175 research outputs found

    Functional and isoperimetric inequalities for probability measures on H-type groups

    Get PDF
    We investigate isoperimetric and functional inequalities for probability measures in the sub-elliptic setting and more specifically, on groups of Heisenberg type. The approach we take is based on U-bounds as well as a Laplacian comparison theorem for H-type groups. We derive different forms of functional inequalities (of [Phi]-entropy and F-Sobolev type) and show that they can be equivalently stated as isoperimetric inequalities at the level of sets. Furthermore, we study transportation of measure via Talagrand-type inequalities. The methods used allow us to obtain gradient bounds for the heat semigroup. Finally, we examine some properties of more general operators given in Hormander’s sum of squares form and show that the associated semigroup converges to a probability measure as t → [infinity]

    Analysis of Schr\"odinger operators with inverse square potentials I: regularity results in 3D

    Get PDF
    Let VV be a potential on \RR^3 that is smooth everywhere except at a discrete set \maS of points, where it has singularities of the form Z/ρ2Z/\rho^2, with ρ(x)=xp\rho(x) = |x - p| for xx close to pp and ZZ continuous on \RR^3 with Z(p)>1/4Z(p) > -1/4 for p \in \maS. Also assume that ρ\rho and ZZ are smooth outside \maS and ZZ is smooth in polar coordinates around each singular point. We either assume that VV is periodic or that the set \maS is finite and VV extends to a smooth function on the radial compactification of \RR^3 that is bounded outside a compact set containing \maS. In the periodic case, we let Λ\Lambda be the periodicity lattice and define \TT := \RR^3/ \Lambda. We obtain regularity results in weighted Sobolev space for the eigenfunctions of the Schr\"odinger-type operator H=Δ+VH = -\Delta + V acting on L^2(\TT), as well as for the induced \vt k--Hamiltonians \Hk obtained by restricting the action of HH to Bloch waves. Under some additional assumptions, we extend these regularity and solvability results to the non-periodic case. We sketch some applications to approximation of eigenfunctions and eigenvalues that will be studied in more detail in a second paper.Comment: 15 pages, to appear in Bull. Math. Soc. Sci. Math. Roumanie, vol. 55 (103), no. 2/201

    Bounds on the non-real spectrum of differential operators with indefinite weights

    Get PDF
    Ordinary and partial differential operators with an indefinite weight function can be viewed as bounded perturbations of non-negative operators in Krein spaces. Under the assumption that 0 and \infty are not singular critical points of the unperturbed operator it is shown that a bounded additive perturbation leads to an operator whose non-real spectrum is contained in a compact set and with definite type real spectrum outside this set. The main results are quantitative estimates for this set, which are applied to Sturm-Liouville and second order elliptic partial differential operators with indefinite weights on unbounded domains.Comment: 27 page

    Gaussian Subordination for the Beurling-Selberg Extremal Problem

    Full text link
    We determine extremal entire functions for the problem of majorizing, minorizing, and approximating the Gaussian function eπλx2e^{-\pi\lambda x^2} by entire functions of exponential type. This leads to the solution of analogous extremal problems for a wide class of even functions that includes most of the previously known examples (for instance \cite{CV2}, \cite{CV3}, \cite{GV} and \cite{Lit}), plus a variety of new interesting functions such as xα|x|^{\alpha} for 1<α-1 < \alpha; \,log((x2+α2)/(x2+β2))\log \,\bigl((x^2 + \alpha^2)/(x^2 + \beta^2)\bigr), for 0α<β0 \leq \alpha < \beta;\, log(x2+α2)\log\bigl(x^2 + \alpha^2\bigr); and x2nlogx2x^{2n} \log x^2\,, for nNn \in \N. Further applications to number theory include optimal approximations of theta functions by trigonometric polynomials and optimal bounds for certain Hilbert-type inequalities related to the discrete Hardy-Littlewood-Sobolev inequality in dimension one
    corecore