2,133 research outputs found

    Enabling GPU Support for the COMPSs-Mobile Framework

    Get PDF
    Using the GPUs embedded in mobile devices allows for increasing the performance of the applications running on them while reducing the energy consumption of their execution. This article presents a task-based solution for adaptative, collaborative heterogeneous computing on mobile cloud environments. To implement our proposal, we extend the COMPSs-Mobile framework – an implementation of the COMPSs programming model for building mobile applications that offload part of the computation to the Cloud – to support offloading computation to GPUs through OpenCL. To evaluate our solution, we subject the prototype to three benchmark applications representing different application patterns.This work is partially supported by the Joint-Laboratory on Extreme Scale Computing (JLESC), by the European Union through the Horizon 2020 research and innovation programme under contract 687584 (TANGO Project), by the Spanish Goverment (TIN2015-65316-P, BES-2013-067167, EEBB-2016-11272, SEV-2011-00067) and the Generalitat de Catalunya (2014-SGR-1051).Peer ReviewedPostprint (author's final draft

    Personalized ambient parameters monitoring: design and implementing of a wrist-worn prototype for hazardous gases and sound level detection

    Get PDF
    The concentration is on “3D space utilization” as the concept and infrastructure of designing of a wearable in ambient parameters monitoring. This strategy is implemented according to “multi-layer” approach. In this approach, each group of parameters from the same category is monitored by a modular physical layer enriched with the respected sensors. Depending on the number of parameters and layers, each physical layer is located on top of another. The intention is to implement a device for “everyone in everywhere for everything”

    Machine vision based smart parking system using Internet of Things

    Get PDF
    It is expected that in the next decade, majority of world population will be living in cities. Better public services and infrastructures in the city are needed to cope with the booming population. City vehicles that cruising for parking have indirectly causing traffic, making one harder to travel around the city. Thus, a smart parking system can certainly lays the foundation to build a smart city. This paper proposed a cost-effective IoT smart parking system to monitor city parking space and provide real-time parking information to drivers. Moreover, instead of the conventional approach that uses embedded sensors to detect vehicles in the parking area, camera image and machine vision technology are used to obtain the parking status. In the prototype, twenty outdoor parking lots are covered using a 5 megapixel camera connected to Raspberry Pi 3 installed at the 5th floor of the nearby building. Machine vision in this project that involved motion tracking and Canny edge detection are programmed in Python 2 using OpenCV technology. Corresponding data is uploaded to an IoT platform called Ubidots for possible monitoring activity. An Android mobile application is designed for user to download real-time data of parking information. This paper introduces a low cost smart parking system with the overall detection accuracy of 96.40%. Also, the mobile application allows users to alert other car owners for any emergency incidents and double parking blockage. The developed system can provide a platform for users to search for empty car parking with ease and reduce the traffic issues such as illegal double parking especially in the urban area

    Fast-prototyping Approach to Design and Validate Architectures for Smart Home

    Get PDF
    The Internet of Things has contributed to make smarter houses and buildings in the last decades. Different existing works already integrate IoT technologies in homes, but end-user needs continuously change and researchers must face this challenge in identifying platforms to fast prototype solutions satisfying these new needs. This paper presents a solution that demonstrates how well-known fast-prototyping technologies like Node-RED, IBM Watson, Telegram, Raspberry Pi 4, and secured MQTT can contribute to develop complex systems facing the challenge. The selected tools are used within a smart home context to support features inspired by people needs and allow users to: a) consult real time conditions (i.e., temperature, humidity, gas), b) remotely manage lights, c) save energy through a light management system based on user movements, d) remotely monitor the house through dedicated webcams, e) generate warning notifications in case of danger. Users can interact with the systems through a web Node-RED dashboard and a Telegram bot. Differently from existing works, the feasibility of the implemented system and the efficacy of the exploited platforms are demonstrated through a running scenario extracted from a consolidated study on user needs in smart homes. The performed experiment can facilitate the fast prototyping of new solutions

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Design and Fabrication of a Low-Cost System for Smart Home Applications

    Get PDF
    Smart systems and security got impressive attention and development in recent years, which have been appeared in the terms of smart homes, intelligent security, and the Internet of Things (IoT). Home automation comprises the controlling of the electrical appliances in the home wirelessly or automatically. Many different integrated circuits, sensors, modules, and embedded systems are available to be compatible to integrate with smart homes. In order to apply the concept of smart homes, many issues should be considered like as providing a user-friendly, reliable, secure, and cost-effective. In this paper, an effective and low-cost smart home system is designed and implemented based on the Arduino microcontroller boards with its compatible modules. The proposed work employed many types of sensors to carry out the tasks for the smart home for a couple of the essential segments, the first one is home security and the latter one is home automation. The antitheft home segment is based on the laser source directed on the light-dependent resistor and infrared sensor; once the thief tries to cut the laser or passes beside the sensor, the alarm will be switched on. The later segment aims to detect the fire occurring by the means of the flame sensor, gas leakage detection by the MQ-05 sensor, servo motor to opening/closing the garage door, LCD to display the status of the all-utilised sensors, and finally, the Bluetooth module to controlling the garage door wirelessly. To increase the system performance and reliability the Arduino Nano and the Arduino Leonardo board are utilised.

    Smart cities air pollution monitoring system - Developing a potential data collecting platform based on Raspberry Pi

    Get PDF
    >Magister Scientiae - MScAir pollution is becoming a challenging issue in our daily lives due to advanced industrialization. This thesis presents a solution to collection and dissemination of pollution data. Most of the devices that monitor air quality are costly and have limited features. The aim of this study is to revisit the issue of pollution in cities with the aim of providing a cheaper and scalable solution to the challenge of pollution data collection and dissemination. The solution proposed in this paper uses Raspberry Pi and Arduino micro-controller boards as the foundation, combined with specific sensors to facilitate the collection and transfer of pollution data reliably and effectively. While most traditional air pollution monitoring equipment and similar projects use memory cards as a medium for data storage, the system proposed in this research is built around a new network selection model that transfers data to the server by using either Bluetooth, Wi-Fi, GSM, or the LoRa protocol. The connectivity protocol is selected automatically and opportunistically by the network selection algorithm defined in the micro-controller board. The final data will be presented to the user through a mobile application and website interface effectively and intuitively after being processed in the server. This data transfer system can effectively reduce the cost and input of human resources. It is a viable solution. For other environmental research, this system can provide an air quality data support for analysis and reference. Modularity and cost-effectiveness are fully considered when designing the system. It is a viable solution. We can generalize the system by slightly changing the data transmission modules. In other case, it can be used as a platform for similar data transmission and offer help for other research directions

    Gas Pressure Measurement Device and Medical Vacuum Design

    Get PDF
    Two methods are used in a digital pressure meter available in the market, namely positive pressure, and negative pressure. The positive one is used to measure the air pressure on a sphygmomanometer and medical gas pressure at an outlet in the treatment room so that operators can easily check medical gas pressure for the safety of the patient, or they can routinely check to find out how much pressure of the medical gas. Based on the background, the research aimed to design a digital pressure meter equipped with a medical gas measurement mode so that the device can be used to calibrate the sphygmomanometer, suction pump, and measure the medical gas pressure available at the medical gas outlet in each treatment room
    • …
    corecore