190,780 research outputs found

    Emergence of communities and diversity in social networks

    Full text link
    Communities are common in complex networks and play a significant role in the functioning of social, biological, economic, and technological systems. Despite widespread interest in detecting community structures in complex networks and exploring the effect of communities on collective dynamics, a deep understanding of the emergence and prevalence of communities in social networks is still lacking. Addressing this fundamental problem is of paramount importance in understanding, predicting, and controlling a variety of collective behaviors in society. An elusive question is how communities with common internal properties arise in social networks with great individual diversity. Here, we answer this question using the ultimatum game, which has been a paradigm for characterizing altruism and fairness. We experimentally show that stable local communities with different internal agreements emerge spontaneously and induce social diversity into networks, which is in sharp contrast to populations with random interactions. Diverse communities and social norms come from the interaction between responders with inherent heterogeneous demands and rational proposers via local connections, where the former eventually become the community leaders. This result indicates that networks are significant in the emergence and stabilization of communities and social diversity. Our experimental results also provide valuable information about strategies for developing network models and theories of evolutionary games and social dynamics.This work was supported by the National Nature Science Foundation of China under Grants 61573064, 71631002, 71401037, and 11301032; the Fundamental Research Funds for the Central Universities and Beijing Nova Programme; and the Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant). The Boston University work was supported by NSF Grants PHY-1505000, CMMI-1125290, and CHE- 1213217, and by Defense Threat Reduction Agency Grant HDTRA1-14-1-0017, and Department of Energy Contract DE-AC07-05Id14517. (61573064 - National Nature Science Foundation of China; 71631002 - National Nature Science Foundation of China; 71401037 - National Nature Science Foundation of China; 11301032 - National Nature Science Foundation of China; Fundamental Research Funds for the Central Universities and Beijing Nova Programme; Natural Sciences and Engineering Research Council of Canada (Individual Discovery Grant); PHY-1505000 - NSF; CMMI-1125290 - NSF; CHE-1213217 - NSF; HDTRA1-14-1-0017 - Defense Threat Reduction Agency; DE-AC07-05Id14517 - Department of Energy)Published versio

    Collective intelligence: aggregation of information from neighbors in a guessing game

    Get PDF
    Complex systems show the capacity to aggregate information and to display coordinated activity. In the case of social systems the interaction of different individuals leads to the emergence of norms, trends in political positions, opinions, cultural traits, and even scientific progress. Examples of collective behavior can be observed in activities like the Wikipedia and Linux, where individuals aggregate their knowledge for the benefit of the community, and citizen science, where the potential of collectives to solve complex problems is exploited. Here, we conducted an online experiment to investigate the performance of a collective when solving a guessing problem in which each actor is endowed with partial information and placed as the nodes of an interaction network. We measure the performance of the collective in terms of the temporal evolution of the accuracy, finding no statistical difference in the performance for two classes of networks, regular lattices and random networks. We also determine that a Bayesian description captures the behavior pattern the individuals follow in aggregating information from neighbors to make decisions. In comparison with other simple decision models, the strategy followed by the players reveals a suboptimal performance of the collective. Our contribution provides the basis for the micro-macro connection between individual based descriptions and collective phenomena.Comment: 9 pages, 9 figure

    Modeling social norms in real-world agent-based simulations

    Get PDF
    Studying and simulating social systems including human groups and societies can be a complex problem. In order to build a model that simulates humans\u27 actions, it is necessary to consider the major factors that affect human behavior. Norms are one of these factors: social norms are the customary rules that govern behavior in groups and societies. Norms are everywhere around us, from the way people handshake or bow to the clothes they wear. They play a large role in determining our behaviors. Studies on norms are much older than the age of computer science, since normative studies have been a classic topic in sociology, psychology, philosophy and law. Various theories have been put forth about the functioning of social norms. Although an extensive amount of research on norms has been performed during the recent years, there remains a significant gap between current models and models that can explain real-world normative behaviors. Most of the existing work on norms focuses on abstract applications, and very few realistic normative simulations of human societies can be found. The contributions of this dissertation include the following: 1) a new hybrid technique based on agent-based modeling and Markov Chain Monte Carlo is introduced. This method is used to prepare a smoking case study for applying normative models. 2) This hybrid technique is described using category theory, which is a mathematical theory focusing on relations rather than objects. 3) The relationship between norm emergence in social networks and the theory of tipping points is studied. 4) A new lightweight normative architecture for studying smoking cessation trends is introduced. This architecture is then extended to a more general normative framework that can be used to model real-world normative behaviors. The final normative architecture considers cognitive and social aspects of norm formation in human societies. Normative architectures based on only one of these two aspects exist in the literature, but a normative architecture that effectively includes both of these two is missing

    Bourdieuian approaches to the geography of entrepreneurial cultures

    Get PDF

    The Emergence of Norms via Contextual Agreements in Open Societies

    Full text link
    This paper explores the emergence of norms in agents' societies when agents play multiple -even incompatible- roles in their social contexts simultaneously, and have limited interaction ranges. Specifically, this article proposes two reinforcement learning methods for agents to compute agreements on strategies for using common resources to perform joint tasks. The computation of norms by considering agents' playing multiple roles in their social contexts has not been studied before. To make the problem even more realistic for open societies, we do not assume that agents share knowledge on their common resources. So, they have to compute semantic agreements towards performing their joint actions. %The paper reports on an empirical study of whether and how efficiently societies of agents converge to norms, exploring the proposed social learning processes w.r.t. different society sizes, and the ways agents are connected. The results reported are very encouraging, regarding the speed of the learning process as well as the convergence rate, even in quite complex settings

    How groups can foster consensus: The case of local cultures

    Full text link
    A local culture denotes a commonly shared behaviour within a cluster of firms. Similar to social norms or conventions, it is an emergent feature resulting from the firms' interaction in an economic network. To model these dynamics, we consider a distributed agent population, representing e.g. firms or individuals. Further, we build on a continuous opinion dynamics model with bounded confidence (ϵ\epsilon), which assumes that two agents only interact if differences in their behaviour are less than ϵ\epsilon. Interaction results in more similarity of behaviour, i.e. convergence towards a common mean. This framework is extended by two major concepts: (i) The agent's in-group consisting of acquainted interaction partners is explicitly taken into account. This leads to an effective agent behaviour reflecting that agents try to continue to interact with past partners and thus to keep sufficiently close to them. (ii) The in-group network structure changes over time, as agents can form new links to other agents with sufficiently close effective behaviour or delete links to agents no longer close in behaviour. Thus, our model provides a feedback mechanism between the agents' behaviour and their in-group structure. Studying its consequences by means of agent-based computer simulations, we find that for narrow-minded agents (low ϵ\epsilon) the additional feedback helps to find consensus more often, whereas for open-minded agents (high ϵ\epsilon) this does not hold. This counterintuitive result is explained by simulations of the network evolution
    corecore