5,484 research outputs found

    Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems

    Full text link
    Unveiling the community structure of networks is a powerful methodology to comprehend interconnected systems across the social and natural sciences. To identify different types of functional modules in interaction data aggregated in a single network layer, researchers have developed many powerful methods. For example, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow in the systems they represent. However, many networked systems consist of agents or components that exhibit multiple layers of interactions. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here we propose a method based on compression of network flows that can identify modular flows in non-aggregated multilayer networks. Our numerical experiments on synthetic networks show that the method can accurately identify modules that cannot be identified in aggregated networks or by analyzing the layers separately. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks: scientists affiliated to the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method reveals smaller modules with more overlap that better capture the actual organization

    Quantifying dynamical spillover in co-evolving multiplex networks

    Get PDF
    Multiplex networks (a system of multiple networks that have different types of links but share a common set of nodes) arise naturally in a wide spectrum of fields. Theoretical studies show that in such multiplex networks, correlated edge dynamics between the layers can have a profound effect on dynamical processes. However, how to extract the correlations from real-world systems is an outstanding challenge. Here we provide a null model based on Markov chains to quantify correlations in edge dynamics found in longitudinal data of multiplex networks. We use this approach on two different data sets: the network of trade and alliances between nation states, and the email and co-commit networks between developers of open source software. We establish the existence of "dynamical spillover" showing the correlated formation (or deletion) of edges of different types as the system evolves. The details of the dynamics over time provide insight into potential causal pathways

    Hidden geometric correlations in real multiplex networks

    Full text link
    Real networks often form interacting parts of larger and more complex systems. Examples can be found in different domains, ranging from the Internet to structural and functional brain networks. Here, we show that these multiplex systems are not random combinations of single network layers. Instead, they are organized in specific ways dictated by hidden geometric correlations between the individual layers. We find that these correlations are strong in different real multiplexes, and form a key framework for answering many important questions. Specifically, we show that these geometric correlations facilitate: (i) the definition and detection of multidimensional communities, which are sets of nodes that are simultaneously similar in multiple layers; (ii) accurate trans-layer link prediction, where connections in one layer can be predicted by observing the hidden geometric space of another layer; and (iii) efficient targeted navigation in the multilayer system using only local knowledge, which outperforms navigation in the single layers only if the geometric correlations are sufficiently strong. Our findings uncover fundamental organizing principles behind real multiplexes and can have important applications in diverse domains.Comment: Supplementary Materials available at http://www.nature.com/nphys/journal/v12/n11/extref/nphys3812-s1.pd

    Multiplex Communities and the Emergence of International Conflict

    Full text link
    Advances in community detection reveal new insights into multiplex and multilayer networks. Less work, however, investigates the relationship between these communities and outcomes in social systems. We leverage these advances to shed light on the relationship between the cooperative mesostructure of the international system and the onset of interstate conflict. We detect communities based upon weaker signals of affinity expressed in United Nations votes and speeches, as well as stronger signals observed across multiple layers of bilateral cooperation. Communities of diplomatic affinity display an expected negative relationship with conflict onset. Ties in communities based upon observed cooperation, however, display no effect under a standard model specification and a positive relationship with conflict under an alternative specification. These results align with some extant hypotheses but also point to a paucity in our understanding of the relationship between community structure and behavioral outcomes in networks.Comment: arXiv admin note: text overlap with arXiv:1802.0039
    corecore