This paper explores the emergence of norms in agents' societies when agents
play multiple -even incompatible- roles in their social contexts
simultaneously, and have limited interaction ranges. Specifically, this article
proposes two reinforcement learning methods for agents to compute agreements on
strategies for using common resources to perform joint tasks. The computation
of norms by considering agents' playing multiple roles in their social contexts
has not been studied before. To make the problem even more realistic for open
societies, we do not assume that agents share knowledge on their common
resources. So, they have to compute semantic agreements towards performing
their joint actions. %The paper reports on an empirical study of whether and
how efficiently societies of agents converge to norms, exploring the proposed
social learning processes w.r.t. different society sizes, and the ways agents
are connected. The results reported are very encouraging, regarding the speed
of the learning process as well as the convergence rate, even in quite complex
settings