117 research outputs found

    Making Metadata More FAIR Using Large Language Models

    Full text link
    With the global increase in experimental data artifacts, harnessing them in a unified fashion leads to a major stumbling block - bad metadata. To bridge this gap, this work presents a Natural Language Processing (NLP) informed application, called FAIRMetaText, that compares metadata. Specifically, FAIRMetaText analyzes the natural language descriptions of metadata and provides a mathematical similarity measure between two terms. This measure can then be utilized for analyzing varied metadata, by suggesting terms for compliance or grouping similar terms for identification of replaceable terms. The efficacy of the algorithm is presented qualitatively and quantitatively on publicly available research artifacts and demonstrates large gains across metadata related tasks through an in-depth study of a wide variety of Large Language Models (LLMs). This software can drastically reduce the human effort in sifting through various natural language metadata while employing several experimental datasets on the same topic

    ImageJ2: ImageJ for the next generation of scientific image data

    Full text link
    ImageJ is an image analysis program extensively used in the biological sciences and beyond. Due to its ease of use, recordable macro language, and extensible plug-in architecture, ImageJ enjoys contributions from non-programmers, amateur programmers, and professional developers alike. Enabling such a diversity of contributors has resulted in a large community that spans the biological and physical sciences. However, a rapidly growing user base, diverging plugin suites, and technical limitations have revealed a clear need for a concerted software engineering effort to support emerging imaging paradigms, to ensure the software's ability to handle the requirements of modern science. Due to these new and emerging challenges in scientific imaging, ImageJ is at a critical development crossroads. We present ImageJ2, a total redesign of ImageJ offering a host of new functionality. It separates concerns, fully decoupling the data model from the user interface. It emphasizes integration with external applications to maximize interoperability. Its robust new plugin framework allows everything from image formats, to scripting languages, to visualization to be extended by the community. The redesigned data model supports arbitrarily large, N-dimensional datasets, which are increasingly common in modern image acquisition. Despite the scope of these changes, backwards compatibility is maintained such that this new functionality can be seamlessly integrated with the classic ImageJ interface, allowing users and developers to migrate to these new methods at their own pace. ImageJ2 provides a framework engineered for flexibility, intended to support these requirements as well as accommodate future needs

    Comparative study of healthcare messaging standards for interoperability in ehealth systems

    Get PDF
    Advances in the information and communication technology have created the field of "health informatics," which amalgamates healthcare, information technology and business. The use of information systems in healthcare organisations dates back to 1960s, however the use of technology for healthcare records, referred to as Electronic Medical Records (EMR), management has surged since 1990’s (Net-Health, 2017) due to advancements the internet and web technologies. Electronic Medical Records (EMR) and sometimes referred to as Personal Health Record (PHR) contains the patient’s medical history, allergy information, immunisation status, medication, radiology images and other medically related billing information that is relevant. There are a number of benefits for healthcare industry when sharing these data recorded in EMR and PHR systems between medical institutions (AbuKhousa et al., 2012). These benefits include convenience for patients and clinicians, cost-effective healthcare solutions, high quality of care, resolving the resource shortage and collecting a large volume of data for research and educational needs. My Health Record (MyHR) is a major project funded by the Australian government, which aims to have all data relating to health of the Australian population stored in digital format, allowing clinicians to have access to patient data at the point of care. Prior to 2015, MyHR was known as Personally Controlled Electronic Health Record (PCEHR). Though the Australian government took consistent initiatives there is a significant delay (Pearce and Haikerwal, 2010) in implementing eHealth projects and related services. While this delay is caused by many factors, interoperability is identified as the main problem (Benson and Grieve, 2016c) which is resisting this project delivery. To discover the current interoperability challenges in the Australian healthcare industry, this comparative study is conducted on Health Level 7 (HL7) messaging models such as HL7 V2, V3 and FHIR (Fast Healthcare Interoperability Resources). In this study, interoperability, security and privacy are main elements compared. In addition, a case study conducted in the NSW Hospitals to understand the popularity in usage of health messaging standards was utilised to understand the extent of use of messaging standards in healthcare sector. Predominantly, the project used the comparative study method on different HL7 (Health Level Seven) messages and derived the right messaging standard which is suitable to cover the interoperability, security and privacy requirements of electronic health record. The issues related to practical implementations, change over and training requirements for healthcare professionals are also discussed

    Semantically intelligent semi-automated ontology integration

    Get PDF
    An ontology is a way of information categorization and storage. Web Ontologies provide help in retrieving the required and precise information over the web. However, the problem of heterogeneity between ontologies may occur in the use of multiple ontologies of the same domain. The integration of ontologies provides a solution for the heterogeneity problem. Ontology integration is a solution to problem of interoperability in the knowledge based systems. Ontology integration provides a mechanism to find the semantic association between a pair of reference ontologies based on their concepts. Many researchers have been working on the problem of ontology integration; however, multiple issues related to ontology integration are still not addressed. This dissertation involves the investigation of the ontology integration problem and proposes a layer based enhanced framework as a solution to the problem. The comparison between concepts of reference ontologies is based on their semantics along with their syntax in the concept matching process of ontology integration. The semantic relationship of a concept with other concepts between ontologies and the provision of user confirmation (only for the problematic cases) are also taken into account in this process. The proposed framework is implemented and validated by providing a comparison of the proposed concept matching technique with the existing techniques. The test case scenarios are provided in order to compare and analyse the proposed framework in the analysis phase. The results of the experiments completed demonstrate the efficacy and success of the proposed framework

    Clinical foundations and information architecture for the implementation of a federated health record service

    Get PDF
    Clinical care increasingly requires healthcare professionals to access patient record information that may be distributed across multiple sites, held in a variety of paper and electronic formats, and represented as mixtures of narrative, structured, coded and multi-media entries. A longitudinal person-centred electronic health record (EHR) is a much-anticipated solution to this problem, but its realisation is proving to be a long and complex journey. This Thesis explores the history and evolution of clinical information systems, and establishes a set of clinical and ethico-legal requirements for a generic EHR server. A federation approach (FHR) to harmonising distributed heterogeneous electronic clinical databases is advocated as the basis for meeting these requirements. A set of information models and middleware services, needed to implement a Federated Health Record server, are then described, thereby supporting access by clinical applications to a distributed set of feeder systems holding patient record information. The overall information architecture thus defined provides a generic means of combining such feeder system data to create a virtual electronic health record. Active collaboration in a wide range of clinical contexts, across the whole of Europe, has been central to the evolution of the approach taken. A federated health record server based on this architecture has been implemented by the author and colleagues and deployed in a live clinical environment in the Department of Cardiovascular Medicine at the Whittington Hospital in North London. This implementation experience has fed back into the conceptual development of the approach and has provided "proof-of-concept" verification of its completeness and practical utility. This research has benefited from collaboration with a wide range of healthcare sites, informatics organisations and industry across Europe though several EU Health Telematics projects: GEHR, Synapses, EHCR-SupA, SynEx, Medicate and 6WINIT. The information models published here have been placed in the public domain and have substantially contributed to two generations of CEN health informatics standards, including CEN TC/251 ENV 13606

    Intégration de ressources en recherche translationnelle : une approche unificatrice en support des systèmes de santé "apprenants"

    Get PDF
    Learning health systems (LHS) are gradually emerging and propose a complimentary approach to translational research challenges by implementing close coupling of health care delivery, research and knowledge translation. To support coherent knowledge sharing, the system needs to rely on an integrated and efficient data integration platform. The framework and its theoretical foundations presented here aim at addressing this challenge. Data integration approaches are analysed in light of the requirements derived from LHS activities and data mediation emerges as the one most adapted for a LHS. The semantics of clinical data found in biomedical sources can only be fully derived by taking into account, not only information from the structural models (field X of table Y), but also terminological information (e.g. International Classification of Disease 10th revision) used to encode facts. The unified framework proposed here takes this into account. The platform has been implemented and tested in context of the TRANSFoRm endeavour, a European project funded by the European commission. It aims at developing a LHS including clinical activities in primary care. The mediation model developed for the TRANSFoRm project, the Clinical Data Integration Model, is presented and discussed. Results from TRANSFoRm use-cases are presented. They illustrate how a unified data sharing platform can support and enhance prospective research activities in context of a LHS. In the end, the unified mediation framework presented here allows sufficient expressiveness for the TRANSFoRm needs. It is flexible, modular and the CDIM mediation model supports the requirements of a primary care LHS.Les systèmes de santé "apprenants" (SSA) présentent une approche complémentaire et émergente aux problèmes de la recherche translationnelle en couplant de près les soins de santé, la recherche et le transfert de connaissances. Afin de permettre un flot d’informations cohérent et optimisé, le système doit se doter d’une plateforme intégrée de partage de données. Le travail présenté ici vise à proposer une approche de partage de données unifiée pour les SSA. Les grandes approches d’intégration de données sont analysées en fonction du SSA. La sémantique des informations cliniques disponibles dans les sources biomédicales est la résultante des connaissances des modèles structurelles des sources mais aussi des connaissances des modèles terminologiques utilisés pour coder l’information. Les mécanismes de la plateforme unifiée qui prennent en compte cette interdépendance sont décrits. La plateforme a été implémentée et testée dans le cadre du projet TRANSFoRm, un projet européen qui vise à développer un SSA. L’instanciation du modèle de médiation pour le projet TRANSFoRm, le Clinical Data Integration Model est analysée. Sont aussi présentés ici les résultats d’un des cas d’utilisation de TRANSFoRm pour supporter la recherche afin de donner un aperçu concret de l’impact de la plateforme sur le fonctionnement du SSA. Au final, la plateforme unifiée d’intégration proposée ici permet un niveau d’expressivité suffisant pour les besoins de TRANSFoRm. Le système est flexible et modulaire et le modèle de médiation CDIM couvre les besoins exprimés pour le support des activités d’un SSA comme TRANSFoRm

    Designing the Library of the Future

    Full text link
    The University of Technology, Sydney (UTS) has embarked on a major redevelopment of its City Campus. A key element of this redevelopment is the planned construction of a new University Library at the centre of the redeveloped campus on the current site of Building 2, adjoining the UTS Tower, Building 1. This Library of the Future, which is planned to open for academic year 2015, will be a new kind of academic library which will aim to set a standard for the future. The focus of this report is on envisaging a Library of the Future, what it might be when it opens and how it might develop to retain its novelty so that it will continue to surprise and excite. To endeavour to imagine and create a Library of the Future is a daring and humbling enterprise: it must be designed to foster an effective academic community in the long term at UTS through its role as the knowledge hub of the University

    Securely sharing dynamic medical information in e-health

    Full text link
    This thesis has introduced an infrastructure to share dynamic medical data between mixed health care providers in a secure way, which could benefit the health care system as a whole. The study results of the universally data sharing into a varied patient information system prototypes
    • …
    corecore