71,216 research outputs found

    On critical service recovery after massive network failures

    Get PDF
    This paper addresses the problem of efficiently restoring sufficient resources in a communications network to support the demand of mission critical services after a large-scale disruption. We give a formulation of the problem as a mixed integer linear programming and show that it is NP-hard. We propose a polynomial time heuristic, called iterative split and prune (ISP) that decomposes the original problem recursively into smaller problems, until it determines the set of network components to be restored. ISP's decisions are guided by the use of a new notion of demand-based centrality of nodes. We performed extensive simulations by varying the topologies, the demand intensity, the number of critical services, and the disruption model. Compared with several greedy approaches, ISP performs better in terms of total cost of repaired components, and does not result in any demand loss. It performs very close to the optimal when the demand is low with respect to the supply network capacities, thanks to the ability of the algorithm to maximize sharing of repaired resources

    Research Directions in Information Systems for Humanitarian Logistics

    Get PDF
    This article systematically reviews the literature on using IT (Information Technology) in humanitarian logistics focusing on disaster relief operations. We first discuss problems in humanitarian relief logistics. We then identify the stage and disaster type for each article as well as the article’s research methodology and research contribution. Finally, we identify potential future research directions

    Component Outage Estimation based on Support Vector Machine

    Full text link
    Predicting power system component outages in response to an imminent hurricane plays a major role in preevent planning and post-event recovery of the power system. An exact prediction of components states, however, is a challenging task and cannot be easily performed. In this paper, a Support Vector Machine (SVM) based method is proposed to help estimate the components states in response to anticipated path and intensity of an imminent hurricane. Components states are categorized into three classes of damaged, operational, and uncertain. The damaged components along with the components in uncertain class are then considered in multiple contingency scenarios of a proposed Event-driven Security-Constrained Unit Commitment (E-SCUC), which considers the simultaneous outage of multiple components under an N-m-u reliability criterion. Experimental results on the IEEE 118-bus test system show the merits and the effectiveness of the proposed SVM classifier and the E-SCUC model in improving power system resilience in response to extreme events

    The 10 Critical Imperatives Facing Cities in 2014

    Get PDF
    As we approach 2014, cities large and small confront challenges that not only impact the quality of life of those who live and work there, but the success of our entire nation. The National League of Cities is highlighting the most pressing of these challenges in this report. With more than 80 percent of Americans living in cities, and with cities producing more than 75 percent of our nation's economic output, it is imperative that we fnd solutions.1, 2 Cities across the country are innovating, but cannot and should not continue to go it alone. Partnerships among local governments, citizens, businesses, nonproft organizations, and federal, state, and county leaders are needed. Together we can ensure that our nation's cities thrive and continue to be centers of opportunity and national economic prosperity

    Recommendations for changes in UK National Recovery Guidance (NRG) and associated guidance from the perspective of Lancaster University's Hull Flood Studies

    Get PDF
    This report was commissioned by the Civil Contingencies Secretariat (CCS) following the publication of Lancaster University‟s Hull Flood Project and Hull Children‟s Flood Project. Its principal purpose is to identify how findings made as a result of the two research projects could be integrated into the Cabinet Office‟s National Recovery Guidance (NRG), as a means to improve affected communities‟ ability to recover from emergency events. The report, in effect, details a desktop analysis of UK Civil Protection (CP) guidance, from a bottom-up perspective (i.e. using as its critical lens, the lived experiences of members of the public who were tested by the Hull flooding of 2007 and its aftermath)

    Fast emergency paths schema to overcome transient link failures in ospf routing

    Full text link
    A reliable network infrastructure must be able to sustain traffic flows, even when a failure occurs and changes the network topology. During the occurrence of a failure, routing protocols, like OSPF, take from hundreds of milliseconds to various seconds in order to converge. During this convergence period, packets might traverse a longer path or even a loop. An even worse transient behaviour is that packets are dropped even though destinations are reachable. In this context, this paper describes a proactive fast rerouting approach, named Fast Emergency Paths Schema (FEP-S), to overcome problems originating from transient link failures in OSPF routing. Extensive experiments were done using several network topologies with different dimensionality degrees. Results show that the recovery paths, obtained by FEPS, are shorter than those from other rerouting approaches and can improve the network reliability by reducing the packet loss rate during the routing protocols convergence caused by a failure.Comment: 18 page

    Cost-Efficient Data Backup for Data Center Networks against {\epsilon}-Time Early Warning Disaster

    Full text link
    Data backup in data center networks (DCNs) is critical to minimize the data loss under disaster. This paper considers the cost-efficient data backup for DCNs against a disaster with ε\varepsilon early warning time. Given geo-distributed DCNs and such a ε\varepsilon-time early warning disaster, we investigate the issue of how to back up the data in DCN nodes under risk to other safe DCN nodes within the ε\varepsilon early warning time constraint, which is significant because it is an emergency data protection scheme against a predictable disaster and also help DCN operators to build a complete backup scheme, i.e., regular backup and emergency backup. Specifically, an Integer Linear Program (ILP)-based theoretical framework is proposed to identify the optimal selections of backup DCN nodes and data transmission paths, such that the overall data backup cost is minimized. Extensive numerical results are also provided to illustrate the proposed framework for DCN data backup
    • …
    corecore