12 research outputs found

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Simulation Intelligence: Towards a New Generation of Scientific Methods

    Full text link
    The original "Seven Motifs" set forth a roadmap of essential methods for the field of scientific computing, where a motif is an algorithmic method that captures a pattern of computation and data movement. We present the "Nine Motifs of Simulation Intelligence", a roadmap for the development and integration of the essential algorithms necessary for a merger of scientific computing, scientific simulation, and artificial intelligence. We call this merger simulation intelligence (SI), for short. We argue the motifs of simulation intelligence are interconnected and interdependent, much like the components within the layers of an operating system. Using this metaphor, we explore the nature of each layer of the simulation intelligence operating system stack (SI-stack) and the motifs therein: (1) Multi-physics and multi-scale modeling; (2) Surrogate modeling and emulation; (3) Simulation-based inference; (4) Causal modeling and inference; (5) Agent-based modeling; (6) Probabilistic programming; (7) Differentiable programming; (8) Open-ended optimization; (9) Machine programming. We believe coordinated efforts between motifs offers immense opportunity to accelerate scientific discovery, from solving inverse problems in synthetic biology and climate science, to directing nuclear energy experiments and predicting emergent behavior in socioeconomic settings. We elaborate on each layer of the SI-stack, detailing the state-of-art methods, presenting examples to highlight challenges and opportunities, and advocating for specific ways to advance the motifs and the synergies from their combinations. Advancing and integrating these technologies can enable a robust and efficient hypothesis-simulation-analysis type of scientific method, which we introduce with several use-cases for human-machine teaming and automated science

    Advances in Grid Computing

    Get PDF
    This book approaches the grid computing with a perspective on the latest achievements in the field, providing an insight into the current research trends and advances, and presenting a large range of innovative research papers. The topics covered in this book include resource and data management, grid architectures and development, and grid-enabled applications. New ideas employing heuristic methods from swarm intelligence or genetic algorithm and quantum encryption are considered in order to explain two main aspects of grid computing: resource management and data management. The book addresses also some aspects of grid computing that regard architecture and development, and includes a diverse range of applications for grid computing, including possible human grid computing system, simulation of the fusion reaction, ubiquitous healthcare service provisioning and complex water systems

    Coupling schemes and inexact Newton for multi-physics and coupled optimization problems

    Get PDF
    This work targets mathematical solutions and software for complex numerical simulation and optimization problems. Characteristics are the combination of different models and software modules and the need for massively parallel execution on supercomputers. We consider two different types of multi-component problems in Part I and Part II of the thesis: (i) Surface coupled fluid- structure interactions and (ii) analysis of medical MR imaging data of brain tumor patients. In (i), we establish highly accurate simulations by combining different aspects such as fluid flow and arterial wall deformation in hemodynamics simulations or fluid flow, heat transfer and mechanical stresses in cooling systems. For (ii), we focus on (a) facilitating the transfer of information such as functional brain regions from a statistical healthy atlas brain to the individual patient brain (which is topologically different due to the tumor), and (b) to allow for patient specific tumor progression simulations based on the estimation of biophysical parameters via inverse tumor growth simulation (given a single snapshot in time, only). Applications and specific characteristics of both problems are very distinct, yet both are hallmarked by strong inter-component relations and result in formidable, very large, coupled systems of partial differential equations. Part I targets robust and efficient quasi-Newton methods for black-box surface-coupling of parti- tioned fluid-structure interaction simulations. The partitioned approach allows for great flexibility and exchangeable of sub-components. However, breaking up multi-physics into single components requires advanced coupling strategies to ensure correct inter-component relations and effectively tackle instabilities. Due to the black-box paradigm, solver internals are hidden and information exchange is reduced to input/output relations. We develop advanced quasi-Newton methods that effectively establish the equation coupling of two (or more) solvers based on solving a non-linear fixed-point equation at the interface. Established state of the art methods fall short by either requiring costly tuning of problem dependent parameters, or becoming infeasible for large scale problems. In developing parameter-free, linear-complexity alternatives, we lift the robustness and parallel scalability of quasi-Newton methods for partitioned surface-coupled multi-physics simulations to a new level. The developed methods are implemented in the parallel, general purpose coupling tool preCICE. Part II targets MR image analysis of glioblastoma multiforme pathologies and patient specific simulation of brain tumor progression. We apply a joint medical image registration and biophysical inversion strategy, targeting at facilitating diagnosis, aiding and supporting surgical planning, and improving the efficacy of brain tumor therapy. We propose two problem formulations and decompose the resulting large-scale, highly non-linear and non-convex PDE-constrained optimization problem into two tightly coupled problems: inverse tumor simulation and medical image registration. We deduce a novel, modular Picard iteration-type solution strategy. We are the first to successfully solve the inverse tumor-growth problem based on a single patient snapshot with a gradient-based approach. We present the joint inversion framework SIBIA, which scales to very high image resolutions and parallel execution on tens of thousands of cores. We apply our methodology to synthetic and actual clinical data sets and achieve excellent normal-to-abnormal registration quality and present a proof of concept for a very promising strategy to obtain clinically relevant biophysical information. Advanced inexact-Newton methods are an essential tool for both parts. We connect the two parts by pointing out commonalities and differences of variants used in the two communities in unified notation

    Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial

    Full text link
    Este documento contiene el proyecto docente e investigador del candidato Germán Moltó Martínez presentado como requisito para el concurso de acceso a plazas de Cuerpos Docentes Universitarios. Concretamente, el documento se centra en el concurso para la plaza 6708 de Catedrático de Universidad en el área de Ciencia de la Computación en el Departamento de Sistemas Informáticos y Computación de la Universitat Politécnica de València. La plaza está adscrita a la Escola Técnica Superior d'Enginyeria Informàtica y tiene como perfil las asignaturas "Infraestructuras de Cloud Público" y "Estructuras de Datos y Algoritmos".También se incluye el Historial Académico, Docente e Investigador, así como la presentación usada durante la defensa.Germán Moltó Martínez (2022). Proyecto Docente e Investigador, Trabajo Original de Investigación y Presentación de la Defensa, preparado por Germán Moltó para concursar a la plaza de Catedrático de Universidad, concurso 082/22, plaza 6708, área de Ciencia de la Computación e Inteligencia Artificial. http://hdl.handle.net/10251/18903
    corecore