noted that, these times are dynamic, depending on the velocity of the vehicle. 

Thanks to the V2X communication, the information of gaps, vehicle lengths, velocities and 

positions can be acquired in advanced, which makes it possible to achieve the algorithm 

proposed in this chapter. 

5.1.2 Speed trajectories of vairous trajectories under the same travel time 

Figure 5.3 illustrates two time-space diagrams representing an acceleration scenario and a 

deceleration plus idling scenario for a single vehicle passing through an unsignalized 

intersection. If the driver decides to avoid idling, in Part (a), he/she needs to accelerate to pass 

through the stop bar and the available gap (the gap greater than the critical gap), while the driver 

in Part (b) needs to decelerate until the next available gap shows.   
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Figure 5.3 Speed trajectories of a single vehicle under different scenarios. 

There are four types of speed trajectories corresponding to the acceleration and 

deceleration scenarios, given by:  

Type 1: The vehicle accelerates smoothly to pass the stop line during the available gap 

when he/she knows the possibility of hitting the unavailable gap if keeping his/her initial speed; 

Type 2: The vehicle accelerates sharply near the stop line and clears the intersection 

during the available gap; 

Type 3: The vehicle decelerates smoothly to pass the stop line when the available gap just 

shows; and 

Type 4: The vehicle decelerates sharply at first and cruises the remaining distance until 

the available gap comes. 

For the same travel distances, the above five speed trajectories result in different levels of 

fuel consumption. In part (a), the Type 2 trajectory results in more fuel consumption than Type 
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3. Similarly, the Type 3 trajectory consumes less fuel than the Type 3 and Type 4 in part (b). It is 

considered that the Type 2 trajectory and the Type 3 trajectory are eco trajectories, which 

encourage drivers to keep a gradual acceleration/deceleration status to pass the stop line during 

the available gap, rather than accelerating/decelerating sharply (see part (c) of Figure 5.3 for 

comparison). 

Importantly, there might be a special case where vehicles have options to choose Type 2 

trajectory and Type 3 trajectory at the same time. In this situation, Type 2 trajectory is suggested 

due to its savings in travel time. The manipulating order for eco trajectories is as follows: 

(1) If the vehicle could pass or avoid crashing without idling with its original velocity, it 

does nothing;  

(2) Else if the vehicle could pass or avoid crashing by acceleration, it accelerates 

smoothly; 

(3) Else if the vehicle could pass or avoid crashing by deceleration, it decelerates 

smoothly, and 

(4)  Else, it decelerates and idles smoothly.  

5.1.3 VT-micro model 

This research adopts the microscopic fuel consumption and emission model, the VT-micro 

Model, as it has been proved to be accurate and easy for calibration. The model is given by: 

𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 = 𝑒𝑒𝑥𝑥𝑝𝑝���𝐿𝐿𝑚𝑚,𝑗𝑗𝑠𝑠 𝑣𝑣𝑚𝑚
3

𝑗𝑗=1

3

𝑚𝑚=1

𝑎𝑎𝑗𝑗�   (1) 

𝑣𝑣 ≤ 120 (2) 
 

where, 𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 is the instantaneous fuel consumption rate (l/s) or the instantaneous 

emission (CO emission, NOx emission, HC emission) (kg/s) ; 𝐿𝐿𝑚𝑚,𝑗𝑗𝑠𝑠  are the model coefficients for 
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𝑀𝑀𝑀𝑀𝑀𝑀𝑠𝑠 at speed power 𝑚𝑚 and acceleration power 𝑗𝑗; 𝑣𝑣 is the instantaneous speed (m/s); and 𝑎𝑎 is the 

instantaneous acceleration rate (m/s2). Coefficients for estimating fuel consumption rates, CO 

emission, NOx emission and HC emission are summarized in Table 5.1. 

Table 5.1 Sample coefficients of hybrid regression model for fuel consumption and car 

emission rates. 

FUEL CONSUMOPTION 
Coefficients Constant 𝑣𝑣 𝑣𝑣2 𝑣𝑣3 

Constant -7.537 0.443809 0.171641 -0.042024 
𝑎𝑎 0.097326 0.051753 0.002942 -0.007068 
𝑎𝑎2 -0.003014 -0.000742 0.000109 0.000116 
𝑎𝑎3 0.000053 0.000006 -0.000010 -0.000006 

CO EMISSION 
Coefficients Constant 𝑣𝑣 𝑣𝑣2 𝑣𝑣3 

Constant -12.9281 0.488324 0.328837 -0.047675 
𝑎𝑎 0.23292 0.041656 -0.032843 0 
𝑎𝑎2 -0.008503 0.003291 0.0057 -0.000532 
𝑎𝑎3 0.000163 -0.000082 -0.000118 0 

NOx EMISSION 
Coefficients Constant 𝑣𝑣 𝑣𝑣2 𝑣𝑣3 

Constant -14.8832 0.834524 0.095433 -0.033549 
𝑎𝑎 0.152306 0.166647 0.101565 -0.037076 
𝑎𝑎2 -0.00183 -0.004591 -0.006836 0.000737 
𝑎𝑎3 0.00002 0.000038 0.000091 -0.000016 

HC EMISSION 
Coefficients Constant 𝑣𝑣 𝑣𝑣2 𝑣𝑣3 

Constant -14.544 0 0.251563 -0.003284 
𝑎𝑎 0.081857 0.1092 -0.01942 -0.012745 
𝑎𝑎2 -0.00226 -0.00353 0.004356 0.001258 
𝑎𝑎3 0.000069 0.000072 -0.00008 -0.000021 

5.1.4 Assumptions 

This study makes the following assumptions to develop the dynamic speed control algorithm: 

Assumption 1: All vehicles are automated vehicles and fully compliant to the system’s 

guidance; 

Assumption 2: The road and the weather conditions are optimal for vehicles to run; 
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Assumption 3: If there exist downstream vehicles when the target vehicle enters the 

DSRC area, those vehicles could be discharged in the nearest accepted gap (maybe the current or 

the next);  

Assumption 4: Delay time for real time communication or manipulation is ignored; 

Assumption 5: If vehicles enters the intersection, it keeps its acceleration/deceleration 

until passing the intersection, and;  

Assumption 6: All movements (left and straight through) share the same critical gap.  

5.2 Methodologies 

The target of this research is proposing rational algorithms to mitigate traffic bottleneck so that 

the vehicle could pass the intersection safely and eco-friendly. The control strategy discussed in 

this chapter begins with the simplest intersection with only two streams, and then extended to the 

one with more streams. 

5.2.1 Impact of downstream vehicles and gaps 

When the target vehicle enters the control area, the system shall first judge whether it needs 

speed control. The system leverages the DSRC to make real-time communication between 

vehicles and between the infrastructure and the vehicles. Information about the downstream 

vehicles is also used to determine whether the target vehicle requires speed control or not. The 

interactions between the target vehicle and its downstream vehicles are illustrated in Figure 5.3, 

where the solid green arrows represent target vehicle without any blockage, while the dotted red 

arrows represent the target vehicle blocked by the unavailable gaps (those gaps less than the 

critical gap) or the downstream vehicles. In addition, the solid red arrows represent the last 

downstream vehicle. A total of five cases are analysed as illustrated in Figure 5.4. 
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Figure 5.4 Impacts of the downstream vehicles and the gaps. 

Case 1, Case 2 and Case 3 show that the target vehicle is not affected by the downstream 

vehicle or the unavailable gaps, resulting in no need for speed control. In Case 1 and Case 3, the 

target vehicle and its downstream vehicles pass the stop line in the same available gap, while 

Case 2 indicates that the target vehicle and its downstream vehicle pass the stop line at different 

available gaps. Mathematically, the above three cases should satisfy the following inequality:  

𝑇𝑇𝑚𝑚1 ≤ (𝑋𝑋 + 𝐿𝐿1)/𝑣𝑣𝑚𝑚 ≤ 𝑇𝑇𝑦𝑦1  (3) 
 

where 

𝑇𝑇𝑚𝑚1 =

⎩
⎪
⎨

⎪
⎧

𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠,    𝑇𝑇𝑇𝑇𝑈𝑈1 >  𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≠ 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
0,                 𝑇𝑇𝑇𝑇𝑈𝑈1 > 𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 + 𝑈𝑈𝐺𝐺1,𝑇𝑇𝑇𝑇𝑈𝑈1 < 𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≠ 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐺𝐺1,    𝑇𝑇𝑇𝑇𝑈𝑈1 < 𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑜𝑜𝑟𝑟

                                   𝑇𝑇𝑇𝑇𝑈𝑈1 =  𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 

  (4) 

𝑇𝑇𝑦𝑦1 = �
𝑇𝑇𝑇𝑇𝑈𝑈1,                    𝑇𝑇𝑇𝑇𝑈𝑈 >  𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐺𝐺1 + 𝐴𝐴𝐺𝐺1,     𝑇𝑇𝑇𝑇𝑈𝑈 ≤ 𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
 (5) 

𝑇𝑇𝑇𝑇𝑈𝑈1 is the time to the nearest unavailable gap recorded when the target vehicle enters 

the DSRC area. If the gap is unacceptable when the vehicle enters the DSRC area, the value of 

𝑇𝑇𝑇𝑇𝑈𝑈1 will be negative and its absolute value equals to unavailable gaps duration since the 

unavailable gaps has already come. 
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𝐿𝐿1 is the target vehicle trajectory’s distance between the stop line and the conflicting 

point;  𝑇𝑇𝑚𝑚1 is the earliest time when the target vehicle could pass; 𝑋𝑋 is the distance between the 

upstream boundary of the DSRC range to the stop line; 𝑇𝑇𝑦𝑦1 is the total time for the target vehicle 

to pass the intersection; 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 is denoted as the minimum safe time headway; 𝑡𝑡𝑚𝑚−1 is the time 

spent by the last downstream vehicle to clear the intersection. If 𝑡𝑡𝑚𝑚−1 = 0, the target vehicle is 

only affected by the gap, otherwise, it is affected by gap and the downstream vehicles 

simultaneously. 𝑇𝑇𝑚𝑚, 𝑇𝑇𝑦𝑦 and 𝑡𝑡𝑚𝑚−1 are all recorded from the moment when the target vehicle enters 

the DSRC control area. 

Case 4 and Case 5 indicate that the target vehicle is affected by both the downstream 

vehicles and the unavailable gaps (i.e. do not satisfy (3)), indicating a potential need for speed 

control, which will be discussed in detail in the next section. 

5.2.2 Speed control algorithm for the two-streams intersection 

In this section, towards the simplest two-stream intersection, a dynamic speed control algorithm 

is developed for Case 4 and Case 5 as shown in Figure 5.3. When the target vehicle enters the 

DSRC range, based upon the gap information, vehicular position, and the initial speed, the 

system optimizes the acceleration/deceleration profile to make possible that the vehicle could hit 

the available gap when arriving at the stop line. Even if the vehicle has no chance to pass the stop 

line without idling, the system will let it slow down at an appropriate deceleration rate to reduce 

fuel consumption and emission. Five different scenarios are discussed to develop the speed 

control algorithm.  

Scenario 1 

The remaining available gap (TTU1) is not sufficient for the target vehicle to clear the 

intersection but would be sufficient if the vehicle accelerates gradually. 
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As Scenario of Figure 5.5 shows, if accelerating at a reasonable rate, the target vehicle 

would never bump into the downstream vehicle or hit the unavailable gap inside the intersection. 

Here, the target vehicle is advised to accelerate and clear the intersection by the end of the 

current available gap. One can compute the suggested acceleration rate with the following 

equation:  

𝑎𝑎𝑚𝑚1 = (2𝑋𝑋 + 2𝐿𝐿1 − 2𝑣𝑣𝑚𝑚𝑇𝑇𝑦𝑦1)/(𝑇𝑇𝑦𝑦1)2  (6) 
 

subject to the constraints: 

0 < 𝑎𝑎𝑚𝑚1 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  (7) 
𝑣𝑣𝑚𝑚 + 𝑎𝑎𝑚𝑚1𝑇𝑇𝑦𝑦 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 (8) 

 

where, 𝑎𝑎𝑚𝑚1 is the target acceleration rate; 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 is the maximum acceleration rate to make 

sure the vehicles could accelerate smoothly;  𝑣𝑣𝑚𝑚 is the original speed of the target vehicle; 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 

is the maximum speed allowed for safety. If 𝑎𝑎𝑚𝑚1 falls beyond the constraints listed above, it 

means the vehicle is not adaptable for scenario 1. 

Distance(m)
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Gap(s)
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Figure 5.5 Scenarios for two-level priority intersections without the impact of the 

downstream vehicles. 

Scenario 2 
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TTU1 is not sufficient for the target vehicle to pass the intersection, but the target vehicle 

could pass at the beginning of the next available gap without idling by reducing the current speed 

gradually. In addition, there are no downstream queue at the stop line, as Part 2 illustrates. 

The suggested deceleration rate can be calculated with the following equation: 

𝑑𝑑𝑚𝑚2 = [2𝑋𝑋 + 2𝐿𝐿1 − 2𝑣𝑣𝑚𝑚(𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐴𝐴1)]/(𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐴𝐴1)2  (9) 
 

subject to constraints: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑𝑚𝑚2 < 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  (10) 
𝑣𝑣𝑚𝑚 + 𝑑𝑑𝑚𝑚2(𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐴𝐴1) > 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 (11) 

 

where, 𝑑𝑑𝑚𝑚2 is the target deceleration rate; 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum deceleration rate to make 

sure the vehicles could decelerate smoothly; 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 is the minimum speed allowed. 

Scenario 3 

Without any downstream vehicles, the remaining available gap is not sufficient and the 

vehicle cannot avoid idling by either accelerating or decelerating. The algorithm suggests the 

target vehicle to slow down with an appropriate deceleration rate so that it just stops when 

reaching the stop line, as Part 3 shows. 

The appropriate deceleration rate could be calculated with the following equation: 

𝑑𝑑𝑚𝑚3 = −2(𝑋𝑋 + 𝐿𝐿1)/𝑣𝑣𝑚𝑚2  (12) 
 

subject to the constraints: 

𝑑𝑑𝑚𝑚3 ≥ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  (13) 
 

where, 𝑑𝑑𝑚𝑚3 is the optimal deceleration rate for the target vehicle that has no chance to 

avoid idling for Scenario 3. 

Scenario 4 
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There exist downstream vehicles when the target vehicle enters the DSRC area. 

Nonetheless, if the target vehicle alters its speed appropriately, it may avoid being blocked by the 

queue. The first three sub-scenarios shown in Figure 5.6 illustrate an avoidance of bumping into 

the downstream vehicle.  

Grounded on V2V communication, when the target vehicle enters the DSRC control 

range, the status of its downstream vehicles, such as speeds, idling time and 

acceleration/deceleration rates, could be acquired, and the time for the last vehicle in the 

downstream queue to move could be calculated by the shock wave theory.  
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Figure 5.6 Scenarios for two-level priority intersections considering the impact of the 

downstream vehicles. 

Given the impact of downstream queue, the trajectory of the target vehicle should be 

divided into two sections. The first section is a deceleration process so that the target vehicle 
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could avoid bumping into the last downstream vehicle. One can compute the deceleration rate 

with the following equation: 

        𝑑𝑑𝑚𝑚41 = 2��𝑋𝑋 + 𝐿𝐿1 − 𝑘𝑘𝑚𝑚−1ℎ𝑞𝑞𝑞𝑞𝑠𝑠� − 𝑣𝑣𝑚𝑚𝑡𝑡𝑚𝑚−1𝑚𝑚𝑛𝑛𝑖𝑖𝑠𝑠�/𝑡𝑡𝑚𝑚−1𝑚𝑚𝑛𝑛𝑖𝑖𝑠𝑠2  (14) 
 

subject to the constraints: 

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑𝑚𝑚41 < 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  (15) 
0 < 𝑣𝑣𝑚𝑚 + 𝑑𝑑𝑚𝑚41𝑡𝑡𝑚𝑚−1𝑚𝑚𝑛𝑛𝑖𝑖𝑠𝑠 ≤ 𝑣𝑣𝑚𝑚−1 (16) 

 

where, 

𝑡𝑡𝑚𝑚−1𝑚𝑚𝑛𝑛𝑖𝑖𝑠𝑠 = (𝑘𝑘𝑚𝑚−1 − 1)(ℎ𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 − ℎ𝑞𝑞𝑞𝑞𝑠𝑠)/𝑣𝑣𝑚𝑚−1  (17) 
𝑑𝑑𝑚𝑚41 is the deceleration rate in the first section of the trajectory in Scenario 4; ℎ𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 is the 

minimum safe space headway between two vehicles; 𝑘𝑘𝑚𝑚−1 is the number of vehicles consisting 

the downstream queue; ℎ𝑞𝑞𝑞𝑞𝑠𝑠 is the space headway for a stop queue; ℎ𝑚𝑚𝑠𝑠𝑚𝑚𝑠𝑠 is the space headway 

when the queue begins to move; 𝑣𝑣𝑚𝑚−1 is the initial speed for the last downstream vehicle if it is 

moving; 𝑡𝑡𝑚𝑚−1𝑚𝑚𝑛𝑛l𝑠𝑠 is the total stop time for the downstream queue. It should be noted that all those 

parameters above are recorded when the target vehicle enters the DSRC control range. 

After the first section, the target vehicle starts the second section, and the system needs to 

re-consider if the target vehicle could pass the intersection. If the remaining available 

gap,𝑇𝑇𝑇𝑇𝑈𝑈1′, is sufficient, the target vehicle will cruise to pass the intersection (see Sub-scenario 

4-(1) in Figure 5.6); otherwise, the target vehicle will be guided with a proper 

acceleration/deceleration rate (see Figure 5.6) using a similar calculation method to Scenarios 1 

to 3.  

Considering the impact of the downstream vehicles, there is a worst case where the target 

vehicle cannot avoid idling because of the blockage of the downstream queue, as shown in sub-

scenario 4-(4). Similarly, the trajectory of the target vehicle has two sections similar to other sub-
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scenarios. In the first section, the algorithm suggests the vehicle to slow down with an 

appropriate deceleration rate so that it just stops when joining the end of downstream queue. 

The appropriate deceleration rate could be calculated with the following equation: 

𝑑𝑑𝑚𝑚5 = −2(𝑋𝑋 + 𝐿𝐿1 − 𝑘𝑘𝑚𝑚−1ℎ𝑞𝑞𝑞𝑞𝑠𝑠)/𝑡𝑡𝑚𝑚−1𝑚𝑚𝑛𝑛𝑖𝑖𝑠𝑠2  (18) 
 

subject to the constraints: 

𝑑𝑑𝑚𝑚5 ≥ 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  (19) 
 

where, 𝑑𝑑𝑚𝑚5 is the optimal deceleration rate for the target vehicle that has no chance to 

avoid idling in Scenario 5. 

In the second section, the algorithm is as same as in sub-scenarios 4-(1) to 4-(3). 

5.2.3 The speed control algorithm for the intersection with more than two streams 

Towards the intersection with more than two streams, the algorithms are more 

complicated, while the scenarios discussed are the same as the two-stream intersection. 

Go back to the right part of Figure 5.1. In this case, the target vehicle (stream 3) needs to 

pass through stream 2 and to be converged with stream 1, which means the algorithm should 

seek for two successive available gaps for the target vehicle. The sequences of the higher priority 

streams the target vehicle needs to pass depends on the positions of the conflicting points, as 

Figure 5.7 shows.  
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Figure 5.7 Impacts of the downstream vehicles and the gaps with multiple streams. 

Similar to Section 3.1, we shall firstly judge if the target vehicle is blocked by the 

downstream vehicles or the unavailable gap.  If the vehicle needs no speed alteration, it should 

satisfy the following inequality systems: 

�
𝑇𝑇𝑚𝑚1 ≤ (𝑋𝑋 + 𝐿𝐿1)/𝑣𝑣𝑚𝑚 ≤ 𝑇𝑇𝑦𝑦1

𝑇𝑇𝑚𝑚2 ≤ 𝐿𝐿2/𝑣𝑣𝑚𝑚 ≤ 𝑇𝑇𝑦𝑦2
    (20) 

 

where, 

𝑇𝑇𝑚𝑚2 =

⎩
⎪
⎨

⎪
⎧ 𝑡𝑡𝑚𝑚−12 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠,    𝑇𝑇𝑇𝑇𝑈𝑈2 >  𝑡𝑡𝑚𝑚−12 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≠ 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

0,                 𝑇𝑇𝑇𝑇𝑈𝑈2 > 𝑡𝑡𝑚𝑚−12 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
𝑡𝑡𝑚𝑚−12 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 + 𝑈𝑈𝐺𝐺2,𝑇𝑇𝑇𝑇𝑈𝑈2 < 𝑡𝑡𝑚𝑚−12 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≠ 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇𝑈𝑈2 + 𝑈𝑈𝐺𝐺2,    𝑇𝑇𝑇𝑇𝑈𝑈2 < 𝑡𝑡𝑚𝑚−12 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑜𝑜𝑟𝑟

                                   𝑇𝑇𝑇𝑇𝑈𝑈2 =  𝑡𝑡𝑚𝑚−12 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 

  (21) 

𝑇𝑇𝑦𝑦2 = �
𝑇𝑇𝑇𝑇𝑈𝑈2,                    𝑇𝑇𝑇𝑇𝑈𝑈2 >  𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇𝑈𝑈2 + 𝑈𝑈𝐺𝐺2 + 𝐴𝐴𝐺𝐺2,     𝑇𝑇𝑇𝑇𝑈𝑈2 ≤ 𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
 (22) 

 

𝐿𝐿2 is the trajectory’s distance between the first and the second conflicting points; Other 

parameters, recorded from the moment when the target vehicle passes through the first 

conflicting point, have the similar meanings to those in Eqs.(3) to (5). 
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More generally, if the target vehicle needs to pass n higher priority streams, it should 

satisfy the following equations: 

⎩
⎪
⎨

⎪
⎧
𝑇𝑇𝑚𝑚 ≤ (𝑋𝑋 + 𝐿𝐿1)/𝑣𝑣𝑚𝑚 ≤ 𝑇𝑇𝑦𝑦
𝑇𝑇𝑚𝑚2 ≤ 𝐿𝐿2/𝑣𝑣𝑚𝑚 ≤ 𝑇𝑇𝑦𝑦2

.

.

.
𝑇𝑇𝑚𝑚𝑚𝑚 ≤ 𝐿𝐿𝑚𝑚/𝑣𝑣𝑚𝑚 ≤ 𝑇𝑇𝑦𝑦𝑚𝑚

    (23) 

 

where, 

𝑇𝑇𝑚𝑚𝑚𝑚 =

⎩
⎪
⎨

⎪
⎧

𝑡𝑡𝑚𝑚−1𝑚𝑚 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠,    𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 >  𝑡𝑡𝑚𝑚−1𝑚𝑚 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≠ 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
0,                 𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 > 𝑡𝑡𝑚𝑚−1𝑚𝑚 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

𝑡𝑡𝑚𝑚−1𝑚𝑚 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 + 𝑈𝑈𝐺𝐺𝑚𝑚,𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 < 𝑡𝑡𝑚𝑚−1𝑚𝑚 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 ≠ 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 + 𝑈𝑈𝐺𝐺𝑚𝑚,    𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 < 𝑡𝑡𝑚𝑚−1𝑚𝑚 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 = 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 𝑜𝑜𝑟𝑟

                                   𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 =  𝑡𝑡𝑚𝑚−1𝑚𝑚 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠 

  (24) 

𝑇𝑇𝑦𝑦2 = �
𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚,                    𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 >  𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠

𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 + 𝑈𝑈𝐺𝐺𝑚𝑚 + 𝐴𝐴𝐺𝐺𝑚𝑚,     𝑇𝑇𝑇𝑇𝑈𝑈𝑚𝑚 ≤ 𝑡𝑡𝑚𝑚−1 + 𝑡𝑡𝑠𝑠𝑚𝑚𝑠𝑠𝑠𝑠
 (25) 

 

𝐿𝐿𝑚𝑚 is the trajectory’s distance between the first and the second conflicting points; Other 

parameters are recorded from the moment when the target vehicle passes through the (n-1)th 

conflicting point. 

If the situation does not match the above conditions, then we need to consider the speed 

guidance with the same scenarios as those for the two-stream intersection. 

Scenario 1 (Acceleration without the impact of the downstream vehicles) 

The target acceleration rate is as follows: 

𝑎𝑎𝑚𝑚1 = min (𝑎𝑎1, 𝑎𝑎2, … ,𝑎𝑎n)  (26) 
 

where, 
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⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧ 𝑎𝑎1 ≥

2𝑋𝑋 + 2𝐿𝐿1 − 2𝑣𝑣𝑚𝑚𝑇𝑇𝑦𝑦1

(𝑇𝑇𝑦𝑦1)2

𝑎𝑎2 ≥
2𝑋𝑋 + 2𝐿𝐿1 + 2𝐿𝐿2 − 2𝑣𝑣𝑚𝑚𝑇𝑇𝑦𝑦1 − 2𝑣𝑣𝑚𝑚𝑇𝑇𝑦𝑦2

(𝑇𝑇𝑦𝑦1 + 𝑇𝑇𝑦𝑦2)2
.
.
.

𝑎𝑎n ≥
2𝑋𝑋 + 2∑ 𝐿𝐿𝑘𝑘𝑚𝑚

𝑘𝑘=1 − 2𝑣𝑣𝑚𝑚 ∑ 𝑇𝑇𝑦𝑦𝑘𝑘𝑚𝑚
𝑘𝑘=1

�∑ 𝑇𝑇𝑦𝑦𝑘𝑘𝑚𝑚
𝑘𝑘=1 �2

  (27) 

 

subject to the constraints: 

0 < 𝑎𝑎𝑚𝑚1 ≤ 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚  (28) 

𝑣𝑣𝑚𝑚 + 𝑎𝑎𝑚𝑚1�𝑇𝑇𝑦𝑦𝑘𝑘
𝑚𝑚

𝑘𝑘=1

≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 (29) 

 

where, 𝑎𝑎n is the acceleration considering the vehicle could pass the nth higher priority 

stream. If 𝑎𝑎𝑚𝑚1 falls beyond the constraints listed above, it means the vehicle is not adaptable for 

scenario 1. 

Scenario 2 (Deceleration without the impact of the downstream vehicles) 

The suggested deceleration rate can be calculated with the following equation: 

𝑑𝑑𝑚𝑚2 = max (𝑑𝑑1,𝑑𝑑2, … ,𝑑𝑑n)  (30) 
 

where, 

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑑𝑑1 ≤

[2𝑋𝑋 + 2𝐿𝐿1 − 2𝑣𝑣𝑚𝑚(𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐴𝐴1)]
(𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐴𝐴1)2

𝑑𝑑2 ≤
[2𝑋𝑋 + 2𝐿𝐿1 + 2𝐿𝐿2 − 2𝑣𝑣𝑚𝑚(𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐴𝐴1 + 𝑇𝑇𝑇𝑇𝑈𝑈2 + 𝑈𝑈𝐴𝐴2)]

(𝑇𝑇𝑇𝑇𝑈𝑈1 + 𝑈𝑈𝐴𝐴1 + 𝑇𝑇𝑇𝑇𝑈𝑈2 + 𝑈𝑈𝐴𝐴2)2...

𝑑𝑑n ≤
{2𝑋𝑋 + 2𝐿𝐿1 + 2∑ 𝐿𝐿𝑘𝑘𝑚𝑚

𝑘𝑘=1 − 2𝑣𝑣𝑚𝑚[∑ (𝑇𝑇𝑇𝑇𝑈𝑈𝑘𝑘 + 𝑈𝑈𝐴𝐴𝑘𝑘𝑚𝑚
𝑘𝑘=1 )]}

[∑ (𝑇𝑇𝑇𝑇𝑈𝑈𝑘𝑘 + 𝑈𝑈𝐴𝐴𝑘𝑘𝑚𝑚
𝑘𝑘=1 )]2

  (31) 

 

subject to constraints: 
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𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑑𝑑𝑚𝑚2 < 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚  (32) 

𝑣𝑣𝑚𝑚 + 𝑑𝑑𝑚𝑚2�(𝑇𝑇𝑇𝑇𝑈𝑈𝑘𝑘 + 𝑈𝑈𝐴𝐴𝑘𝑘
𝑚𝑚

𝑘𝑘=1

) > 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 (33) 

 

where, 𝑑𝑑n is the deceleration considering the vehicle could pass the nth higher priority 

stream. 

Scenario 3 (Deceleration and idling without the impact of the downstream vehicles)  

It is totally as same as the one for the two-stream intersection. 

Scenario 4 (With the impact of the downstream vehicle)  

Similarly, we divide the trajectory into two section. The deceleration of the first section is 

computed as the one for the two-stream intersection. Then the second section is processed as 

Scenarios 1-3 for intersections with more than two streams. 

In summary, the logic of the proposed speed control algorithm is summarized in Figure 

5.8.  
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Figure 5.8 Overall procedure of the proposed speed control algorithm 

5.3 Illustrative Examples 

In this section, an example is illustrated to validate the proposed speed control algorithm. Here, 

fuel consumption and emission are recorded from the moment when the vehicle enters the DSRC 

range until the front bumper of that vehicle passes the stop line. 

There is a four-leg unsignalized intersection where every leg has one straight approaching 

lane, one left-turn approaching lane and one exit lane. The priority levels of every stream is 

shown in Figure 5.9. 
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Figure 5.9 Priority ranks and conflicting points of the 8-stream intersection. 

We choose a vehicle in the 6th stream as our target vehicle. Then it needs to pass five 

higher priority levels, whose conflicting points are shown at the right part of Figure 5.9.  

Firstly, the effectiveness of the proposed speed control algorithm is investigated with 

respect to fuel consumption and emission assuming no downstream vehicles (corresponding to 

Scenarios 1 to 3 defined in Section 3.2).  



 
 

99 
 

0.00E+00
5.00E-04
1.00E-03
1.50E-03
2.00E-03
2.50E-03
3.00E-03
3.50E-03
4.00E-03
4.50E-03
5.00E-03

0 5 10 15 20 25 30 35 40

F
u

el
 C

o
n

su
m

p
ti

o
n

 R
a

te
 (

l/
s)

Time (s)

FUEL

Eco

Non-eco

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0 10 20 30 40

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

CO

Eco

Non-eco

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

9.00E-05

0 5 10 15 20 25 30 35 40

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

NOx

Eco

Non-eco

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

0 5 10 15 20 25 30 35 40

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

HC

Eco

Non-eco

0.00E+00
5.00E-04
1.00E-03
1.50E-03
2.00E-03
2.50E-03
3.00E-03
3.50E-03
4.00E-03
4.50E-03
5.00E-03

0 10 20 30 40 50 60 70

F
u

el
 C

o
n

su
m

p
ti

o
n

 R
a

te
 (

l/
s)

Time (s)

FUEL

Eco

Non-eco

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0 10 20 30 40 50 60 70

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

CO

Eco

Non-eco

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

9.00E-05

0 10 20 30 40 50 60 70

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

NOx

Eco

Non-eco

0.00E+00
5.00E-04
1.00E-03
1.50E-03
2.00E-03
2.50E-03
3.00E-03
3.50E-03
4.00E-03
4.50E-03
5.00E-03

0 10 20 30 40 50 60

F
u

el
 C

o
n

su
m

p
ti

o
n

 R
a

te
 (

l/
s)

Time (s)

FUEL

Eco

Non-eco

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

0 10 20 30 40 50 60

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

CO

Eco

Non-eco

0.00E+00

1.00E-05

2.00E-05

3.00E-05

4.00E-05

5.00E-05

6.00E-05

7.00E-05

8.00E-05

9.00E-05

0 10 20 30 40 50 60

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

NOx

Eco

Non-eco

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

0 10 20 30 40 50 60

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

HC

Eco

Non-eco

0.00E+00

1.00E-06

2.00E-06

3.00E-06

4.00E-06

5.00E-06

6.00E-06

0 10 20 30 40 50 60 70

E
m

is
si

o
n

 R
a

te
 (

k
g

/s
)

Time (s)

HC

Eco

Non-eco

Scenario 1
Scenario 2

Scenario 3

 

Figure 5.10 Comparison of fuel consumption and emission between speed control and free 

driving under Scenarios 1 to 3. 

Figure 5.10 further shows the comparison of second-by-second fuel consumption and 

emission rates between speed control and free driving for the target vehicle. 

Scenario 1 in Figure 5.10 shows significant difference in travel times for the target 

vehicle approaching the intersection (21s vs. 64s) under speed control and free driving. Such a 

difference is due to the fact that the vehicle under speed control passes the intersection without 

obstruction from the unavailable gaps or the downstream vehicles when following the speed 

guidance by the proposed algorithm. Nonetheless, without speed control the vehicle may 

experience the processes of cruising, deceleration and idling, resulting in much higher level of 

fuel consumption and emission. For other scenarios, although the travel time for the target 

vehicle under speed control is almost the same as that without eco-driving, the level of fuel 

consumption and emission is quite different (a surge of fuel consumption and emission can be 

observed for non-eco driving). 
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Then, we analyse driving behaviours and fuel consumption under the impact of the 

downstream vehicles and gap condition (corresponding to Scenarios 4 and 5). Emission analysis 

is very similar to fuel consumption therefore is skipped in this example.  
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Figure 5.11 Comparison of fuel consumption and speed profile of the target vehicle 

between speed control and free driving under several conditions. 

As shown in Figure 5.11, due to the presence of downstream vehicles and queue, the 

target vehicle without the proposed speed control algorithm usually needs to abruptly decelerate 

twice in its speed profile, first avoiding bumping into its downstream vehicles and second 

braking down due to the available gaps. However, the speed profile of the target vehicle with the 

proposed speed control algorithm is relatively smooth and flat, resulting much lower fuel 

consumption and emission. 

5.4 Conclusions 

This chapter proposes a dynamic speed control algorithm towards bottleneck mitigation at an 

unsignalized intersection, in the measure of fuel consumption and emissions. The algorithm not 

only considers the running status of the target vehicle but also captures the impact of 

downstream vehicles. Acceleration/deceleration rates, instead of speeds, are used as the control 

objective for speed guidance. Depending on the status of a target vehicle and gap conditions, the 

speed control algorithms under different scenarios are discussed in details. The proposed 
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algorithm not only works for an “ideal” situation, but also for a realistic environment where there 

exist downstream vehicles and initial queue at the stop line. This study provides illustrative 

examples to validate the algorithm. Firstly, without considering the impact of the downstream 

platoons, this study compares the time-varying fuel consumption and emission of the target 

vehicle with respect to speed control and free driving behaviours. Results indicate that the 

vehicle under the proposed algorithm experience significantly lower fuel consumption and 

emission than that under free driving. Then, considering the impact of the downstream vehicles 

and queue, this study compares the level of fuel consumption of the target vehicle with and 

without the proposed speed control. Results demonstrate the promising application of the 

proposed speed control algorithm in a realistic traffic environment. 

Analysis results of the illustrative examples indicate the validity and effectiveness of the 

proposed speed control algorithm. On-going work of this study is to test the proposed algorithm 

in real-world projects and evaluate its effectiveness with calibrated fuel consumption models. 
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 COOPERATIVE BUS-CAR TRAJECTORY OPTIMIZATION TO 

ELIMINATE WEAVING BOTTLENECK AROUND CURB SIDE BUS 

STATIONS  

This chapter develops a cooperative bus-car trajectory optimization model towards the 

elimination of weaving bottleneck at curb side (near-side) bus stations around signalized 

intersections. A two-phase algorithm is developed to solve the model, where a multi-stage-based 

nonlinear programming procedure is developed in Phase I to search trajectories that eliminate the 

conflicts in PWS and minimize the total person travel time and Phase II refines the trajectories 

with a mixed integer linear programming to minimize idling time of vehicles. An illustrative 

example is provided to validate the proposed model. Results indicate that the model is effective 

to eliminate the weaving bottleneck at curb side bus stations while minimizing the total person 

travel time and vehicular idling time. Sensitivity analysis is conducted, and it implies that with 

the increase of bus person number, the optimal rate of the total vehicular time declines, while of 

the total person travel time rises. 

6.1 INTRODUCTION 

The bus system, with its cost efficiency, design flexibility, and short construction period, has 

been widely developed in urban areas as an alternative to private cars for efficient, reliable and 

comfortable travel. As cities grow in both surface and population, the bus system often struggles 

to provide satisfying level of service due to limited road space coupled with increasing traffic 

demand. For example, it is common to observe serious conflicts between buses and cars weaving 

at a curb side bus station (no matter located near-side or far-side, see Figure 6.1). Such a 

potential weaving section (PWS) often causes traffic bottlenecks characterized with aggressive 
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lane changes, frequent stops, excessive delays, and frequent accidents especially as road 

saturation level increases. Compared with far-side locations, near-side bus stations may cause 

even worse traffic congestion due to high traffic flow weaving, limited road space, poor 

geometric design, and improper intersection signal timings. 

 

Figure 6.1 Potential weaving section at a near-side bus station. 

The impact of curb side bus stations on traffic flow has been investigated in the literature. 

Previous studies fall into different categories, including observational studies, analytical 

methods, and simulation-based studies. Observational studies usually explore field data to 

examine the effect of bus stations on traffic operations. For examples, it was found that far-side 

bus stations tend to outperform near-side stops in terms of reduced queue, additional vehicle 

maneuvering space, easier lane changes, and fewer delayed right-turning vehicles. However, 

Fitzpatrick reached the opposite findings. Yu established a statistical model to quantify the 

impact of factors such as platform types, bus station lengths, and lane numbers. Feng statistically 

investigated the joint impacts of bus station locations, signalized intersections and traffic 

conditions. Stephen proposed a statistical model to explore the factors that may affect the bus 

dwelling time and the time to re-enter to the main traffic flow. These studies are informative but 
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not conclusive due to either limited numerical scenarios or the lack of detailed analysis of the 

relationships among important affecting factors such as bus frequency, dwelling time, and 

vehicle volume/distribution in the bus operational environment. 

Analytical methods generally open to broader situations with simplified models for 

tractability. Furth evaluated the impact of harbor-style bus station location on bus delay with 

factors of gravity, queue interference at signalized intersections. As for curb side bus stations, 

queue model was developed to assess disturbance from cars on isolated bus stations, without 

involving signalized intersections. Gu further incorporated signalized intersections to research 

the impact of far-side and near-side bus stations on traffic efficiency but did not include either 

oversaturated conditions or instant traffic disturbances such as lane changes, gaps in front of the 

dwelling bus and turning vehicles.  

Simulations are widely used to investigate the microscopic interactions between the bus 

and vehicles. As a highly developed simulation method, Cellular automation (CA) model has 

been used to evaluate the impact of bus station locations on traffic flow dynamics. In CA models, 

roads are generally divided into cells with lengths equal to the bus. Long proposed a CA model 

to find the congestion mechanism due to bus stations located around on-ramp or off-ramp roads. 

Liu developed a CA model to explore the impact of bus stations on traffic flow, with 

consideration of bus parking style, bus station length, bus station spacing and bus proportion. In 

multi-lane mixed traffic flows, the CA model has been used to study the effect of bus proportion 

in traffic flow. Moreover, as an inexpensive and efficient procedure, agent-based simulation was 

applied to evaluate bus station layout design in relation to passengers’ preferences, needs and 

expectations. 
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Continuous efforts have been made to eliminate the traffic bottleneck caused by mixed 

traffic dynamics near bus stations, including relocation/redesign optimization and signal control 

strategies. For examples, Moura et al. developed a two-stage model by first minimizing the 

social cost at the macroscopic scale and then maximizing the commercial speed along with 

sensitivity analysis in terms of traffic flow, bus flows and signaling sequences. Gu et al. used 

kinematic wave theory to formulate models for locating near-side stops to achieve target levels 

of residual queueing among cars. A multi-objective optimization model was employed for multi-

objective optimization of bus station location to improve accessibility and minimize vehicle 

delay. Though optimizing the location or redesigning bus station may alleviate traffic congestion 

to some extent, its real-world application is usually limited by available road space, construction 

limitations, and complicated flow composition. 

Therefore, this study contributes to developing a cooperative bus-car trajectory 

optimization model that can effectively prevent weaving conflicts between buses and general 

traffic around a curb side bus station (see Fig. 6.2), while minimizing total person travel time and 

idling time of traffic through the signalized intersection. The proposed model applies when a 

potential conflict is detected in the PWS given the speed, occupancy, location of approaching 

vehicles and signal timing information. It enables bus-car and vehicle-signal cooperation through 

a two-phase optimization process, where a multi stage based nonlinear programming (NLP) 

procedure is developed in Phase I to search trajectories that eliminate the conflicts in PWS and 

minimize the total person travel time and Phase II refines the trajectories with a mixed integer 

linear programming (MILP) to minimize idling time of vehicles. 
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Figure 6.2 Trajectory optimization to prevent weaving at a curb side bus station. 

6.2 Trajectory Optimization Model  

6.2.1 Notation 

To facilitate model presentation, indices and parameters used hereafter are listed in Table 6.1.  

Table 6.1 Symbols and parameters. 

Index  
𝑘𝑘 Index of lanes, 𝑘𝑘 = 𝑗𝑗, 𝑗𝑗 + 1, … 𝑚𝑚  
𝑝𝑝 Index of cars on a lane, 𝑝𝑝 = 1,2, … 
𝑡𝑡 Index of time steps, 𝑡𝑡 = 0,1,2,… 
General Constants and Variables 
𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃 Length of the PWS (m) 
𝑥𝑥𝐶𝐶  Distance between the downstream boundary of PWS and the stop line (m) 
𝑥𝑥𝑘𝑘,𝑝𝑝
0  Initial distance between the stop line and the pth car on the kth lane (m) 
𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0   Initial distance between the stop line and bus (m) 
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 Length of the control scope (m) 

𝑥𝑥𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 Distance between the upstream boundary of the PWS and the front bumper of the pth car 

on the kth lane (m), and its value is negative if the car has already entered the PWS 
𝑥𝑥0′  Initial location for the nearest downstream vehicle (m) 
𝑣𝑣𝑡𝑡′  Speed at time t for the nearest downstream vehicle (m/s) 
𝑤𝑤 Lane width (m) 
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𝑙𝑙𝑏𝑏𝑞𝑞𝑠𝑠 Length of bus (m) 
𝑙𝑙𝑠𝑠𝑚𝑚𝑟𝑟 Average length of a car (m) 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 Maximum speed limit (m/s) 
𝑣𝑣𝑚𝑚𝑠𝑠𝑛𝑛 Median speed (m/s) 
𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 Minimum cruising speed (m/s) 
𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟 Maximum acceleration rate for cars (m/s2) 
−𝑑𝑑𝑠𝑠𝑚𝑚𝑟𝑟 Maximum deceleration rate for cars (m/s2) 
𝑎𝑎𝑏𝑏𝑞𝑞𝑠𝑠 Maximum acceleration rate for bus (m/s2) 
−𝑑𝑑𝑏𝑏𝑞𝑞𝑠𝑠 Maximum deceleration rate for bus (m/s2) 
𝑡𝑡𝑏𝑏𝑠𝑠𝑚𝑚𝑟𝑟𝑛𝑛 Time for bus boarding and alighting (s) 
𝑡𝑡𝑚𝑚𝑗𝑗 Time for bus to traverse from the curb side lane 𝑚𝑚 to destination lane 𝑗𝑗 (s) 
𝑡𝑡𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 Time for the pth car on the kth lane to hit the PWS (s) 
𝑡𝑡𝑘𝑘,𝑝𝑝
′  Time for the pth car on the kth lane inside the control boundary to traverse the PWS (s) 
𝑡𝑡𝑘𝑘,𝑝𝑝 Time for the pth car on the kth lane inside the control boundary to pass the intersection (s) 
𝑡𝑡𝑘𝑘,0 Time for the last downstream vehicle on the kth lane to pass the intersection (s) 

𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘   
Time to red indication for the kth lane when the bus just stops at the station (s), which is 
negative and its absolute value equals to the duration since the red light has appeared, if 
the signal light displays red at the instant 

𝐶𝐶 Signal cycle length (s) 
𝑟𝑟𝑘𝑘 Duration of red interval for the kth lane (s) 
𝑔𝑔𝑘𝑘 Duration of green interval for the kth lane (s) 
𝑇𝑇𝑘𝑘 Ranges of red interval for the kth lane 
𝑚𝑚𝑘𝑘 Number of cars on the kth lane (pcu) 
𝑃𝑃𝑘𝑘,𝑝𝑝 Number of passengers in the pth car on the kth lane 
𝑃𝑃𝑏𝑏𝑞𝑞𝑠𝑠 Number of passengers in the bus (person) 
Decision Variables 
𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝 Speed of the pth car on the kth lane at time t (m/s) 
𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 Speed of bus at time t (m/s) 
Auxiliary Variables 
𝑈𝑈𝑡𝑡
𝑝𝑝,𝑘𝑘 Indicator of idling for the pth car on the kth lane at time t 

𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 Indicator of idling for the bus at time t 
 

6.2.2 Weaving determination 

When a bus leaves the curb side station, it may traverse one or more lanes in the PWS to enter its 

destination lane to clear the intersection, as shown in Fig. 6.3. The time for the bus to traverse 

from the curb side lane 𝑚𝑚 to destination lane 𝑗𝑗 (𝑚𝑚 > 𝑗𝑗) is given by: 

 𝑡𝑡𝑚𝑚𝑗𝑗 = (�(𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)2 + [(𝑗𝑗 − 𝑚𝑚 + 1)𝑤𝑤]2 + 𝑙𝑙𝑏𝑏𝑞𝑞𝑠𝑠)/𝑣𝑣𝑏𝑏𝑞𝑞𝑠𝑠 (1) 
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Figure 6.3 A bus traversing PWS. 

Fig. 6.4 illustrates the distribution of cars on the kth lane (𝑚𝑚 > 𝑘𝑘 > 𝑗𝑗), when the bus just 

stops at the station. At the instant, the time for the pth car (counted from the stop line) inside the 

control boundary to hit PWS can be estimated with: 

 
𝑡𝑡𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 = �

𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃

𝑣𝑣𝑘𝑘,𝑝𝑝
,                  𝑥𝑥𝑘𝑘,𝑝𝑝

𝑃𝑃𝑃𝑃𝑃𝑃 > 0    

0,                    𝑥𝑥𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 0          

,𝑝𝑝 =∈ [1,𝑚𝑚𝑘𝑘] (2) 

 

 

Figure 6.4 Distribution of platoon upstream of bus station. 

Therefore, the time for the pth car on the kth lane inside the control boundary to traverse 

the PWS can be estimated with: 

 
𝑡𝑡′𝑘𝑘,𝑝𝑝 = �

𝑥𝑥𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃

𝑣𝑣𝑘𝑘,𝑝𝑝
, 𝑥𝑥𝑘𝑘,𝑝𝑝

𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃 > 0 

0,                        𝑥𝑥𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 0

,    𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘] (3) 

 

Note that the speed 𝑣𝑣𝑘𝑘,𝑝𝑝 can be zero, due to the impact of signal control or initial queue. 

If so, 𝑡𝑡𝑘𝑘,𝑝𝑝 and  𝑡𝑡′𝑘𝑘,𝑝𝑝 may be infinity. Given (1) - (3), potential weaving between the dwelling bus 

and the upstream platoon in the PWS under the current speed can be determined with (see Fig. 

6.5 for illustration) either of the following formulas. 

 
�

𝑡𝑡𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 > 𝑡𝑡𝑏𝑏𝑠𝑠𝑚𝑚𝑟𝑟𝑛𝑛

𝑡𝑡𝑘𝑘,𝑝𝑝
𝑃𝑃𝑃𝑃𝑃𝑃 < 𝑡𝑡𝑏𝑏𝑠𝑠𝑚𝑚𝑟𝑟𝑛𝑛 + 𝑡𝑡𝑚𝑚𝑗𝑗

,∀𝑘𝑘;  ∀𝑝𝑝 (4) 

 
�
𝑡𝑡𝑏𝑏𝑠𝑠𝑚𝑚𝑟𝑟𝑛𝑛 > 𝑡𝑡𝑘𝑘,𝑝𝑝

𝑃𝑃𝑃𝑃𝑃𝑃

𝑡𝑡𝑏𝑏𝑠𝑠𝑚𝑚𝑟𝑟𝑛𝑛 < 𝑡𝑡′𝑘𝑘,𝑝𝑝
,∀𝑘𝑘;  ∀𝑝𝑝 (5) 
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Figure 6.5 Weaving determination at PWS. 

6.2.3 Determination of control scope 

If weaving within the PWS is identified, the proposed cooperative bus-car trajectory 

optimization model will be applied to control the status of bus and cars within a predetermined 

control scope. An over short scope cannot provide enough space for the vehicle to change its 

status according to the control guidance, while the motorist cannot keep the optimized status if 

the control scope is too long. In this study, the scope can be estimated with:  

 −
1

2𝑑𝑑𝑠𝑠𝑚𝑚𝑟𝑟
∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2 +

1
2𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟

∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2 ≤ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 (6) 

 𝑐𝑐 ∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ≥ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠  (7) 
 𝑔𝑔 ∙ 𝑣𝑣𝑚𝑚𝑠𝑠𝑛𝑛 ≥ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 (8) 

 
According to formulas (6) to (8), the control scope 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 should be determined to make 

sure: (1) the car has enough space to stop before the stop line; (2) the car has enough space to 

accelerate to the maximum speed limit; (3) travel time with the minimum cruising speed to the 
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stop line should be no greater than the cycle length; and (4) travel time with the median speed to 

the stop line should be no greater than the green interval when no congestion presents. 

 

6.2.4 Model formulation 

If a weaving conflict is determined at PWS, the following model can be formulated for 

cooperative bus-car trajectory optimization. 

 
Objective functions 

The objectives of the model include: (1) minimizing the total person travel time, and (2) 

conditioned on the objective (1), minimizing the sum of vehicular idling time, given by: 

 
𝑚𝑚𝑚𝑚𝑚𝑚���𝑡𝑡𝑘𝑘,𝑝𝑝 ∙ 𝑃𝑃𝑘𝑘,𝑝𝑝

𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑚𝑚𝑘𝑘

𝑝𝑝=1

� + 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ∙ 𝑃𝑃𝑏𝑏𝑞𝑞𝑠𝑠  (9) 

 
𝑚𝑚𝑎𝑎𝑥𝑥 ����𝑈𝑈𝑡𝑡

𝑝𝑝,𝑘𝑘

𝑡𝑡𝑘𝑘,𝑝𝑝

𝑡𝑡=1

+ �𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏

𝑡𝑡=1

𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑚𝑚𝑘𝑘

𝑝𝑝=1

� (10) 

 

where,  

𝑈𝑈𝑡𝑡
𝑝𝑝,𝑘𝑘= indicator of idling for the pth car on the kth lane at time t, given by: 

 
𝑈𝑈𝑡𝑡
𝑝𝑝,𝑘𝑘 = �0, 𝑣𝑣𝑡𝑡

𝑘𝑘,𝑝𝑝 = 0  
1,                  𝑜𝑜.𝑤𝑤.

,𝑘𝑘  ∈ [𝑗𝑗, 𝑚𝑚];𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑘𝑘,𝑝𝑝� (11) 

𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠= indicator of idling for the bus at time t, given by: 

 𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 = �0, 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 = 0  
1,                   𝑜𝑜.𝑤𝑤.

 , 𝑡𝑡 ∈ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] (12) 

 
Constraints 

Vehicular speeds should not exceed the maximum speed limit, given by: 

 0 ≤ 𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �0, 𝑡𝑡𝑘𝑘,𝑝𝑝� (13) 

 0 ≤ 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] (14) 
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where 𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝 is the speed of the pth car on the kth lane at time t, and 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 is the speed of the 

bus at time t. 

Furthermore, the cruising speed should not be less than a minimum value, given by: 

 𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝 ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 𝑣𝑣𝑡𝑡

𝑘𝑘,𝑝𝑝 = 𝑣𝑣𝑡𝑡−1
𝑘𝑘,𝑝𝑝 , 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑘𝑘,𝑝𝑝� (15) 

 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 𝑚𝑚𝑖𝑖 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 = 𝑣𝑣𝑡𝑡−1𝑏𝑏𝑞𝑞𝑠𝑠, 𝑡𝑡 ∈ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] (16) 
 

Vehicular acceleration/deceleration rate should not exceed the limit, given by: 

 −𝑑𝑑𝑠𝑠𝑚𝑚𝑟𝑟 ≤ 𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝 − 𝑣𝑣𝑡𝑡−1

𝑘𝑘,𝑝𝑝 ≤ 𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟 , 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑘𝑘,𝑝𝑝� (17) 
 −𝑑𝑑𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 − 𝑣𝑣𝑡𝑡−1𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 𝑎𝑎𝑏𝑏𝑞𝑞𝑠𝑠,   𝑡𝑡 ∈ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] (18) 

A safe distance should always be maintained between two successive vehicles to prevent 

colliding. To express the constraints linearly, the safe distance calculation is simplified with the 

“Three-second rule”, given by: 

 
𝑥𝑥𝑘𝑘,𝑝𝑝
0 −

1
2
��𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

− 𝑥𝑥𝑘𝑘,𝑝𝑝−1
0 +

1
2
��𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝−1 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝−1�

𝑡𝑡−1

𝑞𝑞=0

≥ 3𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝,

𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [2,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑘𝑘,𝑝𝑝� ∩ �1, 𝑡𝑡𝑘𝑘,𝑝𝑝−1� 

(19) 

 
𝑥𝑥𝑘𝑘,1
0 −

1
2
��𝑣𝑣𝑞𝑞

𝑘𝑘,1 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,1 �

𝑡𝑡−1

𝑞𝑞=0

− 𝑥𝑥0′ +
1
2
��𝑣𝑣𝑞𝑞′ + 𝑣𝑣𝑞𝑞+1′ �
𝑡𝑡−1

𝑞𝑞=0

≥ 3𝑣𝑣𝑡𝑡
𝑘𝑘,1, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚]; 𝑡𝑡 ∈ �1, 𝑡𝑡𝑘𝑘,𝑝𝑝� ∩ �1, 𝑡𝑡𝑘𝑘,0� (20) 

 
𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 −

1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑡𝑡−1

𝑞𝑞=0

− 𝑥𝑥𝑗𝑗,𝑝𝑝
0 +

1
2
��𝑣𝑣𝑞𝑞

𝑗𝑗,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑗𝑗,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

≥ 3𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,

𝑝𝑝 ∈ �1,𝑚𝑚𝑗𝑗�; 𝑡𝑡 ∈ �0, 𝑡𝑡𝑗𝑗,𝑝𝑝� ∩ 𝑡𝑡 ∈ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] 

 𝑚𝑚𝑖𝑖    𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 −
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠� < 𝑥𝑥𝑗𝑗,𝑝𝑝

0 −
1
2
��𝑣𝑣𝑞𝑞

𝑗𝑗,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑗𝑗,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

𝑡𝑡−1

𝑞𝑞=0

 ∩  𝑥𝑥𝐶𝐶 ≥ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 −  
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑡𝑡−1

𝑞𝑞=0

 

(21) 

 
𝑥𝑥𝑗𝑗,𝑝𝑝
0 −

1
2
��𝑣𝑣𝑞𝑞

𝑗𝑗,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑗𝑗,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

− 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 +
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑡𝑡−1

𝑞𝑞=0

≥ 3𝑣𝑣𝑡𝑡
𝑗𝑗,𝑝𝑝,

𝑝𝑝 ∈ �1,𝑚𝑚𝑗𝑗�; 𝑡𝑡 ∈ �0, 𝑡𝑡𝑗𝑗,𝑝𝑝� ∩ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] 

𝑚𝑚𝑖𝑖  𝑥𝑥𝐶𝐶 ≥ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 −  
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑡𝑡−1

𝑞𝑞=0

 𝑜𝑜𝑟𝑟 > 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 −
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠� ≥ 𝑥𝑥𝑗𝑗,𝑝𝑝

0 −
1
2
��𝑣𝑣𝑞𝑞

𝑗𝑗,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑗𝑗,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

𝑡𝑡−1

𝑞𝑞=0

 

(22) 

 

Formulas (19) and (20) maintains the safe distance between cars, where 𝑥𝑥0′ and 𝑣𝑣𝑡𝑡′ are 

the initial location and speed at time t for the nearest downstream vehicle, and 𝑡𝑡𝑘𝑘,0 is the time for 

the last downstream vehicle to pass the intersection. Formulas (21) and (22) process this 



 
 

112 
 

constraint between cars and bus on the destination lane j, whether or not the bus is ahead of the 

car. For other lanes, these constraints can be handled with weaving elimination, given by: 

 
𝑥𝑥𝑘𝑘,𝑝𝑝
0 −

1
2
��𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

− 𝑥𝑥𝐶𝐶 > 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃  𝑜𝑜𝑟𝑟  𝑥𝑥𝑘𝑘,𝑝𝑝
0 −

1
2
��𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

− 𝑥𝑥𝐶𝐶 < −𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃, 

𝑚𝑚𝑖𝑖 
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑡𝑡−1

𝑞𝑞=0

≤ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝑥𝑥𝐶𝐶 + 𝑙𝑙𝑏𝑏𝑞𝑞𝑠𝑠, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘];  𝑡𝑡 ∈ �0, 𝑡𝑡𝑘𝑘,𝑝𝑝� ∩ 𝑡𝑡 ∈ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] 

(23) 

 1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑡𝑡−1

𝑞𝑞=0

> 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝑥𝑥𝐶𝐶 + 𝑙𝑙𝑏𝑏𝑞𝑞𝑠𝑠 𝑜𝑜𝑟𝑟 
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑡𝑡−1

𝑞𝑞=0

= 0, 

 𝑚𝑚𝑖𝑖 𝑥𝑥𝑘𝑘,𝑝𝑝
0 −

1
2
��𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝 �

𝑡𝑡−1

𝑞𝑞=0

− 𝑥𝑥𝐶𝐶 − 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 0,

𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘];   𝑡𝑡 ∈ �0, 𝑡𝑡𝑘𝑘,𝑝𝑝� ∩ 𝑡𝑡 ∈ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] 

(24) 

The constraints of weaving elimination prevent the bus and cars from conflicting in the 

PWS simultaneously, where formula (23) applies when the bus is in the PWS and formula (24) 

holds when a car is inside the PWS.  

Red light violation shall also be strictly prohibited with the following constraints, as 

illustrated in Fig. 6.6. 

 

 

Figure 6.6 Ranges of Rk under various initial signal information. 

 
1
2
��𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝 �

𝑟𝑟−1

𝑞𝑞=0

≤ 𝑥𝑥𝑘𝑘,𝑝𝑝
0 , 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑟𝑟 ∈ 𝑇𝑇𝑘𝑘 ∩ �1, 𝑡𝑡𝑘𝑘,𝑝𝑝� (25) 

 
1
2
��𝑣𝑣𝑞𝑞𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑞𝑞+1𝑏𝑏𝑞𝑞𝑠𝑠�
𝑟𝑟−1

𝑞𝑞=0

≤ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 , 𝑟𝑟 ∈ 𝑇𝑇𝑗𝑗 ∩ [1, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠] (26) 

 

It can be found in Fig.6.6 that, if the signal for the kth lane initially displays red, 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 is 

negative and its absolute value equals to the duration since the red light has displayed (the yellow 
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duration is categorized to the green interval). Thus, the remaining red interval during the current 

cycle can be expressed with 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑟𝑟𝑘𝑘. Accordingly, the red interval of the next cycle can be 

expressed with [𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑟𝑟𝑘𝑘 + 𝑔𝑔𝑘𝑘 ,𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑟𝑟𝑘𝑘 + 𝑔𝑔𝑘𝑘 + 𝑟𝑟𝑘𝑘 ], equivalent to [𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝐶𝐶,𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑟𝑟𝑘𝑘 +

𝐶𝐶 ]. While if the signal initially displays green, the 𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 is positive and equals to the remaining 

green interval, and the red interval of the next cycle can be expressed with [𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑔𝑔𝑘𝑘 ,𝑇𝑇T𝑇𝑇𝑘𝑘 +

𝑔𝑔𝑘𝑘 + 𝑟𝑟𝑘𝑘 ]. Therefore, the range of the red interval for each lane can be summarized by the 

following formulas. 

 𝑇𝑇𝑘𝑘 ∈ [0,𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑟𝑟𝑘𝑘] ∪ [𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑧𝑧𝐶𝐶,𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑟𝑟𝑘𝑘 + 𝑧𝑧𝐶𝐶],𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 ≤ 0, z = 1,2, … (27) 
 𝑇𝑇𝑘𝑘 ∈ [𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + 𝑟𝑟𝑘𝑘 + 𝑧𝑧𝐶𝐶,𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 + (𝑧𝑧 + 1)𝐶𝐶],𝑇𝑇𝑇𝑇𝑇𝑇𝑘𝑘 > 0, z = 0,1,2, … (28) 
 

6.3 Solution algorithm  

This study proposes a two-phase algorithm to solve the proposed optimization model, as 

illustrated in Fig. 6.7, where Phase I features a multi-stage-based NLP to minimize the total 

person travel time and eliminate conflict in the PWS between bus and cars; and Phase II 

develops a MILP to further minimize the vehicular idling time conditioned on the travel time of 

each vehicle determined in Phase I.  

 

 

Figure 6.7 A two-phase solution algorithm. 
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6.3.1 Phase I – Conflict elimination and total person travel time minimization 

Due to the time-varying fluctuation of traffic conditions, it is infeasible and impractical to 

optimize vehicular trajectories over the entire control horizon with any “one-off” algorithms. 

Rather, a rolling-based solution algorithm can be developed and applied in a stage-by-stage 

decision process in Phase I. As illustrated in Fig. 6.8, based on the information from the previous 

stage, the algorithm will find the optimal vehicle and bus speed trajectories to prevent conflicts 

in the PWS while minimizing the total person travel time with the assumption that the speeds 

will be maintained till the clearance of vehicles through the intersection. The optimization 

process repeats itself with the time horizon moving one stage ahead at the end of the current 

stage. The interval of a stage, denoted as H, should be as short as possible but be sufficient for 

any vehicle to switch between idling and traveling with the maximum speed limit. The following 

sections will detail the stage state transfer functions along with stage-based objective functions 

and constraints for the rolling algorithm. 

 

 

Figure 6.8 Multi-stage decision making for vehicle trajectory optimization in Phase I. 

During the rolling-based optimization algorithm, the optimization in the current stage is 

based upon the outcome of in the previous one. Therefore, the state transfer function in the two 

successive stages is proposed as follows. 

Update speed 
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Given the interval H, the time index at the sth stage (start from 0) can be expressed as t=sH. 

Accordingly, the speed variables for the car between the sth and s+1th stages can be updated with: 

 

𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝 =

⎩
⎪
⎨

⎪
⎧𝑣𝑣𝑠𝑠𝑠𝑠

𝑘𝑘,𝑝𝑝,                                                                                                        𝑡𝑡 = 𝑠𝑠𝐻𝐻
𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑘𝑘,𝑝𝑝 ,                                                                                           𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻

max�𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 + 𝑚𝑚𝑠𝑠

𝑘𝑘,𝑝𝑝(𝑡𝑡 − 𝑠𝑠𝐻𝐻),𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑘𝑘,𝑝𝑝 �,         𝑚𝑚𝑠𝑠

𝑘𝑘,𝑝𝑝 < 0, 𝑠𝑠𝐻𝐻 < 𝑡𝑡 < 𝑠𝑠𝐻𝐻 + 𝐻𝐻 
min�𝑣𝑣𝑠𝑠𝑠𝑠

𝑘𝑘,𝑝𝑝 + 𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝(𝑡𝑡 − 𝑠𝑠𝐻𝐻),𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠

𝑘𝑘,𝑝𝑝 � ,         𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝 > 0, 𝑠𝑠𝐻𝐻 < 𝑡𝑡 < 𝑠𝑠𝐻𝐻 + 𝐻𝐻

 (29) 

 

where, 𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝 is an indicator for speed update, given by: 

 
𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝 = �

𝑎𝑎𝑠𝑠𝑚𝑚𝑟𝑟 ,            𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑘𝑘,𝑝𝑝 > 𝑣𝑣𝑠𝑠𝑠𝑠

𝑘𝑘,𝑝𝑝

−𝑑𝑑𝑠𝑠𝑚𝑚𝑟𝑟, 𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 ≤ 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠

𝑘𝑘,𝑝𝑝  (30) 

 

The update of bus speed is similar, given by: 

 

𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 =

⎩
⎪
⎨

⎪
⎧ 𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠,                                                                                                        𝑡𝑡 = 𝑠𝑠𝐻𝐻
𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 ,                                                                                           𝑡𝑡 = 𝑠𝑠𝐻𝐻 + 𝐻𝐻
𝑚𝑚𝑎𝑎𝑥𝑥(𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑚𝑚𝑠𝑠

𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡 − 𝑠𝑠𝐻𝐻),𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 ), 𝑚𝑚𝑠𝑠
𝑏𝑏𝑞𝑞𝑠𝑠 < 0, 𝑠𝑠𝐻𝐻 < 𝑡𝑡 < 𝑠𝑠𝐻𝐻 + 𝐻𝐻

𝑚𝑚𝑎𝑎𝑥𝑥(𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑚𝑚𝑠𝑠
𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡 − 𝑠𝑠𝐻𝐻),𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 ), 𝑚𝑚𝑠𝑠

𝑏𝑏𝑞𝑞𝑠𝑠 > 0, 𝑠𝑠𝐻𝐻 < 𝑡𝑡 < 𝑠𝑠𝐻𝐻 + 𝐻𝐻

 (31) 

 
𝑚𝑚𝑠𝑠
𝑏𝑏𝑞𝑞𝑠𝑠 = �𝑎𝑎𝑏𝑏𝑞𝑞𝑠𝑠,            𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 > 𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠

−𝑑𝑑𝑏𝑏𝑞𝑞𝑠𝑠, 𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠  (32) 

 
Update travel distance 

Given the speed update process, the accumulated travel distance for a car can be updated with: 

 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠+1 = 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠 + 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡)|𝑡𝑡=𝑠𝑠𝑠𝑠+𝑠𝑠, 𝐷𝐷𝑘𝑘,𝑝𝑝,0 = 0 (33) 
 

where, 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) is the travel distance at time t for the pth car on the kth lane, given by: 

 

𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧

1
2
�𝑣𝑣𝑡𝑡

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝�(𝑡𝑡 − 𝑠𝑠𝐻𝐻),                                                                𝑣𝑣𝑡𝑡

𝑘𝑘,𝑝𝑝 ≠ 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑘𝑘,𝑝𝑝  

𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑘𝑘,𝑝𝑝 2

− 𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝2

2𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠

𝑘𝑘,𝑝𝑝 �𝑡𝑡 − 𝑠𝑠𝐻𝐻 −
𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑘𝑘,𝑝𝑝 − 𝑣𝑣𝑠𝑠𝑠𝑠

𝑘𝑘,𝑝𝑝

𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝 � ,              𝑣𝑣𝑡𝑡

𝑘𝑘,𝑝𝑝 = 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠
𝑘𝑘,𝑝𝑝  

 (34) 

 

The travel distance at time t for the bus 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) can be obtained with a similar procedure, 

given by: 

 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠+1 = 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 + 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡)|𝑡𝑡=𝑠𝑠𝑠𝑠+𝑠𝑠, 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,0 = 0 (35) 
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𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) =

⎩
⎪
⎨

⎪
⎧1

2
(𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠)(𝑡𝑡 − 𝑠𝑠𝐻𝐻),                                                                𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ≠ 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠  

𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 2 − 𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠
2

2𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 �𝑡𝑡 − 𝑠𝑠𝐻𝐻 −

𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 − 𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠

𝑚𝑚𝑠𝑠
𝑘𝑘,𝑝𝑝 � ,              𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 = 𝑣𝑣𝑠𝑠𝑠𝑠+𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠  

 (36) 

 
Update travel time 

As shown in Fig. 6.8, the travel time at the sth stage for the pth car on the kth lane can be given 

by: 

 
𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 =

𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠

𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 + 𝑦𝑦𝑠𝑠

𝑘𝑘,𝑝𝑝 + 𝑠𝑠𝐻𝐻 (37) 

 

In formula (33),  𝑦𝑦𝑠𝑠
𝑘𝑘,𝑝𝑝 is an auxiliary variable applied to the travel time in case the vehicle’s 

speed is zero, given by:  

 
𝑦𝑦𝑠𝑠
𝑘𝑘,𝑝𝑝 = �

0,        𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 > 0 

𝜀𝜀, 𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 = 0

 (38) 

 

where, 𝜀𝜀 is a very small positive number. 

The travel time of bus has the similar update process, given by: 

 
𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 =

𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠

𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑦𝑦𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠
+ 𝑠𝑠𝐻𝐻;  𝑦𝑦𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 = �0,        𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 > 0 

𝜀𝜀, 𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 = 0
 (39) 

 

It can be found from formula (33) that at the sth stage if the vehicle has already cleared the 

intersection, the result of 𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠 is negative, and therefore the travel time will be less than 

𝐻𝐻𝑠𝑠. 

Finally, the transfer function of travel time between the sth and the s+1th stage is given by: 

 𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠+1 = 𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 + ∆𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 (40) 
 

where,  
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∆𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 =

⎩
⎪
⎨

⎪
⎧𝑥𝑥𝑘𝑘,𝑝𝑝

0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠 − 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑠𝑠𝐻𝐻 + 𝐻𝐻)

𝑣𝑣𝑠𝑠+𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 + 𝑦𝑦𝑠𝑠+1

𝑘𝑘,𝑝𝑝 + 𝐻𝐻,                                     𝑠𝑠 = 0

𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠 − 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑠𝑠𝐻𝐻 + 𝐻𝐻)

𝑣𝑣𝑠𝑠+𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 + 𝑦𝑦𝑠𝑠+1

𝑘𝑘,𝑝𝑝 −
𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠

𝑣𝑣𝑠𝑠𝑠𝑠
𝑘𝑘,𝑝𝑝 + 𝑦𝑦𝑠𝑠

𝑘𝑘,𝑝𝑝 + 𝐻𝐻, 𝑠𝑠 > 0
 (41) 

 

Similarly, the state transfer function of travel time for the bus between the sth and the s+1th 

stage can be given by: 

 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠+1 = 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 + ∆𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 (42) 
 

∆𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 =

⎩
⎪
⎨

⎪
⎧ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠

0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 − 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑠𝑠𝐻𝐻 + 𝐻𝐻)
𝑣𝑣𝑠𝑠+𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑦𝑦𝑠𝑠+1𝑏𝑏𝑞𝑞𝑠𝑠 + 𝐻𝐻,                                     𝑠𝑠 = 0

𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 − 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑠𝑠𝐻𝐻 + 𝐻𝐻)
𝑣𝑣𝑠𝑠+𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑦𝑦𝑠𝑠+1𝑏𝑏𝑞𝑞𝑠𝑠 −

𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠

𝑣𝑣𝑠𝑠𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠 + 𝑦𝑦𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠
+ 𝐻𝐻, 𝑠𝑠 > 0

 (43) 

 
Update total person travel time 

The total person travel time for all vehicles within the control scope at the sth stage, is defined as 

the sum of each vehicular product of travel time and passenger number, given by: 

 

𝑇𝑇𝑠𝑠 = �

0,                                                                         𝑠𝑠 = 0

���𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 ∙ 𝑃𝑃𝑘𝑘,𝑝𝑝�
𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑚𝑚𝑘𝑘

𝑝𝑝=1

+ 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 ∙ 𝑃𝑃𝑏𝑏𝑞𝑞𝑠𝑠, 𝑠𝑠 > 0    (44) 

 

The state transfer function between the sth and the s+1th stage can then be updated with: 

 
𝑇𝑇𝑠𝑠+1 = 𝑇𝑇𝑠𝑠 + ���∆𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 ∙ 𝑃𝑃𝑘𝑘,𝑝𝑝�

𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑚𝑚𝑘𝑘

𝑝𝑝=1

+ ∆𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠 ∙ 𝑃𝑃𝑏𝑏𝑞𝑞𝑠𝑠 (45) 

Note that 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0  is estimated with: 

 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 = 𝑥𝑥𝐶𝐶 + �(𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃)2 + [(𝑗𝑗 − 𝑚𝑚 + 1)𝑤𝑤]2 (46) 
 

Given the state transfer functions between stages, the objective function of Phase I can be 

rewritten as minimizing the difference of total person travel time between two successive stages, 

given by 

 
𝑚𝑚𝑚𝑚𝑚𝑚���∆𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 ∙ 𝑃𝑃𝑘𝑘,𝑝𝑝�

𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑚𝑚𝑘𝑘

𝑝𝑝=1

+ �∆𝑡𝑡𝑘𝑘,𝑝𝑝,𝑠𝑠 ∙ 𝑃𝑃𝑏𝑏𝑞𝑞𝑠𝑠�|𝐷𝐷𝑘𝑘,𝑝𝑝,𝑏𝑏∗>𝑚𝑚𝑘𝑘,𝑝𝑝
0 ;𝐷𝐷𝑏𝑏𝑏𝑏𝑏𝑏,𝑏𝑏∗>𝑚𝑚𝑏𝑏𝑏𝑏𝑏𝑏

0 ,∀𝑘𝑘;∀𝑝𝑝 (47) 

where, 𝑠𝑠∗ represents the final stage; 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠∗ and 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠∗ are the accumulated travel distance 
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at the stage 𝑠𝑠∗ for the pth car on the kth lane and the bus, respectively. 

Accordingly, the constraints listed in Section 6.2.4 can be converted to their stage-based 

forms, given as follows: 

Constraints of speed limit and cruising speed limit: 

 0 ≤ 𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 = 𝑠𝑠𝐻𝐻 (48) 

 0 ≤ 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 (49) 
 𝑣𝑣𝑡𝑡

𝑘𝑘,𝑝𝑝 ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 , 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 = 𝑠𝑠𝐻𝐻 (50) 
 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ≥ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑡𝑡 = 𝑠𝑠𝐻𝐻 (51) 
 

Constraint of safe distance maintenance:  

 𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) − �𝑥𝑥𝑘𝑘,𝑝𝑝−1

0 − 𝐷𝐷𝑘𝑘,𝑝𝑝−1,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝−1(𝑡𝑡)� ≥ 3𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝,𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡

∈ [𝑠𝑠𝐻𝐻, 𝑠𝑠∗𝐻𝐻] 
(52) 

 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) − �𝑥𝑥𝑗𝑗,𝑝𝑝−1
0 − 𝐷𝐷𝑗𝑗,𝑝𝑝−1,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑗𝑗,𝑝𝑝(𝑡𝑡)� ≥ 3𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠, 𝑝𝑝 ∈ �1,𝑚𝑚𝑗𝑗�; 𝑡𝑡 ∈ [𝑠𝑠𝐻𝐻, 𝑠𝑠∗𝐻𝐻] 

 𝑚𝑚𝑖𝑖𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) < 𝑥𝑥𝑘𝑘,𝑝𝑝−1
0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑗𝑗,𝑝𝑝(𝑡𝑡)  (53) 

 𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑗𝑗,𝑝𝑝,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑗𝑗,𝑝𝑝(𝑡𝑡) − �𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡)� ≥ 3𝑣𝑣𝑡𝑡

𝑗𝑗,𝑝𝑝, 𝑝𝑝 ∈ �1,𝑚𝑚𝑗𝑗�; 𝑡𝑡 ∈ [𝑠𝑠𝐻𝐻, 𝑠𝑠∗𝐻𝐻]  
 𝑚𝑚𝑖𝑖𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) < 𝑥𝑥𝑗𝑗,𝑝𝑝−1

0 − 𝐷𝐷𝑗𝑗,𝑝𝑝,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑗𝑗,𝑝𝑝(𝑡𝑡) 
(54) 

 

If the bus on the destination lane should never exceeds the stop line before the algorithm 

is terminated, given by: 

 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑗𝑗,𝑝𝑝(𝑡𝑡) ≤ 𝑥𝑥𝐶𝐶 , 𝑡𝑡 ∈ [𝑠𝑠𝐻𝐻, 𝑠𝑠∗𝐻𝐻] (55) 
 

Constraint of weaving elimination: 

 𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) − 𝑥𝑥𝐶𝐶 > 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃  𝑜𝑜𝑟𝑟  𝑥𝑥𝑘𝑘,𝑝𝑝

0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) − 𝑥𝑥𝐶𝐶 < −𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃, 
  𝑚𝑚𝑖𝑖 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 + 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) ≤ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝑥𝑥𝐶𝐶 + 𝑙𝑙𝑏𝑏𝑞𝑞𝑠𝑠;  𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ [𝑠𝑠𝐻𝐻, 𝑠𝑠∗𝐻𝐻] (56) 

 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 + 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) > 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝑥𝑥𝐶𝐶 + 𝑙𝑙𝑏𝑏𝑞𝑞𝑠𝑠 𝑜𝑜𝑟𝑟 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 + 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) = 0,  
𝑚𝑚𝑖𝑖 𝑥𝑥𝑘𝑘,𝑝𝑝

0 − 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 − 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) − 𝑥𝑥𝐶𝐶 − 𝑥𝑥𝑃𝑃𝑃𝑃𝑃𝑃 ≤ 0;  𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ [𝑠𝑠𝐻𝐻, 𝑠𝑠∗𝐻𝐻] (57) 

 

Constraint of red violation prevention:  

 𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 + 𝑑𝑑𝑠𝑠,𝑘𝑘,𝑝𝑝(𝑡𝑡) ≤ 𝑥𝑥𝑘𝑘,𝑝𝑝
0 , 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘]; 𝑡𝑡 + 𝑠𝑠𝐻𝐻 − 𝐻𝐻 ∈ 𝑇𝑇𝑘𝑘 ∩ [𝑠𝑠𝐻𝐻 − 𝐻𝐻, 𝑠𝑠∗𝐻𝐻]; 𝑚𝑚𝑖𝑖𝐷𝐷𝑘𝑘,𝑝𝑝,𝑠𝑠−1 ≤ 𝑥𝑥𝑘𝑘,𝑝𝑝

0  (58) 
 𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 + 𝑑𝑑𝑠𝑠,𝑏𝑏𝑞𝑞𝑠𝑠(𝑡𝑡) ≤ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 , 𝑡𝑡 + 𝑠𝑠𝐻𝐻 − 𝐻𝐻 ∈ 𝑇𝑇𝑗𝑗 ∩ [𝑠𝑠𝐻𝐻 − 𝐻𝐻, 𝑠𝑠∗𝐻𝐻]; 𝑚𝑚𝑖𝑖𝐷𝐷𝑏𝑏𝑞𝑞𝑠𝑠,𝑠𝑠−1 ≤ 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0  (59) 
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6.3.2 Phase II- Idling minimization 

Phase II of the algorithm aims to further tune vehicular trajectories from Phase I so that the idling 

time for each vehicle is minimized for energy and environmental considerations.  

Objective function 

The objective function of the MILP is to minimize the sum of idling time for each vehicle. It can 

be fulfilled by maximizing the number of non-zero idling indicators at each second. One can 

express this function with: 

 

𝑚𝑚𝑎𝑎𝑥𝑥����𝑈𝑈𝑡𝑡
𝑝𝑝,𝑘𝑘

𝑡𝑡𝑘𝑘,𝑝𝑝
∗

𝑡𝑡=0

+ �𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠
𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏
∗

𝑡𝑡=0

𝑚𝑚

𝑘𝑘=𝑗𝑗

𝑚𝑚𝑘𝑘

𝑝𝑝=1

� (60) 

 
Given the travel time for the cars and bus optimized in Phase I denoted as 𝑡𝑡𝑘𝑘,𝑝𝑝(𝑠𝑠∗) and 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠(𝑠𝑠∗), 

the number of decision variables for each vehicle can be estimated with: 

 𝑡𝑡𝑘𝑘,𝑝𝑝
∗ = �𝑡𝑡𝑘𝑘,𝑝𝑝(𝑠𝑠∗)� + 1; 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠∗ = ⌊𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠(𝑠𝑠∗)⌋ + 1, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [1,𝑚𝑚𝑘𝑘] (61) 

 

The accumulated travel distance for the pth car on the kth lane at time t is given by: 

 𝐷𝐷𝑡𝑡
𝑘𝑘,𝑝𝑝 =

⎩
⎪⎪
⎨

⎪⎪
⎧ 1

2
�𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝

𝑡𝑡−1

𝑞𝑞=0

,                                                                                             𝑡𝑡 < 𝑡𝑡𝑘𝑘,𝑝𝑝
∗

1
2
�𝑣𝑣𝑡𝑡𝑘𝑘,𝑝𝑝

∗ −1
𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑡𝑡𝑘𝑘,𝑝𝑝

∗
𝑘𝑘,𝑝𝑝 � �𝑡𝑡𝑘𝑘,𝑝𝑝(𝑠𝑠∗) + 1 − 𝑡𝑡𝑘𝑘,𝑝𝑝

∗ � +
1
2
� �𝑣𝑣𝑞𝑞

𝑘𝑘,𝑝𝑝 + 𝑣𝑣𝑞𝑞+1
𝑘𝑘,𝑝𝑝 �

𝑡𝑡𝑘𝑘,𝑝𝑝
∗ −1

𝑞𝑞=0

, 𝑡𝑡 = 𝑡𝑡𝑘𝑘,𝑝𝑝
∗

, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝

∈ [1,𝑚𝑚𝑘𝑘] 

(62) 

 

The second row of formula (62) implies the time interval between the last two speed 

variables is 𝑡𝑡𝑘𝑘,𝑝𝑝(𝑠𝑠∗) + 1 − 𝑡𝑡𝑘𝑘,𝑝𝑝
∗ , instead of one second. 
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Constraints  

All constraints, listed in Section 6.2.4, should be converted to the linear form, which is neglected 

in this chapter. While the condition for algorithm termination, as vehicles should finally pass the 

intersection, should be added to the constraint list. One can express the condition with: 

 𝑥𝑥𝑘𝑘,𝑝𝑝
0 − 𝐷𝐷𝑡𝑡𝑘𝑘,𝑝𝑝

∗
𝑘𝑘,𝑝𝑝 ≤ 0, (63) 

 𝑥𝑥𝑏𝑏𝑞𝑞𝑠𝑠0 − 𝐷𝐷𝑡𝑡𝑏𝑏𝑏𝑏𝑏𝑏∗
𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 0 (64) 

 𝑣𝑣𝑡𝑡𝑘𝑘,𝑝𝑝
∗
𝑘𝑘,𝑝𝑝 𝑀𝑀 ≥ 𝑀𝑀1 (65) 

 𝑣𝑣𝑡𝑡𝑘𝑘,𝑝𝑝
∗
𝑏𝑏𝑞𝑞𝑠𝑠𝑀𝑀 ≥ 𝑀𝑀1 (66) 

 

Regarding formulas (63) to (66), the large positive penalty constants 𝑀𝑀 and 𝑀𝑀1 (𝑀𝑀 ≫ 𝑀𝑀1) 

help fulfill the constraint that the vehicle is not idling when it hits the stop line.  

Besides, the definitions of 𝑈𝑈𝑠𝑠
𝑝𝑝,𝑘𝑘 and 𝑈𝑈𝑠𝑠𝑏𝑏𝑞𝑞𝑠𝑠, illustrated by formulas (11) and (12), should be 

converted to the linear forms, given by: 

 0 ≤ 𝑈𝑈𝑡𝑡
𝑝𝑝,𝑘𝑘 ≤ 𝑡𝑡𝑘𝑘,𝑝𝑝

∗ + 1 − 𝑡𝑡, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [2,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �0, 𝑡𝑡𝑘𝑘,𝑝𝑝
∗ � (67) 

 𝑈𝑈𝑡𝑡
𝑝𝑝,𝑘𝑘 ≤ 𝑣𝑣𝑡𝑡

𝑘𝑘,𝑝𝑝𝑀𝑀1, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [2,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �0, 𝑡𝑡𝑘𝑘,𝑝𝑝
∗ � (68) 

 �𝑡𝑡𝑘𝑘,𝑝𝑝
∗ + 1 − 𝑡𝑡 − 𝑈𝑈𝑡𝑡

𝑝𝑝,𝑘𝑘�𝑀𝑀1 ≤ 𝜖𝜖𝑡𝑡,𝑘𝑘,𝑝𝑝𝑀𝑀 + 𝑀𝑀2, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [2,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �0, 𝑡𝑡𝑘𝑘,𝑝𝑝
∗ � (69) 

 𝑣𝑣𝑡𝑡
𝑘𝑘,𝑝𝑝𝑀𝑀1 ≤ �1 − 𝜖𝜖𝑡𝑡,𝑘𝑘,𝑝𝑝�𝑀𝑀, 𝑘𝑘 ∈ [𝑗𝑗, 𝑚𝑚];  𝑝𝑝 ∈ [2,𝑚𝑚𝑘𝑘]; 𝑡𝑡 ∈ �0, 𝑡𝑡𝑘𝑘,𝑝𝑝

∗ � (70) 
 0 ≤ 𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠∗ + 1 − 𝑡𝑡, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠∗ ] (71) 
 𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠 ≤ 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠𝑀𝑀1, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠∗ ] (72) 
 (𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠∗ + 1 − 𝑡𝑡 − 𝑈𝑈𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠)𝑀𝑀1 ≤ 𝜖𝜖𝑡𝑡,𝑏𝑏𝑞𝑞𝑠𝑠𝑀𝑀 + 𝑀𝑀2, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠∗ ] (73) 
 𝑣𝑣𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠𝑀𝑀1 ≤ �1 − 𝜖𝜖𝑡𝑡,𝑏𝑏𝑞𝑞𝑠𝑠�𝑀𝑀, 𝑡𝑡 ∈ [0, 𝑡𝑡𝑏𝑏𝑞𝑞𝑠𝑠∗ ] (74) 

 

Regarding formulas (67) to (74), the binary variables 𝜖𝜖𝑡𝑡,𝑘𝑘,𝑝𝑝 and 𝜖𝜖𝑡𝑡,𝑏𝑏𝑞𝑞𝑠𝑠, together with the 

large positive penalty constants 𝑀𝑀 , 𝑀𝑀1  and 𝑀𝑀2  (𝑀𝑀 ≫ 𝑀𝑀1 ≫ 𝑀𝑀2 ) help linearly express the 

constraint under the “if-else” condition. 
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6.4 Validation and results 

6.4.1 The test site 

This study validates the proposed model using a simulated experiment at Zhangyang Road and 

Fushan Road in Shanghai, China, where the eastbound of the intersection (as illustrated in Fig. 6.9) 

is selected as the test site. There are five approach lanes in the eastbound approach and the lanes 

are numbered from the median to the curb.  The traffic demand during the peak hour in this leg is 

around 5000 vph, and during off-peak hour is nearly 2000 vph. The signal timing plan are different 

between peak hour and off-peak hour. During off-peak hour, the green time and cycle length are 

summarized in table 6.2. While during the peak hour, the green time for the straight movement is 

44s and for the left turn movement is 37, and the cycle length is 310s. 
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Figure 6.9 Location and layout of the test site. 

As Fig. 6.9 shows, there’re five approaching lanes, where the 2th (j=2) lane is the distension 

lane, and the 5th (i=5) lane is the curbside lane.  

The inputs of the model are summarized in Table. 6.2. 

Table 6.2 Summary of the model inputs. 

Parameters Sequence number of approaching lanes (k value) 

Yue Liu
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2 3 4 5 
𝒙𝒙𝑷𝑷𝑷𝑷𝑷𝑷 (m) 10 10 10 10 
𝒙𝒙𝑪𝑪 (m) 40 40 40 40 
𝒘𝒘 (m) 4 4 4 4 
𝒍𝒍𝒃𝒃𝒃𝒃𝒃𝒃 (m) 10 10 10 10 
𝒏𝒏𝒌𝒌 (pcu) 10 10 10 10 
𝒗𝒗𝟎𝟎
𝒌𝒌,𝒑𝒑 (m/s) 10 8 8 8 

𝒗𝒗𝒎𝒎𝒎𝒎𝒙𝒙 (m/s) 18 18 18 18 
𝑪𝑪 (s) 100 100 100 100 
𝒈𝒈𝒌𝒌 (s) 20 30 30 ∞ 
𝒓𝒓𝒌𝒌 (s) 80 70 70 0 

𝑻𝑻𝑻𝑻𝑻𝑻𝒌𝒌 (s) -45 -15 -15 ∞ 
𝑷𝑷𝒌𝒌,𝒑𝒑 (person) 2 2 2 2 
𝑷𝑷𝒃𝒃 (person) 50 50 50 50 

 
Note that the right-turn lane is not under control. Accordingly, the values of 𝐺𝐺5 and 𝑇𝑇5 are 

set to be infinite, and 𝑇𝑇𝑇𝑇𝑇𝑇5 to be zero.  

6.4.2 Results 

In the example, the following indices are estimated and compared under the control and non-

control environments: (1) vehicular travel time of each lane; (2) sum of vehicular travel time of all 

lanes; (3) person travel time of each lane; (4) total person travel time of all lanes; (5) vehicular 

idling time of each lane; and (6) total vehicular idling time of all lanes. These indices are illustrated 

from Figs. 6.10 to 6.12. 
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Figure 6.10 Comparison of the vehicular travel time under control and non-control 
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environments. 

Fig. 6.10 compares the vehicular travel time under the control and no-control environments, 

where the bins in the left part of the figure represent the travel time, while in the right part they are 

the optimal rates. It can be found that although the sum of vehicular travel time of all lanes under 

the control environment is shorter than the one under the non-control environment, the 

improvement is not significant. Furthermore, the outcomes of the 2th and 3th lanes indicate the 

control environment performs even worse, which could also be illustrated by the negative bins of 

the 2th and 3th lanes in the right part of the figure.  For the 5th lane, the results are identical since 

no vehicle needs to change the status. Finally, only the 4th lane under the control environment 

shows significant improvement. 
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Figure 6.11 Comparison of vehicular time under control and non-control environments. 

Fig. 6.11 compares the person travel time of each lane. It can be found that considering the 

passenger number, the control effectiveness toward the bus shows significant improvement on the 

destination lane. Furthermore, the sum of person travel time of all lanes is extremely shorter under 

the control environment. In the comparison, the person travel time of bus is categorized to the 2th 

lane since the bus needs traverse the 4th and 3th lanes and finally passes the intersection through 

the 2th lane. Therefore, the comparison result of the 2th lane regarding person travel time is contrary 
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to the one regarding vehicular travel time.  
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Figure 6.12 Comparison of person travel time under control and non-control 

environments. 

Fig. 6.12 compares the vehicular idling time under the control and no-control environments, 

whose results are similar to those of the vehicular travel time. It can be found that the sum of 

vehicular idling time of all lanes under the control environment is shorter than the one under the 

non-control environment. While regarding the individual lane, the result of the 2th and 3th lanes 

under the control environment is even worse.  For the 5th lane, the idling time is zero since there’s 

no signal control for this lane.  

Studying the vehicular trajectories can help in explaining the aforementioned outcomes. 

The trajectories of bus and its potential weaving cars in each lane (from the 5th to the 2th) are 

illustrated in Figs. 6.13 to 6.16. 
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Figure 6.13 Trajectories of the last car and bus on the 5th lane, under the control and non-

control environment. 

Fig. 6.13 depicts the trajectories of bus and its nearest downstream car on the curb side lane 

(the 5th lane). Since on this lane all vehicles are not under signal control, the trajectories of cars 

with and without control are identical, and only the trajectories of bus under the two environments 

differ, due to the weaving with cars on the adjacent lane.  

 

Figure 6.14 Trajectories of the cars and bus on the 4th lane under the control and non-

control environment. 

Fig. 6.14 depicts the trajectories of the bus, the leading and the fourth cars downstream of 

the PWS on the 4th lane. Selecting the leading and the fourth cars is because under the control 
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environment, the leading car accelerates and pass the PWS prior to the bus, while the fourth car 

decelerates and passes the PWS behind the bus. It causes that the car platoon is divided into two 

sub-platoons. When under the non-control environment, the cars and bus block each other until 

one more cycle passes, resulting huge delay for all vehicles.  

 

 

Figure 6.15 Trajectories of the cars and bus on the 3th lane under the control and non-

control environment. 

Fig. 6.15 depicts the leading and the fifth cars downstream of the PWS on the 3th lane. It 

can be noted that under the control environment, the leading car accelerates and pass the PWS 

prior to the bus, while the fifth vehicle decelerates and passes the PWS behind the bus. It also 

results in the division of car platoon. While under the non-control environment, these cars do not 

weave the bus, since the bus are still blocked by cars on the 4th lane, which illustrates why on this 

lane, both the vehicular and person travel time under the control environment are lower than under 

the non-control environment. 
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Figure 6.16 Trajectories of the car and bus on the destination lane, under the control and 

non-control environment. 

Fig. 6.16 depicts the trajectories of bus and the leading car downstream of the PWS, on the 

destination (2th) lane. It can be illustrated that under the control environment, the car decelerates 

and pass the PWS behind the bus. While under the non-control environment, the car is not affected 

by the bus as well, which also explains the phenomenon demonstrated in Fig. 6.13. Although no 

improvement of vehicular travel time, the person travel time is much lower under the control 

environment, as person travel time of bus is categorized to this lane.  

In summary, it can be demonstrated from Figs. 6.13 to 6.16 that since the bus doesn’t weave 

cars on all the lanes, the improvement in terms of vehicular travel time under the control 

environment has no significance. While considering the effectiveness of passenger number, the 

control model presents remarkable advantages.   

6.4.3 Sensitivity analysis 

Ratio 

One of the objectives in the control model is to minimize the total person travel time. Therefore, 

the ratio of bus passenger number over car passenger number may affect the control strategy and 
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outcomes. In this section, fixing the car passenger number, the study selects the various bus 

passenger numbers to explore the sensitivity of optimal rates of the total vehicular travel time and 

total person travel time under the control environment.  

The passenger number in each car is fixed as 2. The optimal rates under various bus person 

number are shown in Fig. 6.17. 

 

 

Figure 6.17 Comparison of optimal rates of vehicular and person travel time under the 

control environment. 

It could be found in Fig. 6.17 that with the increase of bus passenger number, the optimal 

ratio of the total vehicular travel time declines. This is because when the bus passenger person 

number rises, the priority of bus becomes even higher, resulting in that more cars decelerate and 

pass the PWS behind the bus, which causes huge delay of cars. While for the total person travel 

time, the situation is rather different. Since the priority of bus becomes higher, the bus could pass 

the intersection faster. Therefore, multiplied by passenger number, the improvement of travel time 

under the control environment becomes more and more significant. 

Demand 
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Another index affecting the model is the traffic demand around the intersection. In this 

section, we set the traffic demand from 500 vph to 4500 vph with the increasing step of 500 vph. 

The optimal rates under various travel demand are shown in Fig. 6.18. 

 

Figure 6.18 Comparison of optimal rates of person travel time under various traffic 

demand. 

It could be found in Fig. 6.18 that the traffic demand and the optimal ratio of the total 

person travel time are parabolic correlated, with the vertex at demand of 2500 vph. When the 

traffic demand is significantly low or high, it seems the control model hardly bring improvement. 

It is because when demand is extremely low, the bus and cars are not likely to weave each other, 

therefore, it is not necessary to control the trajectories of those vehicles. Nevertheless, if the traffic 

demand is nearly oversaturated, there seems no space to create to avoid weaving, causing 

uselessness of the control model under this situation. 

Station distance 

The distance between the bus station and stop line could potently affect the effectiveness 
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of the control model. In this section, we set traffic demand as moderate (2500 vph), and distance 

from 20 to 400 meters (without considering the DSRC working scope), with the increasing step of 

20 meters. The optimal rates under various travel demand are shown in Fig. 6.19. 

 

Figure 6.19 Comparison of optimal rates of person travel time under various distance. 

It could be found in Fig. 6.19 that with the increase of traffic distance, the optimal ratio of 

the total person travel time remains 0% until the distance exceeds 60m. After that it keeps 

increasing and remains the same after the distance is greater than 200 meters. This is because when 

the station is too close to the stop line, there’s little space for optimizing the trajectories. While 

when the distance is too long, it becomes less significant and has little impact on the control result. 

6.5 Conclusions 

This chapter proposes a cooperative bus-car trajectory optimization model to eliminate weaving 

bottleneck around the near-side bus station. The contribution of the method is to develop a two-

phase model, where the minimization of total person travel time and weaving elimination are 

fulfilled in Phase I model, while the minimization of total vehicular idling time is conducted in 
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Phase II model, conditioning on the output of Phase I. The rolling-based NLP and MILP models 

are applied in the Phases I and II, respectively. 

The study provides an example to validate the proposed model. Firstly, the it compares the 

vehicular travel time under the control and non-control environments. Results show that only the 

lane adjacent to the curb side lane reflects significant improvement under control. Then, 

considering the person travel time, the study explores that not only the result of the lane adjacent 

to the curb side lane, but of all lanes shows remarkable benefits of the control model. After that, 

the vehicular idling time is compared under the control and no-control environments. The result 

shows similarity to the vehicular travel time. Finally, the study analyzed vehicular trajectories on 

each lane, indicating that without control, the bus just weaves the cars on the lane adjacent to the 

curb side lane, while the cars in other lanes are not impacted. This finding also explains some 

“contradictory” conclusions in comparison of the vehicular travel time, person travel time and 

vehicular idling time. 

This study also conducts the sensitivity analysis towards the ratio of bus passenger number 

over car passenger number. The result illustrates that with the increase of bus passenger number, 

the optimal rate of the total vehicular time declines, while of the total person time rises. 

Analysis results indicate the validity and effectiveness of the proposed speed control 

framework. On-going work of this study is to test the proposed model in real-world and evaluate 

its effectiveness with continuous arrival of bus at the station. 
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 DILEMMA ZONE PROTECTION FOR SAFETY IMPROVEMENT 

AT AN ISOLATED SIGNALIZED INTERSECTION  

This chapter develops a dynamic speed guiding method towards dilemma zone protection 

through a high-speed signalized intersection. A two-stage control model is proposed where the 

DZ protection and travel time minimization are fulfilled in Stage I. Conditioning on the output of 

the Stage I, the optimization of speed trajectory is completed in Stage II. The Dynamic 

Programming and Multi-objective Mixed Integer Linear Programming algorithms are used to 

solve the models. An illustrative example is provided to validate the proposed model. Results 

indicate that the model is effective to achieve DZ protection while minimizing travel time, idling 

time and speed fluctuation. Sensitivity analysis is conducted and it implies that for the travel 

time, there’s little impact towards higher speed while the travel time with lower speed rises with 

the increase of guiding scope. For the speed fluctuation, with higher speed, it declines with the 

rise of travel scope, while no impact shows under the lower speed. 

 

7.1 Introduction 

Improving traffic safety is almost the overriding responsibility of transportation departments at all 

levels, especially for reducing the risks at those hazardous intersections with deadly accidents.  A 

report from the United States shows in 2013 there were 2,524,000 crashes happened at signalized 

intersections, where approximately 4470 crashes were fatal. Dilemma zone (DZ), a segment in the 

approach of the intersection, is one of the most contributing factors towards those crashes, since 

motorists can neither pass the intersection before the onset of the red phase, causing side-angle 

crashes; nor stop the car safely, resulting in rear-end collision. The idea of DZ was initially 

proposed by Gazis, who developed a model, “Type-I Model”, defining DZ as a space range, where 
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the vehicle can neither clear the intersection safely nor slow down to stop smoothly during the 

yellow phase. Beside the “Type-I Model”, a concept of the “Type-II Model” was also raised, 

expressed as a probability of motorists ‘decision for stop. Field observation or graph processing 

are usually adopted to study DZ boundaries or the motorists’ reaction facing DZ. A common sense 

is that DZ range depends on the motorist’s behaviors and the types of vehicles. Other literatures 

also show a boundaries range of between 2 to 6 seconds for DZ. In studying with the motorists’ 

behaviors, Van der Horst and Wilmink illustrated that they depend on some objective and 

subjective factors, such as motorist’s emotion, personality, and vehicular speed, et. They developed 

a decision-making process model and some parameters in that model are adopted by some later.  

The traditional studies towards DZ protection are mainly divided into two categories: one 

belongs to the motorist side, trying to alert the motorists in advance; the other belongs to 

infrastructure, extending the green time to insure the vehicles pass before the onset of the red phase.  

Over the motorist ride, Moon et al. developed an integrated system for assessing a DZ warning 

system for signalized intersections by a serial of field tests. Results from the tests indicated that 

the system can be implemented at signalized intersections to avoid the DZ, and to reduce red-light 

violations and intersection collisions. Martin et al. considered the two-advanced warning (AWS) 

systems presently used in Utah. It found that the setup and performance of the two systems were 

different. The Texas Transportation Institute has developed a new system named the Advanced 

Warning for End of Green System (AWEGS) for application of DZ. The system was implemented 

at two sites in Waco and Brenham, Texas. The result indicated that AWEGS consistently improved 

the DZ protection at intersections and reduced red light running by approximately 40%. Another 

system is called the Pre-signal Indication System (PSIS) which uses a flashing green or yellow 

signal at the last of the green phase. 
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Over the infrastructure side, Ma et al. presents an extensive investigation regarding the 

impacts of green signal countdown devices (GSCD) on the intersection safety, based on field 

observation of critical motorist and vehicle related parameters at two similar intersections (one 

with GSCD and the other without GSCD) in Shanghai. Also, some studies combined those two 

categories together. 

Recently, several preliminary studies have been investigated towards applying the real-

time communication theory for DZ protection. Sharma et al. developed a prototype Yellow Onset 

Motorist Assistance (YODA) system, consisting of a pole-mounted unit (StreetWave) and an in-

vehicle unit (MobiWave), to advise the motorists on whether it is safe to proceed through the 

intersection. Hsu et al. developed an on-board system which can alert the motorists to slow down 

to avoid DZ according to the real time driving status, such as speed and position. Dong et al. 

presents a dilemma-zone (DZ) avoidance-guiding system for vehicles approaching an intersection. 

The purpose of the system is to assist motorists in determining the driving behavior and to prevent 

vehicles from being caught in DZ. Machiania et al. proposed a new measure, called safety 

surrogate histogram, to capture the degree and frequency of dilemma zone related conflicts at 

signalized intersection approaches 

Abu-Lebdeh proposed an algorithm to study the benefits of the Intellidrive technology in 

terms of vehicular delay. Guler et al. proposed an algorithm to enumerate various vehicle 

discharging patterns before the stop line and minimize vehicular delay using the connected-vehicle 

technology. Wan et al. proposed a Speed Advisory System (SAS) for pre-timed traffic signals and 

obtained the fuel minimal driving strategy as an analytical solution to a fuel consumption 

minimization problem. Canadan et al. proposed a connected vehicle signal control (CVSC) 

strategy for an isolated intersection with significantly reduced travel time delays and average 
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number of stops per vehicle compared with the adaptive control strategy. Lioris et al. found that 

platoons of connected vehicles can double throughput in urban roads. Wei et al. developed a set of 

integer programming and dynamic programming models for scheduling longitudinal trajectories 

with both system-wide safety and throughput requirements taken into consideration. 

Although the literature findings illustrate that it is possible to apply CV for DZ protection, 

there may have some issues which need to be addressed. For example, existing methods are not 

able to optimize the speed trajectories, which may result in some negative effects, such as: (1) 

aggressive deceleration may be harmful to the vehicular engine, while sudden acceleration may 

generate unnecessary fuel consumption or emissions; (2) unoptimized speed profile may increase 

idling time; and (3) frequent speed fluctuation may cause the motorists to feel uncomfortable. 

Therefore, this chapter makes contributions to developing a dynamic speed control method 

that can effectively prevent vehicles from dropping in the DZ (see Fig. 7.1) while minimizing 

travel time and trajectory through the high-signalized intersections. 

RSU

v1
v2
v3
v4

v1>v2>v3>v4

DZ 
 

Figure 7.1 Speed guidance for DZ protection. 

The proposed guiding model applies when a vehicle is detected to drop in the DZ given the 

speed, occupancy, location and signal timing information. The proposed model enables vehicle-

signal cooperation through a two-stage optimization. A Dynamic Programming (DP) algorithm is 

developed in Stage I to search trajectories that eliminate the DZ issue and minimize the total travel 
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time; while Stage II features a Multi-objectives Mixed Integer Linear Programming (MOMILP) 

model to minimize speed fluctuation and idling time if multiple solutions are obtained in Stage I.  

7.2 Methodology 

7.2.1 Computation of DZ 

As mentioned above, the DZs are divided into two categories: Type I DZ and Type II DZ. Fig. 7.2 

depicts the layout of the two types, where the Type I illustrates a situation when a yellow signal is 

displayed, a motorist, approaching the stop line of an intersection, is unable to safely pass the 

intersection or stop his/her vehicle smoothly before the stop line. For the Type II, an abstract 

concept is demonstrated that the DZ is located between 5.5 s and 2.5 s of the travel time for hitting 

the stop line.   

Dilemma Zone

0-2.5sec

Likely Stop

2.5-5.5sec>5.5sec

Likely Go

TYPE II DZ

xc
x0xdz

Vehicles cannot stop smoothly

Vehicles cannot pass safely

Dilemma Zone

TYPE I DZ

 

Figure 7.2 Layout of Type I and Type II DZs. 

The location and length of the Type I DZ can be estimated with:  

 
𝑥𝑥𝑛𝑛𝑑𝑑1 = |𝑥𝑥𝑠𝑠 − 𝑥𝑥0| = ��𝑣𝑣𝛿𝛿2 +

𝑣𝑣2

2𝑑𝑑∗
� − [𝑣𝑣𝜏𝜏 − (𝑤𝑤 + 𝐿𝐿) +

1
2
𝑎𝑎∗(𝜏𝜏 − 𝛿𝛿1)2]� (1) 

It can be found in Eq. (1) that if 𝑥𝑥𝑛𝑛𝑑𝑑1 is greater than 0, the Type I DZ exists. 

The location and length of the Type II DZ depend on the current vehicular speed, which 

can be estimated with: 
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 𝑥𝑥𝑛𝑛𝑑𝑑2 = 𝑥𝑥𝑠𝑠𝑡𝑡𝑠𝑠𝑝𝑝 − 𝑥𝑥go = 5.5𝑣𝑣 − 2.5𝑣𝑣 (2) 
 

7.2.2 Logic of guidance 

The study provides a depiction of the dynamic speed guiding logic, whose architecture are depicted 

by a flow chart. The logic has three main components: (1) DZ detection; (2) dynamic speed guiding 

model; (3) guidance execution and status tracking. 
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Figure 7.3 Logic of the proposed dynamic speed guiding method. 

7.2.3 DZ detection 

DZ detection is the first step of the speed guidance. When a vehicle enters the guiding scope, the 
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system shall collect information including speed, headway, location and signal timing etc., with 

which whether the vehicle will drop in the DZ can be detected.  

The control scope should be initially determined, since an over short scope cannot provide 

enough space for the motorist to decelerate, and in an overlong scope the motorist cannot keep an 

identical driving status. Therefore, the guiding scope should obey the following constraints: (1) 

the motorist with the maximum speed limit has enough space to stop the vehicle, and then 

accelerate back to the original speed; and, (2) without any congestion, the travel time of vehicle 

with the median speed for hitting the stop line is no more than the green interval. One can express 

the constraints by:  

 −
1

2𝑑𝑑∗
∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2 +

1
2𝑎𝑎∗ 

∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2 ≤ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 (1) 

 𝑔𝑔 ∙ 𝑣𝑣𝑚𝑚𝑠𝑠𝑛𝑛 ≥ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 (2) 
 

The method for DZ detection is to estimate if the trajectory of vehicle would touch the DZ 

area, calculated by the current speed, during the yellow interval (See Fig. 7.4 and Eqs. (4) and (5)).  
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Figure 7.4 Idea for DZ detection. 

 

�

 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 − max (𝑥𝑥𝑠𝑠 , 𝑥𝑥0)
𝑣𝑣

− 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝜏𝜏 + 𝑧𝑧 ∙ 𝐶𝐶

 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 − min (𝑥𝑥𝑠𝑠 , 𝑥𝑥0)
𝑣𝑣

− 𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 𝜏𝜏 + 𝑧𝑧 ∙ 𝐶𝐶
    𝑧𝑧 = 0 𝑜𝑜𝑟𝑟 1 (4) 
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�

𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠
𝑣𝑣

− 5.5 − 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝜏𝜏 + 𝑧𝑧 ∙ 𝐶𝐶
𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠
𝑣𝑣

− 2.5 − 𝑇𝑇𝑇𝑇𝑇𝑇 ≥ 𝜏𝜏 + 𝑧𝑧 ∙ 𝐶𝐶
    𝑧𝑧 = 0 𝑜𝑜𝑟𝑟 1 (5) 

 

The dynamic speed guiding model will be activated only if DZ is detected. Otherwise, the 

system will keep tracking the vehicle status until DZ is detected or the vehicle passes the stop line. 

7.2.4 Determination of guiding scope 

The guiding scope should be determined, since an over short scope cannot provide enough space 

for the motorist to decelerate, and in an overlong scope the motorist cannot keep an identical 

driving status. Therefore, the guiding scope should obey the following constraints: (1) the motorist 

with the maximum speed limit has enough space to stop the vehicle, and then accelerate back to 

the original speed; and, (2) without any congestion, the travel time of vehicle with the median 

speed for hitting the stop line is no more than the green interval. One can express the constraints 

by:  

 −
1

2𝑑𝑑∗
∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2 +

1
2𝑎𝑎∗ 

∙ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚2 ≤ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 (6) 

 𝑔𝑔 ∙ 𝑣𝑣𝑚𝑚𝑠𝑠𝑛𝑛 ≥ 𝑥𝑥𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑠𝑠 (7) 
 

7.2.5 Dynamic speed guiding model 

The dynamic speed guiding model proposed in this study consists of two critical modules: (1) DZ 

protection and travel time minimization; (2) Minimization of speed fluctuation and idling time. 

The two modules are processed in a two-stage model, whose architecture is illustrated in Fig. 7.5.  
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Input: 
• Initial speed
• Initial headway 
• Initial signal timing

Stage I: DZ protection and travel time 
minimization (Module (1))

Output 
• Speed profile
• Optimal travel time 

Input: 
• Initial speed
• Initial headway
• Initial signal timing
• Optimal travel time

Output  
• Optimal speed profile

Stage II：Minimization of speed 
fluctuation and idling time (Module (2))

 

Figure 7.5 Architecture of the two-stage model. 

As Fig. 7.5 depicts, the DP algorithm is introduced in the Stage I to process the first module, 

where the DZ protection is set as one of its constraints and travel time minimization as the objective 

function. The inputs include the initial speed, location, headway and signal timing etc., recorded 

when the vehicle just enters the guiding scope. The outputs are the vehicular speed profile and 

travel time. 

The Module (2) is processed in the Stage II by the MOMILP algorithm, conditioning on 
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the output (optimal travel time) of the Stage I. The objective functions are the minimization of 

speed fluctuation and idling time. The inputs of the Stage II are those in the Stage I plus the optimal 

travel time, and the output is the optimal speed profile. 

 

7.3 Solution Algorithm 

7.3.1 Control of vehicular status - a multi-stage decision process 

The optimizer usually provides a speed profile for the travel time minimization where each time 

point corresponds to a speed value. Therefore, the vehicle can change its status at every time point. 

Based on this operational feature, the travel time minimization can be modeled as a multiple-stage 

decision problem. As DP is one of the most efficient methods for solving multiple-stage decision 

problems, in this study the DP algorithm is formulated to fulfill the DZ protection and travel time 

minimization. Fig. 7.6 depicts an example of the DP model with i stages. Starting from the 0th 

stage, each stage corresponds to a time point, and between two successive stages is a second 

interval.  
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Figure 7.6 Sample DP model with i stages. 
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It can be illustrated from Fig.7.6 that if the speed at the current stage is determined, the 

travel distance can be acquired, equaling to the shaded area during the time interval between the 

current and previous stages. Therefore, the DP method can be used to determine the vehicular 

speed stage by stage so that the number of stages (travel time) can be minimized for passing the 

intersection. 

7.3.2 Decision variable of DP 

The vehicular speed at each stage is the decision variable of the DP algorithm. Assuming the 

acceleration and deceleration rates are constant, set as 1 m/s2 and -1 m/s2 respectively, the speed 

at the ith stage can be updated with the following equation: 

𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1 = �
1, 𝑣𝑣𝑚𝑚 > 𝑣𝑣𝑚𝑚−1
0, 𝑣𝑣𝑚𝑚 = 𝑣𝑣𝑚𝑚−1
−1, 𝑣𝑣𝑚𝑚 < 𝑣𝑣𝑚𝑚−1 

𝑚𝑚 = 1,2, … (8) 

 

where, 

𝑣𝑣𝑚𝑚 = vehicular speed at the 𝑚𝑚th stage (m/s) (𝑣𝑣0 is the initial speed).  

7.3.3 State transfer functions of DP 

Update travel distance 

The travel distance of the vehicle at the ith stage can be updated with the following equation: 

 𝐷𝐷𝑚𝑚 = 𝐷𝐷𝑚𝑚−1 +
1
2

(𝑣𝑣𝑚𝑚 + 𝑣𝑣𝑚𝑚−1),   𝑚𝑚 = 1,2, … (9) 

 

where, 

𝐷𝐷𝑚𝑚 = travel distance at the ith stage (m) (𝐷𝐷0 = 0). 

Update travel time 

The state transfer function of travel time can be expressed with: 
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 𝑇𝑇(𝐷𝐷𝑚𝑚) = 𝑇𝑇(𝐷𝐷𝑚𝑚−1) + 1, 𝑚𝑚 = 1,2, … (10) 
 

where,  

𝑇𝑇(𝐷𝐷𝑚𝑚) = travel time at the ith stage (𝑇𝑇(𝐷𝐷0) = 0). 

 

7.3.4 Objective function of DP 

Given the state transfer function of vehicular speed, travel distance and travel time, the objective 

function of the DP algorithm can be expressed as: 

min𝑇𝑇(𝐷𝐷𝑚𝑚) (11) 
 

7.3.5 Constraints of DP 

The constraints of the DP algorithm are listed as follows. 

(1) Vehicular speed cannot be higher than the maximum speed limit, or lower than 0. It can be 

expressed with: 

 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 ≤ 𝑣𝑣𝑚𝑚 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚, 𝑚𝑚 = 0,1,2, … (12) 
 

(2) Vehicle should ultimately pass the stop line. To avoid the situation of idling before the stop 

line, a minor distance, set as 0.1, is added to the distance between the stop line and vehicle. 

One can express the constraint by: 

 𝐷𝐷𝑚𝑚 ≥ 𝑥𝑥 + 0.1 (13) 
 
(3) Vehicle needs to avoid bumping. Therefore, a safe distance should always be maintained. 

To express this constraint linearly, the “Three-second rule” (Chen et al., 2016) is adopted. 

One can express this constraint by: 

 
𝑥𝑥 − ℎ𝑚𝑚 −

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≥ 3𝑣𝑣𝑚𝑚 , 𝑚𝑚 = 1,2, … (14) 

where,  

ℎ𝑚𝑚 = space headway between the vehicle and its downstream vehicle at the ith stage (m). 
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(4) Vehicle should never pass the stop line when the signal light displays red. It can be 

expressed with: 

 
𝑥𝑥 −

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑗𝑗−1

𝑘𝑘=0

≥ 0,∀𝑗𝑗 ∈ 𝐽𝐽 (15) 

 

As Fig. 7.7 shows, when the algorithm is activated, the initial signal information may be 

various. Therefore, the range of  J can be expressed with: 

 𝐽𝐽 = �
[𝜏𝜏 + 𝑇𝑇𝑇𝑇𝑇𝑇, 𝜏𝜏 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟 + 𝑧𝑧𝐶𝐶 ],           𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 0 𝑜𝑜𝑟𝑟 0 < 𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 𝑔𝑔  
[0,𝑇𝑇𝑇𝑇𝑇𝑇 − 𝑔𝑔 + 𝑧𝑧𝐶𝐶 ] ∪ [𝜏𝜏 + 𝑇𝑇𝑇𝑇𝑇𝑇, 𝜏𝜏 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑟𝑟 + 𝑧𝑧𝐶𝐶 ],    𝑇𝑇𝑇𝑇𝑇𝑇 > 𝑔𝑔  (16) 

 

where, 

𝑧𝑧 = number of cycles ( {0,1}). 

 

TTY≤0

0<TTY≤g

j=τ+TTY+r

TTY>g

j=TTY-g+C j=TTY-g+2Cj=TTY-g

j=τ+TTY+r+C

j=τ+TTY+r j=τ+TTY+r+C

 

Figure 7.7 Various initial signal information. 

(5) DZ protection, illustrated as the trajectory should avoid touching the shadow area, varying 

based upon the real-time speed, during the yellow interval. One can express the constraints 

by: 

 
𝑥𝑥 −

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑠𝑠−1

𝑘𝑘=0

≥ 𝑚𝑚𝑎𝑎𝑥𝑥 (𝑥𝑥𝑠𝑠,𝑠𝑠, 𝑥𝑥0,𝑠𝑠)  ∪  0 ≤  𝑥𝑥 −
1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑠𝑠−1

𝑘𝑘=0

≤ 𝑚𝑚𝑚𝑚𝑚𝑚 (𝑥𝑥𝑠𝑠𝑠𝑠, 𝑥𝑥0𝑠𝑠) (17) 
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𝑥𝑥 −

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑠𝑠−1

𝑘𝑘=0

≥ 5.5𝑣𝑣𝑠𝑠  ∪  0 ≤  𝑥𝑥 −
1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑠𝑠−1

𝑘𝑘=0

≤ 2.5𝑣𝑣𝑠𝑠 (18) 

 

where, 

𝑥𝑥𝑠𝑠,𝑠𝑠 = length of the area where vehicles cannot stop smoothly, based upon the speed of the 

sth stage (m); and, 

𝑥𝑥0,𝑠𝑠 = length of the area where the vehicle can pass the intersection with the maximum 

acceleration rate, based upon the speed of the sth stage (m). 

Tim
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Figure 7.8 Trajectories avoid touching the DZ. 

Based upon the initial signal information, the range of 𝑠𝑠 can be estimated with: 

 𝑠𝑠 = �
[0, 𝜏𝜏 + 𝑇𝑇𝑇𝑇𝑇𝑇 ] ∪ [𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑧𝑧𝐶𝐶, 𝜏𝜏 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑧𝑧𝐶𝐶 ],           𝑇𝑇𝑇𝑇𝑇𝑇 ≤ 0   
[𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑧𝑧𝐶𝐶, 𝜏𝜏 + 𝑇𝑇𝑇𝑇𝑇𝑇 + 𝑧𝑧𝐶𝐶 ],                                       𝑇𝑇𝑇𝑇𝑇𝑇 > 𝑔𝑔  (16) 

 

(6) Frequent speed fluctuation should be avoided, defined as the continuous switch between 

the acceleration modes (See Fig. 7.9). One can express the constraint with 
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Figure 7.9 Frequent speed fluctuation. 

 −3 ≤ [(𝑣𝑣𝑚𝑚+2 − 𝑣𝑣𝑚𝑚+1) − (𝑣𝑣𝑚𝑚+1 − 𝑣𝑣𝑚𝑚)] − [(𝑣𝑣𝑚𝑚+1 − 𝑣𝑣𝑚𝑚) − (𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1)] ≤ 3, 𝑚𝑚 = 1,2, … (17) 
 

7.4 Multi-objective Mixed Integer Linear Programming algorithm 

The MOMILP algorithm is used in the Stage II to find the speed profile with minimal speed 

fluctuation and idling time, if multiple speed profiles are found by the DP algorithm. Conditioning 

on the optimal travel time (denoted as n) generated in the Stage I, the number of elements in the 

speed profile is known as n+1. The structure of the MOMILP problem is depicted as follows. 

7.4.1 Decision variables of the MOMLIP problem 

The set of decision variables are shown as follows. 

(1) Continuous variables: 

𝑣𝑣𝑚𝑚 = vehicular speed at the 𝑚𝑚th time point (m/s), ∀𝑚𝑚 ∈ [0,𝑚𝑚]; 

(2) Integer variables: 

𝑝𝑝𝑚𝑚 = index variable of idling at the 𝑚𝑚th second interval, expressed by: 

 𝑝𝑝𝑚𝑚 = �0, 𝑣𝑣𝑚𝑚 = 0 ∩ 𝑣𝑣𝑚𝑚−1 = 0 
1,                           𝑜𝑜.𝑤𝑤.,∀𝑚𝑚 ∈ [1,𝑚𝑚] (18) 

 

𝑞𝑞𝑚𝑚 = index variable of speed fluctuation at the 𝑚𝑚th second interval, expressed by: 

 𝑞𝑞𝑚𝑚 = �0, 𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1 = 0 
1,                   𝑜𝑜.𝑤𝑤.,∀𝑚𝑚 ∈ [1,𝑚𝑚] ; (19) 

𝜑𝜑𝑚𝑚 ,𝜔𝜔𝑚𝑚 = control variables for constant acceleration/deceleration; 
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𝛼𝛼𝑚𝑚 ,𝛽𝛽𝑚𝑚= control variables for DZ protection;  

𝛿𝛿𝑚𝑚 , 𝜀𝜀𝑚𝑚= variables for acquiring the value range of 𝑞𝑞𝑚𝑚 at the 𝑚𝑚th second interval, 𝑚𝑚 ∈ [1,𝑚𝑚]. 

7.4.2 Objective function of MOMILP 

The objective function of MOMILP algorithm is expressed as: 

 𝑚𝑚𝑚𝑚𝑚𝑚[𝑖𝑖1,𝑖𝑖2]𝑇𝑇 (20) 
 

where, 

 
𝑖𝑖1 = 𝑚𝑚 −�𝑝𝑝𝑚𝑚

𝑚𝑚

𝑚𝑚=1

  (21) 

 
𝑖𝑖2 = �𝑞𝑞𝑚𝑚

𝑚𝑚

𝑘𝑘=1

 (22) 

 

From Formulas (20) to (22), 𝑖𝑖1  is for idling time minimization, which is prior to the 

minimization of speed fluctuation, denoted as 𝑖𝑖2. 

7.4.3 Constraints of MOMILP 

Some constraints of the MOMILP algorithm are identical to those of the DP algorithm, while they 

should be converted to the standard form of the linear integer programming herein. Furthermore, 

several additional constraints should be added.  

The converted constraints are listed as follows.  

 𝑣𝑣𝑚𝑚 ≤ 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚,∀ 𝑚𝑚 ∈ [0,𝑚𝑚] (23) 
 𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1 + 𝜑𝜑𝑚𝑚 − 𝜔𝜔𝑚𝑚 = 0,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (24) 
 −3𝑣𝑣𝑚𝑚 + 1

2
∑ 𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1𝑚𝑚−1
𝑘𝑘=0 ≤ ℎ𝑚𝑚 − 𝑥𝑥,∀ 𝑚𝑚 ∈ [1,𝑚𝑚]  (25) 

 1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑗𝑗−1

𝑘𝑘=0

≤ 𝑥𝑥,∀𝑗𝑗 ∈ 𝐽𝐽 ∩ [1,𝑚𝑚] (26) 

 1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≤ 𝑥𝑥 − 𝑥𝑥𝑠𝑠𝑠𝑠 + 𝑀𝑀 ∙ 𝛼𝛼𝑚𝑚 ,∀𝑚𝑚 ∈ 𝑠𝑠 ∩ [1,𝑚𝑚] (27) 

 1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≤ 𝑥𝑥 − 𝑥𝑥0𝑠𝑠 + 𝑀𝑀 ∙ 𝛼𝛼𝑚𝑚 ,∀𝑚𝑚 ∈ 𝑠𝑠 ∩ [1,𝑚𝑚] (28) 
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 −

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≤ 𝑥𝑥0𝑠𝑠 − 𝑥𝑥 + 𝑀𝑀 ∙ (1 − 𝛼𝛼𝑚𝑚),∀𝑚𝑚 ∈ 𝑠𝑠 ∩ [1,𝑚𝑚] (29) 

 
−

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≤ 𝑥𝑥𝑠𝑠𝑠𝑠 − 𝑥𝑥 + 𝑀𝑀 ∙ (1 − 𝛼𝛼𝑚𝑚),∀𝑚𝑚 ∈ 𝑠𝑠 ∩ [1,𝑚𝑚] (30) 

 
5.5𝑣𝑣𝑚𝑚 +

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≤ 𝑥𝑥 + 𝑀𝑀 ∙ 𝛽𝛽𝑚𝑚,∀𝑚𝑚 ∈ 𝑠𝑠 ∩ [1,𝑚𝑚] (31) 

 
−2.5𝑣𝑣𝑚𝑚 −

1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≤ −𝑥𝑥 + 𝑀𝑀 ∙ (1 − 𝛽𝛽𝑚𝑚),∀𝑚𝑚 ∈ 𝑠𝑠 ∩ [1,𝑚𝑚] (32) 

 (𝑣𝑣𝑚𝑚+2 − 𝑣𝑣𝑚𝑚+1) − 2(𝑣𝑣𝑚𝑚+1 − 𝑣𝑣𝑚𝑚) + (𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1) ≤ 3,∀ 𝑚𝑚 ∈ [0,𝑚𝑚 − 2] (33) 
 −(𝑣𝑣𝑚𝑚+2 − 𝑣𝑣𝑚𝑚+1) + 2(𝑣𝑣𝑚𝑚+1 − 𝑣𝑣𝑚𝑚) − (𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1) ≤ 3,∀ 𝑚𝑚 ∈ [0,𝑚𝑚 − 2] (34) 
 −𝑣𝑣𝑚𝑚 ≤ −1 (35) 
 

−
1
2
�𝑣𝑣𝑘𝑘 + 𝑣𝑣𝑘𝑘+1

𝑚𝑚−1

𝑘𝑘=0

≤ −𝑥𝑥 − 0.1,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (36) 

 

where, 

𝑀𝑀 = a large positive penalty constant. 

The additional constraints are shown as follows: 

The expression of 𝑝𝑝𝑚𝑚  (Eq. (18)) should be converted to the standard form of the linear 

programming, which can be expressed by: 

 𝑝𝑝𝑚𝑚 − 𝑀𝑀(𝑣𝑣𝑚𝑚 + 𝑣𝑣𝑚𝑚−1) ≤ 0,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (37) 
 𝑣𝑣𝑚𝑚 + 𝑣𝑣𝑚𝑚−1 − 𝑀𝑀𝑝𝑝𝑚𝑚 ≤ 0,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (38) 
 0≤ 𝑝𝑝𝑚𝑚 ≤ 1,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (39) 

 

(1) The expression of 𝑞𝑞𝑚𝑚 (Eq. (20)) should be converted to the standard form for the linear 

programming. Combined with Eq. (25), one can express the constraints by: 

 0 ≤ 𝑞𝑞𝑚𝑚 ≤ 1,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (40) 
 𝑞𝑞𝑚𝑚 − 𝑀𝑀(𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1) ≤ 0,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (41) 
 𝑣𝑣𝑚𝑚 − 𝑣𝑣𝑚𝑚−1 − 𝑀𝑀𝑞𝑞𝑚𝑚 ≤ 0,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (42) 
 −𝑣𝑣𝑚𝑚 + 𝑣𝑣𝑚𝑚−1 − 𝑀𝑀𝑞𝑞𝑚𝑚 ≤ 0,∀ 𝑚𝑚 ∈ [1,𝑚𝑚] (43) 

 

(2) All decision variables are non-negative. One can express the constraint by： 

𝑣𝑣𝑚𝑚 ≥ 0,∀ 𝑚𝑚 ∈ [0,𝑚𝑚] (44) 
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7.5 Case Study 

7.5.1 The study site 

This study selects the intersection of US 40 (Pulaski Hwy) and Red Toad Road as the study site. 

US 40 is a two-lane, median-divided arterial with a posted speed limit of 55 mph (approximated 

24 m/s) and isolated intersection control. Along the US 40, the spacing between intersections is 

long enough (1.5 kilometer) and the traffic speed is relatively high, which makes the arterial 

subject to risk of the DZ issue. Its aerial view is shown in Fig. 7.10. 

 

US 40 (Pulaski Hwy)
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Figure 7.10 Aerial view of the US 40 and Red Toad Road intersection. 

The traffic control plan at the target intersection is a semi-actuated two-phase system. The 

green interval for the US 40 is maintained until a call is received on the Red Toad Road. When the 
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Red Toad Road receives a call, the minimum green time for the US 40 is 25 seconds, and the 

maximum green time is 60 seconds with the gap-out logic. The yellow interval for the US 40 is 5 

seconds, and for the Red Toad Road is 3 seconds. The green interval for the Red Toad Road is 8 

seconds. Besides, there’s a fixed all-red interval of 3 seconds. Traditionally, the DZ protection is 

provided by extending the all-red interval by up to an additional 2.5 seconds. 

The algorithm selects the eastbound movement as the study object. Table 7.1 illustrates the 

pre-design survey findings of the study object (from (Liu et al. 2007)). The unit of the observed 

data is mile per hour, and needs to be converted to meter per second.   

Table 7.1 Pre-design survey findings of the eastbound movement. 

Speed Parameter Unit of mph Unit of m/s (Integer) 
Mean Speed 49.2 22 

Median Speed 49.9 22 
Standard Deviation  12.3 5 

Minimum Speed 19.6 9 
Top Speed 86.7 39 
85% Speed 62.4 28 

 
Other parameter values are as follow: w = 21m ; L = 5m ; 𝛿𝛿1 = 1𝑠𝑠 ; 𝛿𝛿2 = 1𝑠𝑠 ; 𝑎𝑎∗ =

5𝑚𝑚/𝑠𝑠2; and 𝑑𝑑∗ = 7𝑚𝑚/𝑠𝑠2. 

7.5.2 Test design 

The DZ guiding scope of the study site is determined by Formulas (2) and (3). Using the minimum 

green interval, the DZ guiding scope is between 350 meters and 432 meters, and accordingly set 

as 400 meters. 

The pre-design findings show the 85% speed is 62.4 mph and the top speed is 86.7 mph, 

greater than 55 mph, which means a quite number of vehicles are overspeed. Therefore, an 

additional guiding area is set upstream to warn the motorists to slow down, insuring the vehicles 

are not overspeed when entering the DZ guiding area. The scope of the additional guiding area is 
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estimated with: 

𝑥𝑥𝑛𝑛 = �−
1

2𝑑𝑑
�𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 + 𝑣𝑣𝑡𝑡𝑠𝑠𝑝𝑝� ∙ (𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑣𝑣𝑡𝑡𝑠𝑠𝑝𝑝)� (45) 

where, 

𝑥𝑥𝑛𝑛= scope of the additional guiding area; and, 

𝑣𝑣𝑡𝑡𝑠𝑠𝑝𝑝= top speed from the pre-design findings. 

Using Eq. (45), the additional guiding scope is set as 480 meters. Thus, the layout of the 

guiding area can be depicted by Fig. 7.11. 

 

Additional guiding area DZ guiding area

400 meters480 meters

 

Figure 7.11 Layout of the guiding area. 

7.5.3 Evaluation analysis & result 

The research selects four types of speed, maximum speed (24 m/s), median speed (22 m/s), half of 

the maximum speed (12 m/s), and minimum speed (9 m/s), as the initial speed. Considering the 

situation with or without downstream vehicles, the analytic results are illustrated as follows. 

Without downstream vehicles  

Without considering the impact from downstream vehicles, the DZ protection method and 

travel time of any speed profile generated in the Stage I are compared with those without guidance. 

The rests are summarized in Tab. 7.2. 
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Table 7.2 Comparison of DZ protection method and travel time with and without guidance. 

Scenarios TTY 
(s) 

DZ Protection Strategy Travel Time (s) 
With Guidance Without Guidance With Guidance Without Guidance 

Scenario 1 
(Maximum 

Speed) 
10 Deceleration All-red Extension 30 17 

 Scenario 2 
(Median speed) 10 Deceleration All-red Extension 30 19 

 Scenario 3 
(50% Max Speed) 26 Acceleration All-red Extension 20 34 

 Scenario 4 
(Minimum Speed) 38 Acceleration All-red Extension 22 45 

 
It can be found in Tab. 7.2 that without speed guidance, all-red extension needs to be 

implemented to ensure DZ protection, while with the guidance, the vehicle can avoid DZ without 

all-red extension. In addition, for Scenarios 3 and 4, the travel time with guidance is shorter than 

without guidance, as the vehicle can accelerate to pass the stop line. While for Scenarios 1 and 2, 

the travel time with guidance is longer, since the vehicle with guidance needs to slow down and 

pass the intersection at the beginning of the next green interval, while all-red extension is used 

under the non-guiding environment, which allows the vehicle to pass the stop line by hitting the 

red. 

The idling time and speed profile of the best speed profile generated in the Stage II are 

compared with a random speed profile (rather than the best). The results illustrate that the idling 

time and speed fluctuation of the best speed profile are lower than the random profile. 

Table 7.3 Comparison of idling time and speed fluctuation of the best and random speed 

profiles. 

Scenarios TTY (s) 
Idling Time (s) Speed Fluctuation Frequency 

Best Profile Random Profile Best Profile Random Profile 
Scenario 1 
(Maximum 

Speed) 
10 0 8 14 22 

 Scenario 2 
(Median speed) 10 0 12 10 16 

 Scenario 3 
(50% Max Speed) 26 0 14 12 16 
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 Scenario 4 
(Minimum Speed) 38 0 7 15 21 

 
The trajectories of travel time and speed are depicted by Figs. 7.12 to 7.15. 
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Figure 7.12 Comparison of vehicular trajectory with and without guidance in Scenario 1. 

As Fig. 7.12 illustrates, without the speed guidance, the vehicle drops in the DZ at the 12th 

second, and should have been blocked by the red signal. While under the guiding environment, the 

vehicle has two deceleration parts and two cruising parts. The first deceleration part is from the 

0th to 12th second, and the last is from the 26th to 28th second. The vehicle passes the stop line 

between the 27th and 28th second, and at the 30th second it has exceeded the stop line by 8.5 

meters. 

The guiding speed profile successfully prevents the vehicle from dropping in the DZ or 

idling. In addition, it lets the vehicle pass the stop line at the beginning of the next green interval, 

making the travel time minimum. 
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Figure 7.13 Comparison of vehicular trajectory with and without guidance in Scenario 2. 

The result depicted in Fig. 7.13 is similar to the one in Fig. 7.12. It is because the median 

speed is extremely close to the maximum speed. Without speed guidance, the vehicle drops in the 

DZ at the 12th second. While with guidance, the vehicle avoids dropping in the DZ and passes the 

intersection, at the beginning of the next green interval. There’s no idling duration through the 

whole process. 

The vehicle has one deceleration part, from the 0th to 10th second, and one cruising part. 

It passes the stop line between the 29th and 30th second, and at the 30th second it has exceeded 

the stop line by 10 meters. 
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Figure 7.14 Comparison of vehicular trajectory with and without guidance in Scenario 3. 
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Figure 7.15 Comparison of vehicular trajectory with and without guidance in Scenario 4. 

The vehicular speeds in Scenarios 3 and 4 are significantly lower than the maximum speed, 

which makes the DZ area shorter and closer to the stop line. This situation makes the vehicle 

difficult to drop in the DZ area, and furthermore provides enough space and time to the motorists 
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to accelerate their vehicles to pass the stop line without hitting red. As Figs. 7.14 and 7.15 illustrate, 

the vehicle under the guiding environment can avoid the DZ and pass the stop line in the earliest 

time. 

With downstream vehicles  

For Scenarios 1 and 2 where the vehicle avoids the DZ by deceleration, the existence of 

downstream vehicles has little impact, since no bumping happens if the following vehicle 

decelerates. While for Scenarios 3 and 4, the downstream vehicles may impose significant obstacle 

to the following vehicle. In this section, Scenario 4 is selected for studying, and a downstream 

vehicle with the same speed is added herein. The results under various space headways are depicted 

in Fig. 7.16. 
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Figure 7.16 Comparison of travel time, idling time, and speed fluctuation frequency under 

various space headways. 

It can be found in Fig. 7.16 that with the rise of space headway, the travel time and idling 

time declines while the speed fluctuation frequency increases. It is because when the space 

headway is larger, the motorist of the following (target) vehicle has more time to change the driving 
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status, resulting in shorter travel time, but longer speed fluctuation duration. When the space 

headway ≥ 40 meters, the vehicle with guidance can pass the stop line before hitting the red. On 

the contrary, when the space headway is less than 40 meters, the vehicle will hit the red inevitably, 

while the idling time can be minimized. 

7.5.4 Sensitivity analysis 

In this section, the study conducts the sensitivity analysis towards the dynamic speed 

guiding model. The DZ guiding scope is selected as the research object. Note that the impact from 

the downstream vehicle is eliminated to ensure that the result is not disturbed. 

The impact of DZ guiding scope under various initial speed, starting from 350 meters and 

increased by 10 meters each time, is depicted in the Figs. 7.17 and 7.18. 
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Figure 7.17 Comparison of travel time under various scope of DZ guiding area. 

It can be found in Fig. 7.17 that with the initial speeds of 24 m/s and 22 m/s, the travel time 
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nearly maintains the same under various guiding scope. This is because under such speeds, the 

vehicle needs to slow down, trying to pass the stop line at the next green interval. In addition, due 

to the extreme short red interval, it is guaranteed that the vehicle can pass the stop line at the 

beginning of the next interval without idling. The only exception is the under the 350 meters of 

guiding scope, where the vehicle will hit the green at the stop line with the initial speed. 

While for the initial speed of 12 m/s and 9 m/s, the travel time rises with the increase of 

guiding scope. This is because the vehicle under such speed needs to accelerate to pass the stop 

line, which leads to longer travel time under longer distance. 
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Figure 7.18 Comparison of speed fluctuation frequency under various scope of DZ guiding 

area. 

Figure 7.18 depicts under the various guiding scope, the speed fluctuation frequency with 

the initial speeds of 12 m/s or 9 m/s remains the same. While for the 22 m/s and 24 m/s, the 
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frequency declines with the decrease of guiding scope. It is because for the lower speed, the vehicle 

needs longer time to accelerate to the maximum speed even under the minimum scope. 

Nonetheless, for the higher speed, the vehicle only needs to decelerate a target speed value to avoid 

the DZ and idling. In addition, if the scope is longer, the target value is higher, causing lower 

deceleration time.  

The sensitivity analysis implies that if most vehicles have speed close to the maximum 

speed limit, it is appropriate to set the guiding scope longer. Otherwise, a shorter guiding scope is 

better. 

7.6 Conclusions  

This chapter proposes a dynamic speed guiding model towards the DZ protection through 

the high-speed signalized intersection. The contribution of the method is to develop a two-stage 

model, where the minimization of travel time and DZ protection are fulfilled in Stage I. 

Conditioning on the optimal travel time generated in Stage I, the minimization of idling time and 

speed fluctuation is processed in Stage II. To solve the problem, the DP and MOMILP algorithms 

are applied in Stages I and II, respectively. 

The study provides an example at the intersection of US 40 and Red Toad Road to validate 

the proposed model. Four scenarios (various initial speed) are discussed. Firstly, without the 

impact from downstream vehicles, the DZ protection and travel time are compared under the 

guiding and non-guiding environments. It is illustrated that with the guidance, the vehicle can 

avoid DZ without all-red extension. In addition, under the guiding environment, the travel time 

with the initial speed, much lower than the maximum speed limit, is shorter, while with higher 

speed, there’s no benefit of travel time under the guidance. Furthermore, the best speed profile 

generated in the Stage II shows advantages of idling time and speed fluctuation, compared with 
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other profiles.  

Secondly, considering the impact of downstream vehicles, the travel time, idling time and 

speed fluctuation under various space headway are compared. Results indicate that with the 

guidance, when the space headway ≥ 40 meters, the vehicle can pass the stop line without hitting 

the red. Otherwise, the vehicle will hit the red inevitably while the idling time is minimal.  

This study also conducts the sensitivity analysis for exploring the impact of the DZ guiding 

scope to the travel time and speed fluctuation. The analysis implies for the travel time, there’s little 

impact towards higher speed while the travel time with lower speed rises with the increase of 

guiding scope. For the speed fluctuation, with higher speed, it declines with the rise of travel scope, 

while no impact shows under the lower speed. 

Analysis results indicate the validity and effectiveness of the proposed speed control 

framework. On-going work of this study is to test the proposed algorithm in real-world. 
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 CONCLUSIONS AND FUTURE WORKS 

8.1.1 Conclusions 

This paper makes the following conclusions according to the research content of each chapter. 

Chapter 3 develops a single vehicle-based trajectory optimization control model for CAV 

at a signalized intersection. The initial objective of the model is to minimize the average travel 

time of the platoon. Then, based on the optimal travel time, the speed trajectory of each vehicle 

is further optimized to minimize the average idling time and speed fluctuation in sequence. A 

three-phased algorithm is proposed to solve the model, where Phase I features a multi-stage-

based NLP to minimize the average travel time for the platoon; Phase II develops a MILP to 

further minimize the average idling time, conditioned on the travel time of each vehicle 

determined in Phase I; and Phase III advances another MILP to ultimately minimize the average 

speed fluctuation of the platoon, conditioned on the outcomes of Phases I and II. This study 

provides several illustrative examples to validate the control model. Firstly, the study compares 

the travel time of each vehicle in the platoon and the resulted average travel time with and 

without the control.  Results show that both the vehicular travel time and platoon’s average travel 

time decrease significantly. Secondly, this study compares the fuel consumption of each vehicle 

and the average value of the platoon under the control and non-control environments. Results 

indicate that due to the lower travel time, idling time and speed fluctuation, the fuel consumption 

with control is significantly lower than that without control. Furthermore, the time-varying fuel 

consumption of the leading vehicle in the platoon with respect to control and non-control 

environments are compared and the fuel consumption curve under control is much smoother. 

Finally, this study compares the level of average travel time under different initial speeds of a 

platoon. Results show that when signal displays green initially, the average travel time declines 
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with the increase of initial speed, while no obvious relationship is found when the signal initially 

displays red. Such findings may help further improve the speed guidance performance by pre-

adjusting vehicle speeds before they enter the control scope. 

Chapter 4 proposes a dynamic speed control algorithm toward a vehicle platoon at a 

signalize intersection. The algorithm not only considers the running status of the target platoon 

but also analyzes the impact of the anterior platoon. Acceleration/deceleration rates, instead of 

speed, are used as the optimized target to guide the drivers to avoid idling and to hit the green 

light as possible as they can. Depending on the status of the platoon and signal timing, the speed 

control algorithms under different scenarios are discussed in details. The proposed algorithms 

not only work for a fully obedient platoon, but also for a mixed platoon by re-grouping vehicles 

into several new platoons according to their permutations.  The research provides three examples 

provided to validate the algorithm. In the first one, considering the impact of the anterior 

platoons, we compare the time-varying fuel consumptions of the target platoon between the 

speed control mode and the free driving mode. Results indicate that the platoon under free 

driving will idle for some time, resulting in significantly more fuel consumption than the speed 

control mode using the proposed speed control algorithms.  In the second example, we compare 

the levels of fuel consumptions under different time headways. Results show that in an 

acceleration scenario, a smaller headway results in less fuel consumption; while in a deceleration 

scenario, a smaller headway causes a little more fuel consumption. In the third example, fuel 

consumptions under different permutations are analyzed. The conclusion implies that if the 

leading vehicle is a DOV, the target platoon’s fuel consumption is much larger. However, when 

the leading vehicle is an OV, it seems that the fuel consumption for the following vehicles in the 

target platoon, even for DOVs, may not increase obviously. Analysis results of the illustrative 
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examples indicate the validity and effectiveness of the proposed platoon-based speed control 

algorithm. On-going work of this study is to apply the proposed algorithm in real-world eco-

driving projects and evaluate its effectiveness with calibrated fuel consumption models. 

Chapter 5 proposes a dynamic speed control algorithm towards bottleneck mitigation at 

an unsignalized intersection. The algorithm not only considers the running status of the target 

vehicle but also captures the impact of downstream vehicles. Acceleration/deceleration rates, 

instead of speeds, are used as the control objective for speed guidance. Depending on the status 

of a target vehicle and gap conditions, the speed control algorithms under different scenarios are 

discussed in details. The proposed algorithm not only works for an “ideal” situation, but also for 

a realistic environment where there exist downstream vehicles and initial queue at the stop line. 

This study provides illustrative examples to validate the algorithm. Firstly, without considering 

the impact of the downstream platoons, this study compares the time-varying fuel consumption 

and emission of the target vehicle with respect to speed control and free driving behaviors. 

Results indicate that the vehicle under the proposed algorithm experience significantly lower fuel 

consumption and emission than that under free driving. Then, considering the impact of the 

downstream vehicles and queue, this study compares the level of fuel consumption of the target 

vehicle with and without the proposed speed control. Results demonstrate the promising 

application of the proposed speed control algorithm in a realistic traffic environment. 

Chapter 6 proposes a cooperative bus-car trajectory optimization model to eliminate 

weaving bottleneck around the near-side bus station. The contribution of the method is to 

develop a two-phase model, where the minimization of total person travel time and weaving 

elimination are fulfilled in Phase I model, while the minimization of total vehicular idling time is 

conducted in Phase II model, conditioning on the output of Phase I. The rolling-based NLP and 
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MILP models are applied in the Phases I and II, respectively. The study provides an example to 

validate the proposed model. Firstly, the it compares the vehicular travel time under the control 

and non-control environments. Results show that only the lane adjacent to the curb side lane 

reflects significant improvement under control. Then, considering the person travel time, the 

study explores that not only the result of the lane adjacent to the curb side lane, but of all lanes 

shows remarkable benefits of the control model. After that, the vehicular idling time is compared 

under the control and no-control environments. The result shows similarity to the vehicular travel 

time. Finally, the study analyzed vehicular trajectories on each lane, indicating that without 

control, the bus just weaves the cars on the lane adjacent to the curb side lane, while the cars in 

other lanes are not impacted. This finding also explains some “contradictory” conclusions in 

comparison of the vehicular travel time, person travel time and vehicular idling time. This study 

also conducts the sensitivity analysis towards the ratio of bus passenger number over car 

passenger number. The result illustrates that with the increase of bus passenger number, the 

optimal rate of the total vehicular time declines, while of the total person time rises. 

Chapter 7 proposes a dynamic speed guiding model towards the DZ protection through the 

high-speed signalized intersection. The contribution of the method is to develop a two-stage model, 

where the minimization of travel time and DZ protection are fulfilled in Stage I. Conditioning on 

the optimal travel time generated in Stage I, the minimization of idling time and speed fluctuation 

is processed in Stage II. To solve the problem, the DP and MOMILP algorithms are applied in 

Stages I and II, respectively. The study provides an example at the intersection of US 40 and Red 

Toad Road to validate the proposed model. Four scenarios (various initial speed) are discussed. 

Firstly, without the impact from downstream vehicles, the DZ protection and travel time are 

compared under the guiding and non-guiding environments. It is illustrated that with the guidance, 
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the vehicle can avoid DZ without all-red extension. In addition, under the guiding environment, 

the travel time with the initial speed, much lower than the maximum speed limit, is shorter, while 

with higher speed, there’s no benefit of travel time under the guidance. Furthermore, the best speed 

profile generated in the Stage II shows advantages of idling time and speed fluctuation, compared 

with other profiles. Secondly, considering the impact of downstream vehicles, the travel time, 

idling time and speed fluctuation under various space headway are compared. Results indicate that 

with the guidance, when the space headway ≥ 40 meters, the vehicle can pass the stop line without 

hitting the red. Otherwise, the vehicle will hit the red inevitably while the idling time is minimal.  

This study also conducts the sensitivity analysis for exploring the impact of the DZ guiding scope 

to the travel time and speed fluctuation. The analysis implies for the travel time, there’s little 

impact towards higher speed while the travel time with lower speed rises with the increase of 

guiding scope. For the speed fluctuation, with higher speed, it declines with the rise of travel scope, 

while no impact shows under the lower speed. 

8.1.2 Future Works 

Future works of this paper is to apply the proposed algorithm in real-world projects and 

evaluate its effectiveness with calibrated fuel consumption models. Besides, the environment of 

continuous arrival of bus at the station should also be addressed. 
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