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Abstract

We investigate isoperimetric and functional inequalities for probability measures in

the sub-elliptic setting and more specifically, on groups of Heisenberg type. The

approach we take is based on U -bounds as well as a Laplacian comparison theorem

for H-type groups. We derive different forms of functional inequalities (of Φ-entropy

and F -Sobolev type) and show that they can be equivalently stated as isoperimetric

inequalities at the level of sets. Furthermore, we study transportation of measure via

Talagrand-type inequalities. The methods used allow us to obtain gradient bounds for

the heat semigroup. Finally, we examine some properties of more general operators

given in Hörmander’s sum of squares form and show that the associated semigroup

converges to a probability measure as t→∞.
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Chapter 1

Introduction

One of the most striking proofs of the isoperimetric inequality in Rn is given via the

well-known Gagliardo-Nirenberg-Sobolev inequality, which states that, for all suffi-

ciently smooth functions f : Rn → R,

(∫

Rn
|f(x)|

n
n−1dx

)n−1
n

≤
1

nω
1/n
n

∫

Rn

√√
√
√

n∑

i=1

(∂if)2(x)dx, (1.1)

where ωn is the volume of the unit ball in Rn. Passing to the limit as f approximates

the characteristic function of a set A ⊂ Rn in (1.1) yields the isoperimetric inequality

vol(A) ≤
1

nω
1/n
n

S(∂A), (1.2)

where vol(A) and S(A) stand for the volume of A and the surface measure of its

boundary, respectively. Equality is achieved when A = Br is the Euclidean ball

of radius r > 0, hence the balls solve the isoperimetric problem, which consists of

minimising the surface area amongst all sets of fixed volume.

In this thesis, we shall focus on the study of isoperimetry for probability measures

on metric spaces with a particular emphasis on a class of sub-Riemannian spaces

known as Heisenberg type (for short, H-type) groups. In a metric space, there is

a notion of surface area which is given by the surface measure µ+, known as the

Minkowski content of a set, but one cannot hope for an inequality such as (1.1). This
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is due to the fact that the latter implies a doubling condition on the measure, i.e.

that for each r > 0, there is a constant C > 0 such that µ(B2r) ≤ Cµ(Br); a condition

which fails for probability measures. Nevertheless, one may start from a functional

inequality which is weaker than (1.1), such as a Poincaré or a logarithmic Sobolev-type

inequality, and hope to deduce some information about the isoperimetric function (or

isoperimetric profile) of µ defined by

Iµ(a) = inf{µ+(A) : A Borel with µ(A) = a}, (1.3)

for a ∈ [0, 1]; it is the best function in the isoperimetric inequality

Iµ(a) ≤ µ+(A).

The study of such inequalities for probability measures can be traced back to

the works of Sudakov and Tsirelson [ST74] and Borell [Bor74] who independently

studied the problem in Gauss space (Rn, |·|, γn), where γn(dx) = (2π)−n/2e−|x|
2/2dx =:

φn(x)dx is the standard Gaussian measure on Rn. By showing that half spaces {x =

(x1, . . . , xn) ∈ Rn : x1 ≤ α}, α ∈ R, solve the isoperimetric problem, they deduced

that the function Iγn is of the form φ1 ◦Φ−1
1 , for all n, where Φ1(a) =

∫ a
−∞ φ1(x)dx is

the one-dimensional Gaussian distribution function.

Identifying the extremal sets for a measure µ can prove to be a very difficult goal,

which is why one usually tries to solve the easier problem of estimating the function

Iµ from below. For instance, such an estimate can be of the form

Iµ(a) ≥ câ(− log â)β, (1.4)

for some c > 0 and β ∈ [0, 1], where â = min(a, 1 − a). The motivation for such an

inequality is that the function a 7→ â(− log â)β is equivalent to the isoperimetric func-

tion of the prototype measure dνp(x) = Z−1e−|x|
p/pdx on the real line, where p ≥ 1 and

β = (p− 1)/p, in the sense that their ratio is bounded from above and below by uni-

versal constants. There is a vast number of works in the literature dealing with such

estimates for probability measures on Rn (see e.g. [Bob99, Bar02, BH97b, BH97a,
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Hue09, Bob97a, Bob96a, Bob96b, Bob02, KLS95, Mil09b] and references therein).

In addition to the study of the isoperimetric and functional inequalities in Eu-

clidean space, there has been a large amount of literature devoted to extending known

results to Riemannian manifolds. Here, a very efficient strategy makes use of tools

from semigroup theory. The Bakry-Emery semigroup approach to hypercontractiv-

ity and logarithmic Sobolev inequalities [BÉ85] inspired many proofs of functional

and isoperimetric inequalities (see e.g. [BCR06, BCR07, BL96, Fou00, BL06, Led09,

Mil09a, Mil09b] as well as [ABC+00, Bak94, Led00, GZ03] for a more comprehensive

account of this theory). A central ingredient in such proofs consists of the so called

gradient bounds for the semigroup Pt = etL, which are inequalities of the form

Γ(Ptf, Ptf)
q
2 ≤ C(t)Pt(Γ(f, f)

q
2 ), (1.5)

for some q ≥ 1 and a constant C dependent on t only and decaying to 0 at infinity,

where Γ is the carré du champ operator, defined as

Γ(f, g) =
1

2
(L(fg)− fLg − gLf).

The strongest inequality occurs when q = 1 and in this case one may derive isoperi-

metric information for the measure µ as well as the logarithmic Sobolev inequality

(although q = 2 still suffices for many purposes, such as the Poincaré inequality).

As explained in [BÉ85], the inequality (1.5) can be achieved via a curvature-

dimension criterion of the form

Γ2(f, f) ≥ λΓ(f, f), (1.6)

where Γ2(f, f) = 1
2
LΓ(f, f)−Γ(f, Lf) . For example, when Lf(x) = ∆f(x)−x·∇f(x)

is the Ornstein-Uhlenbeck operator on Rn, which has as invariant measure the stan-

dard Gaussian measure γn, we have

Γ2(f, f) = |∇f |2 + ‖Hessf‖2
2 = Γ(f, f) + ‖Hessf‖2

2,
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where

‖Hessf‖2
2 =

n∑

i,j=1

(∂i∂jf)2

is the Hilbert-Schmidt norm of the matrix of second derivatives of f . Therefore,

in this case (1.6) is satisfied with λ = 1. An interesting situation occurs when

an inequality like (1.6) is not available. In the Riemannian setting, the curvature-

dimension condition amounts via Bochner’s formula to a lower bound for the Ricci

tensor (see e.g. [Led00]), which is not available in sub-Riemannian geometries, to

which H-type groups belong. In the simplest such space, the Heisenberg group,

gradient bounds were recently studied for the heat semigroup [Li06, BBBC08, DM05,

HZ10] and then extended to the more general class of H-type groups [Eld10, Eld09].

It is not known how to prove (1.5) for more general semigroups, but an alternative

approach to proving logarithmic Sobolev inequalities, which does not rely on the

curvature lower bound, was given in [HZ10] and then extended in various directions

in [Pap10, IP09, IKZ11]. A central assumption in this strategy is that there exists a

finite constant Kd such that

∆d ≤ Kd, for all x such that d(x) := d(x, 0) ≥ 1, (1.7)

where the notions of d and ∆ are understood appropriately depending on the space

we are in (e.g. in Euclidean space ∆ is the Laplacian and d(x) = |x| the Euclidean

distance, while on H-type groups, d is the Carnot-Carathéodory distance and ∆ is

the sub-Laplacian). Under this assumption, the authors proved certain estimates,

which they called U -bounds, of the form

∫
|f |q (|U |+ |∇U |q) dµ ≤ C

∫
|∇f |qdµ+D

∫
|f |qdµ, (1.8)

which then lead to other functional inequalities, including the Poincaré inequality and

under additional assumptions on U, the logarithmic Sobolev inequality. The Laplacian

comparison principle (1.7) in a sense replaces the assumption on the existence of a

lower bound for the Ricci curvature and allows one to recover at the same time

the Euclidean, Riemannian and sub-Riemannian cases (it should be noted, however,
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that the constants are in general dependent on the dimension; one may think, for

example, of the Euclidean case, where for n ≥ 2, ∆|x| = (n − 1)/|x|). A natural

question therefore arises of what is the weakest condition on the geometry of the

space for the results described above to hold.

In the study of functional inequalities and isoperimetry in Euclidean and Rieman-

nian spaces, a large number of papers is devoted to measures which are log-concave,

i.e. which satisfy

µ(tA+ (1− t)B) ≥ µ(A)tµ(B)1−t, (1.9)

for all measurable sets A and B and all t ∈ [0, 1]. By Borell’s characterisation [Bor74],

this is equivalent to µ being concentrated on some convex set Ω ⊂ Rn where it is

absolutely continuous with respect to the Lebesgue measure and where its density

p(x) satisfies

p(tx+ (1− t)y) ≥ p(x)tp(y)1−t,

for all t ∈ [0, 1] (in other words, log p is a concave function). In the sub-Riemannian

setting, the concept of convexity is not as clearly defined. A notion of weak convexity

was introduced in [DGN03] (see also [JLMS07] and [BD] for other approaches to

convexity), where it was shown that the Folland-Kaplan gauge N is weakly convex

and so are the balls {N ≤ r}. On the other hand, the Carnot-Carathéodory distance

d is not convex, despite being the intrinsic metric. This could suggest studying the

measures

µ(dx) = Z−1e−N
p(x)dx, (1.10)

as possible analogues of the prototype log-concave measures νp defined above in the

Euclidean setting. Nevertheless, a remarkable result of [HZ10] states that the measure

given by (1.10) does not satisfy a logarithmic Sobolev inequality for any p ≥ 1. On

the other hand, as we will see, the measures defined by

µ(dx) = Z−1e−d
p(0,x)/pdx, (1.11)
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for p ≥ 1, share many common isoperimetric as well as functional analytic properties

with their Euclidean counterparts, defined by replacing d with the Euclidean norm.

The organisation of the thesis is as follows. In Chapter 2 we describe the basic

background which is necessary for Chapters 3-5. This includes the basic notions per-

taining to homogeneous Lie groups and H-type groups, as well as the definitions of

the inequalities that we study. In Chapter 3 we derive some functional and isoperi-

metric inequalities for measures of the form (1.11), starting from U -bounds of the

type

∫
|f(x)|d(0, x)p−1µ(dx) ≤ C

∫
|∇f |(x)µ(dx) +D

∫
|f |µ(dx). (1.12)

Such an inequality is stable under perturbations, which allows us to extend the results

to a large class of measures. We start by showing that (1.12) implies the L1 Poincaré

(or Cheeger) inequality, which already implies an isoperimetric inequality of the form

min(µ(A), 1− µ(A)) ≤ Cµ+(A).

This hints the connection between the measure µ and the measure νp introduced

above, which is known to have a similar property (see e.g. [Bob99]). We then move

on to derive a Ledoux inequality starting from the U -bound estimate, which reads

∫
|f | log

1/q
+

(
|f |

∫
|f |dµ

)

dµ ≤ C

∫
|∇f |dµ+D

∫
|f |dµ.

The motivation for such an inequality comes from [Led88], where it was proved for the

Gaussian measure on Rn (with q = 2), as well as from subsequent results of [BH97b,

Mil09a, Mil09b, RZ07, BG99, BH97a]. As we will see, this inequality combined with

the Cheeger inequality imply the following L1 Φ-Entropy inequality with Φ(t) =

t log1/q(1 + t),

∫
|f | log1/q(1 + |f |)dµ−

∫
|f |dµ log1/q

(

1 +

∫
|f |dµ

)

≤ C

∫
|∇f |dµ,
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or, equivalently, at the level of sets

min(µ(A), 1− µ(A)) log1/q

(
1

min(µ(A), 1− µ(A))

)

≤ Cµ+(A).

Such Φ-Entropy inequalities (with the L2 norm of the gradient on the right) were

already used the literature as a tool to study isoperimetry, in particular in relation

to the behaviour of the isoperimetric profile under tensorisation [BCR07, BCR06]. In

the final section of this chapter, we turn to the problem of transportation of measure,

which involves looking at inequalities of the form

Wp
p (µ, ν) ≤ C

∫
log

(
dν

dµ

)

dν,

where ν is a probability measure, absolutely continuous with respect to µ. The

quantity appearing on the right here is the Kullback-Leibler information, or relative

entropy, defined by

H(ν‖µ) =






∫
log dν

dµ
dν, if ν is absolutely continuous with respect to µ,

+∞, otherwise.

The study of such inequalities in relation to functional inequalities as well as isoperime-

try and concentration of measure is a topic that attracted a lot of attention in recent

years; our work was motivated by various papers, including [Blo03, BB06, Tal96,

BGL01, BG99, LV07, BEHM09, CGW10].

In Chapter 4, we engage in the study of gradient bounds for the heat semigroup.

Such estimates in the sub-elliptic setting motivated a considerable amount of research

in recent years. They were studied in the Heisenberg group [DM05, Li06, BBBC08,

Bon09, LP10, Mel04, HZ10, IKZ11], on H-type groups [Eld10], as well as in some other

spaces, such as SU(2) and SL(2,R) [BB09, Bon09]. Although the results we give in

this section are already known, we present a different approach which is based on

estimates similar to (1.12) and the Gaussian estimates for the heat kernel of [Eld09].

Finally, Chapter 5 is devoted to proving some gradient bounds and Li-Yau esti-

mates for Hörmander operators. These are second-order differential operators, given
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in terms of fields satisfying Hörmander’s condition [Hör67]. The gradient bounds pre-

sented here were used in [DKZ10] as a tool to prove the ergodicity of the semigroup

in infinite dimensions. Li-Yau estimates [LY86] are inequalities of the form

Γ(Ptf)

(Ptf)2
≤ C1

LPtf

Ptf
+
C2

t
+ C3,

where C1, C2, C3 are nonnegative constants. Such estimates provide useful heat kernel

bounds and were used as a tool to reach functional inequalities [BL06] as well as

isoperimetric statements [Led94] in the elliptic setting. In sub-Riemannian spaces,

they were considered in [BBBQ09, BG11, Bon09] for the heat semigroup.

Some of the results contained in this thesis can also be found in [IKZ11] and

[DKZ10].
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Chapter 2

Basic definitions

2.1 Homogeneous Lie Groups

Let us start by giving some basic definitions concerning homogeneous Lie groups.

More details, as well as proofs to the results that we state below, can be found in

[BLU07, FS82].

2.1.1 Lie Groups and Lie algebras on Rn

Let X be a smooth vector field on Rn. Then, for all differentiable functions f , X has

the representation

(Xf)(x) =
n∑

i=1

αi(x)(∂if)(x),

where αi : Rn → R are smooth scalar functions, called the components of X, and ∂i

denotes differentiation with respect to the ith coordinate. Following [BLU07], we will

denote by

(XI)(x) =










α1(x)

α2(x)
...

αn(x)
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the n-tuple of components of X. We recall that a Lie group over Rn is a group

G = (Rn, ·) such that for x, y ∈ Rn, the maps

(x, y) 7→ x · y

and

x 7→ x−1

are smooth. To a Lie group is associated its Lie algebra, which is a vector space of

vector fields and can be thought of as the tangent space at the identity of the group,

which can be assumed to be the origin, without loss of generality 1 . More specifically,

we have the following characterisation of the Lie algebra.

Definition 2.1. Let G = (Rn, ·) be a Lie group and let g be its Lie algebra. A vector

field X belongs to g if and only if there exists a vector ξ ∈ Rn such that for every

smooth f : Rn → R,

(Xf)(x) =
d

ds

∣
∣
∣
∣
s=0

f(x · sξ) = lim
s→0

f(x · sξ)− f(x)

s
, (2.1)

where sξ = (sξ1, . . . sξn). In this case, ξ = XI(0).

Remark 2.2. The fact that ξ = XI(0) is a direct consequence of (2.1). Namely, by

choosing f(x) = πi(x) = xi we see that

(Xπi)(0) = ξi,

while the definition of the vector (XI)(0) directly implies that (Xπi)(0) = ((XI)(0))i.

It follows by the associativity of the group law and definition (2.1) that the vector

fields satisfying the condition (2.1) are left-invariant. In other words, if y ∈ Rn and

Ly : Rn → Rn is the map of left-translations given by

Lyx = y · x,

1Indeed, if 0 6= e ∈ Rn is the identity, we may consider new coordinates on Rn given by the
smooth diffeomorphism x 7→ x− e.
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then we have

(Xf) ◦ Ly = X(f ◦ Ly),

for all smooth f and all y ∈ Rn, where ◦ denotes composition of functions. To see

this, we note that by (2.1) we have, for all x ∈ Rn and all smooth f ,

(Xf)(Ly(x)) =
d

ds

∣
∣
∣
∣
s=0

f(Ly(x) · sξ) =
d

ds

∣
∣
∣
∣
s=0

f(Ly(x · (sξ))) = X(f ◦ Ly)(x).

The Lie algebra is equipped with a Lie bracket [·, ·] : g× g→ g, defined by

[X, Y ] := XY − Y X.

It may not be immediately obvious from the definition that [X, Y ] ∈ g, since the

bracket of X and Y is defined as the difference of two second order operators. However

a direct calculation shows that [X, Y ] is indeed of the form
∑

i αi∂i, with

αi = ([X, Y ]I)i = X(Y I)i − Y (XI)i.

The Lie bracket is a bilinear operation which satisfies [X,X ] = 0 for all X ∈ g, as

well as the Jacobi identity

[X, [Y, Z]] + [Y, [Z,X ]] + [Z, [X, Y ]] = 0,

for all X, Y, Z ∈ g.

The Lie algebra g has a natural basis, known as the Jacobian basis, which can be

obtained via Definition 2.1 by choosing ξ = ei, where {ei}ni=1 denotes the standard

basis of Rn.

Proposition 2.3. Let Z1, . . . , Zn be defined as the vector fields satisfying

Zif(x) =
d

ds

∣
∣
∣
∣
s=0

f(x · sei), (ZI)(0) = ei, (2.2)

for all x ∈ Rn and all differentiable f : Rn → R. Then {Z1, · · · , Zn} is a basis for

the Lie algebra.
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Given a set V of vector fields, we define the Lie algebra generated by V as the

smallest Lie algebra containing V and denote it by Lie(V). In other words,

Lie(V) =
⋂

h:V⊂h

h.

A very useful observation is that Lie(V) consists of nothing more than combinations

of nested brackets of elements in V .

Proposition 2.4. Let V be a set of vector fields on Rn. Then

Lie(V) = span{[X1, [X2 · · · [Xn−1, Xn]]] : n ≥ 1, Xi ∈ V for i = 1, . . . n},

where, for n = 1, the nested bracket on the right is understood as being a single vector

field from V.

2.1.2 Homogeneous stratified groups and H-type groups

Groups of Heisenberg type belong to the more general class of Carnot groups, which

are defined below. More details on these groups can be found in [BLU07, FS82].

Definition 2.5. Let G = (Rn, ·) be a Lie group that admits a decomposition

Rn = Rr1 × · · · × Rrk

and is equipped with a one-parameter family of automorphisms {δλ}λ≥0 , δλ : Rn →

Rn, defined by

δλ(x) = (λx(1), λ2x(2), . . . , λkx(k)),

where x ∈ Rn and x(i) ∈ Rri. Let X1, . . . Xr1 be the first r1 vector fields in the Jacobian

basis, i.e. the left-invariant vector fields given by (2.2), which are such that

(Xif)(0) = (∂if)(0),

for i = 1, . . . , r1. Let Z(x) = {ZI(x) : Z ∈ Lie{X1, . . . Xr1}} ⊂ R
n and suppose, in
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addition, that for every x ∈ Rn,

dimZ(x) = n,

where dimZ denotes the dimension of Z as a vector space over R.

Then we say that (Rn, ·, δλ) is a homogeneous stratified group (or a Carnot group)

of step k and r1 generators.

The family {δλ}λ≥0 is known as the family of dilations of the group. A vector field

X is said to be homogeneous of degree r with respect to dilations (or δλ-homogeneous

of degree r), if for any smooth f and any x ∈ Rn,

X(f(δλ(x))) = λr(Xf)(δλ(x)).

Therefore, the definition says simply that the left-invariant vector fields which are

homogeneous of degree 1 together with their commutators must generate the whole

Lie algebra at any point of the group.

Any Carnot group G is a connected and simply connected nilpotent Lie group,

equipped with dilations. The Lie algebra of such a group admits the decomposition

g = g1 ⊕ · · · ⊕ gk,

where gi is the space spanned by the vector fields which are δλ-homogeneous of degree

i. In other words, if {Zi}ni=1 is the Jacobian basis of G, g1 = span{Zi : i = 1, . . . , r1},

g2 = span{Zi : i = r1 + 1, . . . , r2}, . . . , gk = {Zi : i = rk−1, . . . , rk}. The dilations on

the group give rise to dilations at the level of the Lie algebra as follows. If X ∈ g has

the representation

X =
n∑

i=1

αiZi,

then

δλ(X) =

r1∑

i=1

αiλZi +

r2∑

i=r1

αiλ
2Zi + · · ·+

rk∑

i=rk−1

αiλ
kZi.
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The homogeneous dimension of the group is defined as the number

Q =
k∑

i=1

iri.

We note that this is always greater than the dimension of the underlying space, i.e.

Q ≥ n, while the case Q = n corresponds to the Euclidean situation, i.e. when · = +

and δλ(x) = λx. Moreover, if G is not the standard Euclidean group, then necessarily

Q ≥ 4. This follows immediately from the definition above, since in this case r1 6= n

and r1 ≥ 2, because there must be at least two linearly independent vector fields in

g1 whose commutator generates g2. The number Q is the degree of homogeneity of

the Lebesgue measure with respect to dilations. Indeed, one may compute

|δλ(A)| = λQ|A|,

for all A ⊂ Rn, where |A| is the Lebesgue measure of A and δλ(A) = {δλ(a) : a ∈ A}.

We now give the definition of groups of Heisenberg type. A detailed presentation

of these groups together with their basic properties can be found in Chapter 18 of

[BLU07]. We recall that the centre of a Lie algebra g is defined as the vector space z

such that [g, z] = 0, i.e. [X,Z] = 0 for all X ∈ g, Z ∈ z.

Definition 2.6 (H-type groups). Let g be a Lie algebra whose centre is z and let

v := z⊥.We say that g is of Heisenberg-type (or simply H-type) if

[v, v] = z

and there exists an inner product 〈·, ·〉 on g with 〈z, v〉 = 0 such that for any Z ∈ z,

the map JZ : v 7→ v given by

〈JZX, Y 〉 = 〈[X, Y ], Z〉,

for X, Y ∈ v, is an orthogonal map whenever 〈Z,Z〉 = 1. An H-type group is a

connected and simply connected Lie group G whose Lie algebra is of H-type.
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H-type groups were introduced by Kaplan [Kap80] (see also [Mét80]). Such a

group is a Carnot group of step 2 whose Lie algebra has the decomposition

g = v⊕ z.

It can be shown that any H-type Lie algebra is isomorphic to Rm ⊕ Rr for some

integers m, r equipped with a bracket operation [·, ·] such that Rr is the centre of the

Lie algebra. Moreover, the corresponding H-type group is isomorphic to (Rm+r, ·)

where · is given by

y · w = y + w +
1

2
[y, w],

for y, w ∈ Rn, n = m+ r (which is the Baker-Campbell-Hausdorff formula for step 2

Lie algebras g, i.e. those which satisfy [g, [g, g]] = 0). At the level of the group, the

bracket [y, w] is defined by identifying a vector field W from the Lie algebra with an

element w ∈ Rn of the group by

w = (w1, . . . , wn)←→ W =
n∑

i=1

wiZi,

where {Zi}ni=1 is the Jacobian basis (in other words, the exponential map is the

identity). In what follows, we will always assume that a group of H-type is of this

form. By a result of [Kap80], given m, r ∈ N, the existence of such a group is

equivalent to the condition

r < %(m),

where % is the Hurwitz-Radon function defined as %(m) = 8α+ β, where α and β are

the natural numbers in the representation m = mo · 24α+β, β ≤ 3, where mo is an odd

number (so %(m) = 0 is m itself is odd). In particular, we always have r < m.

For such groups, one can compute the Jacobian fields directly. Let us write the
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elements of the group as w = (x, z) ∈ Rn with x ∈ Rm and z ∈ Rr. We have

Zif(w) =
d

ds

∣
∣
∣
∣
s=0

f(w · sei)

=
d

ds

∣
∣
∣
∣
s=0

f
(
w + sei +

s

2
[w, ei]

)
.

Since [w, ei] = [(x, z), ei] = (0, [x, ei]) if i ∈ {1, . . . ,m} and is zero otherwise, for

i = 1, . . . ,m we have

Zif(w) =
d

ds

∣
∣
∣
∣
s=0

f
((
x+ sei, z +

s

2
[x, ei]

))

=
d

ds

∣
∣
∣
∣
s=0

f
((
x+ sei, z +

s

2
[x, ei]

))

=
d

ds

∣
∣
∣
∣
s=0

f

((

x+ sei, z +
s

2

n∑

j=m+1

〈
Jejx, ei

〉
ej

))

=

(

∂i +
1

2

n∑

j=m+1

〈
Jejx, ei

〉
∂j

)

f(w),

while if i = m+ 1, . . . , n,

Zif(w) = ∂if(w).

The map JZ appearing the the definition has the following properties (see e.g. [Kap80]).

Proposition 2.7. Let Z,Z ′ ∈ z and X,X ′ ∈ v. Then

〈JZ(X), X〉 = 0,

〈JZ(X), X ′〉 = −〈X, JZ(X ′)〉 ,

|JZ(X)| = |Z||X|,

〈JZ(X), JZ′(X)〉 = 〈Z,Z ′〉 |X|2,

[X, JZ(X)] = |X|2Z.

In particular, this shows that the transformations JZ are linear and skew-symmetric,

which in turn implies that m (the dimension of v) must be even, or the determinant

of the orthogonal map JZ , for 〈Z,Z〉 = 1, would be 0.
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The simplest example of a Carnot group is given by the (first) Heisenberg group

H. This is a group over R3 with group law

(x, y, z) · (x′, y′, z′) =

(

x+ x′, y + y′, z + z′ +
1

2
(xy′ − x′y)

)

.

Alternatively (see e.g. [CG90]), it can be seen as the group of upper triangular

matrices

M(x, y, z) =







1 x z

0 1 y

0 0 1







equipped with the (noncommutative) product

M(x, y, z)M(x′, y′, z′) = M(x+ x′, y + y′, z + z′ + xy′).

The Heisenberg group is equipped with dilations δλ(x, y, z) = (λx, λy, λ2z), which

induce the decomposition H = R2 × R.

Let us compute the Jacobian fields for H. Let p = (x, y, z). We have,

Z1f(p) = lim
ε→0

f ((x, y, z) · (ε, 0, 0))

ε

= lim
ε→0

f
(
x+ ε, y, z − 1

2
yε
)

ε

= ∂xf(p)−
1

2
y∂zf(p)

and similarly

Z2f(p) = ∂yf(p) +
1

2
x∂zf(p)

and

Z3f(p) = ∂zf(p).
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Observe that [Z1, Z2] = Z3 and the family {Z1, Z2, Z3} indeed forms a basis for the

Lie algebra. We have the decomposition

g = g1 ⊕ g2,

where g1 = span{Z1, Z2} and g2 = span{Z3}. Moreover, [g, g2] = 0 so that indeed g2

is the centre of the Lie algebra. In particular, the Heisenberg group is an H-type group

with a one dimensional centre. One may define higher dimensional Heisenberg groups

Hn = (R2n+1, ·) where, denoting points in p ∈ R2n+1 by p = (x, y, t) ∈ Rn × Rn × R,

(x, y, t) · (x′, y′, t′) =

(

x+ x′, y + y′, t+ t′ +
1

2
S(p, p′)

)

,

with S(p, p′) =
∑n

i=1(xiyn+i − xn+iyi). The Jacobian basis of Hn is given by

Zi = ∂xi −
1

2
yn+i∂t, for i = 1, . . . , n,

Zi = ∂yi−n +
1

2
xi−n∂t, for i = n, . . . , 2n,

Z2n+1 = ∂t.

The Heisenberg Lie algebra is the only H-type Lie algebra of dimension 2n+ 1 with

a one dimensional centre.

2.1.3 The sub-Laplacian operator

Let G = Rr1 × · · · × Rrk be a Carnot group and let Z1, . . . , Zn denote its Jacobian

basis. There is a natural operator on this group, which can be thought of as the

analogue of the Laplacian in Euclidean space.

Definition 2.8. The operator

∆ =

r1∑

i=1

Z2
i

is called the sub-Laplacian of G.

In other words, the sub-Laplacian is given as the sum of the squares of the Jacobian
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vector fields that belong to the first layer of the Lie algebra and consequently, it is

homogeneous of degree 2 with respect to dilations. In an analogous way, the sub-

gradient (or horizontal gradient) is defined as

∇ = (Z1, . . . , Zr1).

A deep result for operators defined as sums of squares of vector fields is Hörmander’s

theorem [Hör67].

Theorem 2.9. Consider the operator

L =
m∑

i=1

Z2
i + Z0,

where Z0, Z1, . . . , Zm are smooth vector fields on Rn and assume that

Lie{Z0, . . . , Zm} = Rn (2.3)

for every x ∈ Rn. Then, for every distribution u and any open set Ω ⊂ Rn, if Lu is

smooth on Ω then u must be smooth on Ω.

In particular, the assumption of the theorem is satisfied when L is the sub-

Laplacian operator of a Carnot group. An operator satisfying the conclusion of the

theorem is called hypoelliptic.

2.1.4 The distance on a homogeneous group

Suppose that G = (Rn, ·, δλ) is a homogeneous stratified group, of step k and r1

generators, Z1, . . . , Zr1 . There is an intrinsic metric on this group, called the Carnot-

Carathéodory distance, which can be introduced in the following way. Consider two

points x, y ∈ G and let γ : [0, 1]→ G be a path joining them, such that γ(0) = x and

γ(1) = y. Such a path is said to be horizontal if there exist functions a1, . . . , ar1 such

that

γ̇(t) =

r1∑

i=1

ai(t)Zi(γ(t))
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(the space spanned by Z1, . . . , Zr1 is called the horizontal subspace of the group). We

define the length of γ by

`(γ) =

∫ 1

0

√√
√
√

r1∑

i=1

ai(t)2 dt.

Definition 2.10. The Carnot-Carathéodory distance between x and y is defined as

d(x, y) = inf{`(γ) | γ : [0, 1]→ G is a horizontal path joining x and y}.

Hereafter, d(x, y) will always denote the Carnot-Carathéodory metric and we will

write d(x) = d(0, x). On H-type groups (and more generally for stratified Lie al-

gebras), it can be shown that the infimum in the definition is actually a minimum.

The Carnot-Carathéodory distance is well-defined thanks to the following theorem of

Chow (see e.g. [BLU07]).

Theorem 2.11. Let g be a Lie algebra, generated by the vector fields Z1, . . . , Zm, for

some m ∈ N. Then, for any two points x and y there exists a path γ : [0, 1]→ G such

that γ(0) = x, γ(1) = y and

γ̇(t) =
m∑

i=1

ai(t)Zi(γ(t)),

for some coefficients a1, . . . , am.

Alternatively, one may define the Carnot-Carathéodory distance between two

points by

d(x, y) = sup{|f(x)− f(y)| : |∇f | ≤ 1},

where ∇ = (Z1, . . . , Zr1) denotes the sub-gradient. We moreover have that

|∇f |(x) = lim sup
d(x,y)→0

|f(x)− f(y)|
d(x, y)

. (2.4)

This is useful when it comes to passing from functional Sobolev inequalities to isoperi-

metric inequalities on sets, because it enables us to use several results on metric

spaces (such as the coarea inequality) which use the above definition for the gradient.
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If γ : [0, d(x, y)] → G is a horizontal path joining x and y such that |γ̇| = 1 and

γ(0) = x, γ(d(x, y)) = y, then for any differentiable f ,

|f(x)− f(y)| =

∣
∣
∣
∣
∣

∫ d(x,y)

0

d

ds
f(γ(s))ds

∣
∣
∣
∣
∣

≤
∫ d(x,y)

0

|∇f |(γ(s))ds

≤ d(x, y) sup
0≤s≤d(x,y)

|∇f |(γ(s)).

Similarly, one can show that

|f(x)− f(y)| ≥ d(x, y) inf
0≤s≤d(x,y)

|∇f |(γ(s)).

Dividing by d(x, y) and taking the lim sup as d(x, y)→ 0, we arrive at (2.4). A second

property that is very important to us is that d satisfies the eikonal equation

|∇d|(x) = 1 (2.5)

(where d = d(·, 0) is viewed as a function of one variable). We can see this by

considering a geodesic joining 0 to x, i.e. a path γ : [0, d(x)] → G with γ(0) = 0,

γ(d(x)) = x and |γ̇| = 1 such that for any s ∈ [0, d(x)], s = d(γ(s)). Differentiating

this equality at s = d(x), we obtain the eikonal equation. One of the basic results

that we will need in the sequel (especially in Chapter 3) is the following Laplacian

comparison theorem for H-type groups, proved in [HZ10].

Theorem 2.12. If G is an H-type group, there exists a constant Kd > 0 such that

for all x ∈ G with d(x) ≥ 1

∆d(x) ≤ Kd, (2.6)

in the sense of distributions.
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In fact, as noted in [IP09], this implies that

∆d ≤
Kd

d
(2.7)

on G. Indeed, by dilations and homogeneity of the sub-Laplacian, for x 6= 0,

∆d(x) = λ(∆d)(δλ(x)),

so that by letting λ = 1/d(x) and considering x̃ = δλ(x) we have d(x̃) = 1 and

∆d(x) =
∆d(x̃)

d(x)
.

Therefore, knowing (2.6) only for x with d(x) = 1 is sufficient to deduce (2.7).

The above theorem extends previously known results to a large class of sub-

Riemannian spaces. Let us recall that in Euclidean space, if ∆ represents the Laplace

operator on Rn, it can be checked directly that ∆|x| = (n − 1)|x|−1, so that ∆|x| ≤

n− 1 outside the unit ball. On a Riemannian manifold, if ∆ is the Laplace-Beltrami

operator and dR the Riemannian distance, it is known (see e.g. [CLN06, Kas82]) that,

if Ric ≥ (n− 1)M with some M ∈ R, then ∆dR ≤ (n− 1)(d−1 +
√
−min {M, 0}) so

that ∆dR ≤ (n− 1)(1 +
√
−min {M, 0}) outside the unit ball.

It is often not convenient to work with the Carnot-Carathéodory distance because

of the lack of an explicit formula for it, as well as because of the fact that it is not

smooth (it is not differentiable at any point on the vertical axis, the centre of the

group). Instead, one may consider the following norm, known as the Folland-Kaplan

gauge (or the Korányi gauge in the case of the Heisenberg group), defined by

N(x) =

(
k∑

j=1

|x(j)|
2k!
j

) 1
2k!

, (2.8)

where x(j) ∈ Rnj (and | · | denotes Euclidean distance). This is a homogeneous norm,

i.e. it satisfies

◦ N(δλ(x)) = λN(x) for every λ > 0 and x ∈ G,
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◦ N(x) > 0 ⇐⇒ x 6= 0,

◦ N(x−1) = N(x), for all x ∈ G.

The Carnot-Carathéodory norm d(x) = d(0, x) is also a homogeneous norm since

d(x, y) is a homogeneous metric. The gauge N is smooth out of the origin and it

induces a pseudo-distance (see e.g. [BLU07]) defined by

dN(x, y) = N(y−1x). (2.9)

Kaplan [Kap80] showed that on H-type groups, there is a constant C such that the

locally integrable function

Γ(x, y) =
C

dN (x, y)Q−2

is the fundamental solution of the sub-Laplacian.

Given any two homogeneous norms ρ, ρ̃, there exist constants c1, c2 > 0 such that

for all x ∈ G

c1ρ(x) ≤ ρ̃(x) ≤ c2ρ(x).

This follows from the fact that the norms are homogeneous, since we may take

c1 = min
ρ(x)=1

ρ̃(x)

and

c2 = max
ρ(x)=1

ρ̃(x),

so that the inequality is satisfied for all x with ρ(x) = 1 and hence for all x ∈ G

by dilations. It is also possible to prove that on any compact set K, a homogeneous

norm ρ is comparable to the Euclidean norm in the sense that for all x ∈ G

1

CK
|x|1/k ≤ ρ(x) ≤ CK |x|

1/k,

with some constant CK > 0, where k is the step of the group. For the Folland-Kaplan

gauge N , this can be seen straight from the definition.
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2.1.5 Sobolev and local Poincaré inequalities on H-type groups

The study of Sobolev spaces on sub-Riemannian manifolds has a long history (see e.g.

[Jer86, FS82, VSCC92, SC02, RS76, GN96, HL08] and references therein). In what

follows, we describe two functional inequalities that are available in the spaces that

we are considering and will be essential for the methods used in Chapters 3-5. The

first one is a Sobolev inequality, while the second one is an L1 Poincaré (or Cheeger)

inequality in the ball.

Let G = (Rm+r, ·) be an H-type group and let dx denote the Haar measure of the

group, which can be identified with the Lebesgue measure on Rn, where n = m + r

[FS82].

Theorem 2.13. There exist constants αcs > 1, ACS > 0, BCS ≥ 0 such that for all

locally Lipschitz f : Rn → R

(∫
|f |αcsdx

) 1
αcs

≤ ACS

∫
|∇f |dx+ BCS

∫
|f |dx. (2.10)

Theorem 2.14. For any r > 0 there exists a constant mr > 0 such that for all locally

Lipschitz f

∫

Br

|f − f̄ |
dx

|Br|
≤ mr

∫

Br

|∇f |
dx

|Br|
, (2.11)

where Br = {d < r}, |Br| =
∫
Br
dx and f̄ =

∫
Br
f dx
|Br|

is the average of f over the ball

Br.

A proof can be found, for instance, in [VSCC92, SC02].

2.2 Markov semigroups

In this section we give a brief outline of some basic notions in the theory of Markov

semigroups, which we will need for Chapters 4 and 5. For a more detailed introduction

to Markov semigroups we refer the reader to [DP06]; in [ABC+00, Wan06, Bak94,
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Bak06, GZ03] they are studied in relation to functional inequalities, while further

connections to isoperimetry can be found for instance in [BL96, BCR06, BCR07].

Consider the space Cb(Rn) of uniformly continuous and bounded functions on Rn

taking real values.

Definition 2.15. A Markov semigroup (Pt)t≥0 is a linear family of operators Cb(Rn)→

Cb(Rn), such that for all functions f ∈ Cb(Rn)

1. Pt=0f = f,

2. Pt+sf = PtPsf , for all s, t ≥ 0,

3. Pt1 = 1, for all t ≥ 0,

4. f ≥ 0⇒ Ptf ≥ 0,

5. For any T > 0 and any f ∈ Cb(Rn), the map

[0, T ]× Rn → R

(x, t) 7→ Ptf(x)

is continuous.

The semigroup is said to be strongly continuous if the map s 7→ Ps , s>0, is strongly

continuous, i.e. for f ∈ Cb(Rn), ‖Ptf − f‖∞ → 0 as t→ 0.

A Markov semigroup is given by a family of Markov probability kernels (pt)t≥0,

such that

Ptf(x) =

∫

Rn
f(y)pt(x, dy).

As a consequence, for every t > 0 the operator Pt is a contraction, i.e. ‖Ptf‖∞ ≤ ‖f‖∞

for all f ∈ Cb(Rn), where as usual, ‖ · ‖∞ denotes the supremum norm.

The infinitesimal generator L of Pt is defined as the operator

Lf = lim
t→0

Ptf − f
t
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with domain D(L) consisting of functions f ∈ Cb(Rn) satisfying the following condi-

tion

∃g ∈ Cb(R
n) such that lim

t→0

Ptf − f
t

= g and sup
t∈(0,1]

‖Ptf − f‖∞
t

<∞.

The Hille-Yosida theorem [Yos95] gives necessary and sufficient conditions for an op-

erator to be the generator of a strongly continuous semigroup, and can be generalised

under the weaker assumption of (pointwise) continuity of the semigroup [DP06].

A probability measure µ is said to be invariant under Pt, if for all f ∈ Cb(Rn)

and all t ≥ 0, ∫
Ptfdµ =

∫
fdµ.

At the level of the generator, this property reads

∫
L(f)dµ = 0.

When the semigroup is defined as an operator on L2(µ), such that for all f ∈ L2(µ)

‖Ptf − f‖L2(µ) → 0, as t→ 0,

a stronger requirement is that the semigroup is symmetric (or reversible), i.e. that it

satisfies ∫
fPtgdµ =

∫
(Ptf)gdµ

for all f, g, or, equivalently, that

∫
f(Lg)dµ =

∫
(Lf)gdµ.

The carré du champ is defined as the nonnegative bilinear form

Γ(f, g) =
1

2
L(fg)− gLf − fLg,
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while the Γ2 operator is defined by

Γ2(f, g) =
1

2
LΓ(f, g)− Γ(f, Lg)− Γ(g, Lf).

This gives rise to a Dirichlet form on L2(µ) which is defined by

E(f, f) =

∫
Γ(f)dµ =

∫
f(−Lg)dµ.

We will write for short Γ(f) = Γ(f, f) and Γ2(f, f) = Γ2(f).

For example, for a smooth function V such that
∫

e−V dx < ∞, we consider the

generator

L = ∆− (∇V ) · ∇,

where ∆ and ∇ denote the Laplacian and the Euclidean gradient respectively, acting

on smooth functions. Then L generates a strongly continuous Markov semigroup

Pt = etL and the corresponding invariant probability measure is

µ(dx) =
e−V

∫
e−V dx

dx.

In this case, one can calculate that Γ(f) = |∇f |2 and Γ2(f) = ‖D2f‖HS+〈D2V∇f,∇f〉,

where (D2f)ij = (∂i∂jf)ij denotes the matrix of second derivatives of f and ‖ · ‖HS

the Hilbert-Schmidt norm of a matrix .

We will say that L is a diffusion generator, if for all smooth ϕ,

L(ϕ(f)) = ϕ′(f)L(f) + ϕ′′(f)Γ(f). (2.12)

For ρ > 0 and n ∈ N, the curvature-dimension condition CD(ρ, n) is satisfied if for

all f ∈ D(L)

Γ2(f) ≥ ρΓ(f) +
1

n
(Lf)2,

while the CD(ρ,∞) condition is said to hold if

Γ2(f) ≥ ρΓ(f).
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The latter inequality has several equivalent characterisations in the context of Rie-

mannian manifolds (see e.g. Proposition 3.3 of [Bak06]) one of which is the following

gradient bound for the semigroup

Γ(Ptf) ≤ e−2ρtPtΓ(f). (2.13)

Such inequalities and their applications to Sobolev inequalities and hypercontractivity

were investigated in [BÉ85]. The semigroup Pt is said to be hypercontractive if for all

1 ≤ p ≤ q <∞, there exists a constant T = T (p, q) such that

‖Ptf‖q ≤ ‖f‖p

for all t > T .

In the sub-elliptic setting, there is an equivalent formulation of Hörmander’s the-

orem in probabilistic language (see e.g. [Nua06]).

Theorem 2.16. Let L be as in Theorem 2.9 and suppose that Pt = etL is the semi-

group generated by L. Then Pt has a smooth density with respect to the Lebesgue

measure.

2.3 Functional inequalities, isoperimetry and transportation

2.3.1 Sobolev-type inequalities

We begin by introducing two inequalities that have been studied extensively in the

literature, the Poincaré inequality and the logarithmic Sobolev inequality. For a

more detailed account of the theory of functional inequalities, we refer the reader to

[GZ03, ABC+00, Bak94, Wan06]. Let d be a metric on Rn and suppose that the

gradient of a function is given by (2.4). A probability measure µ is said to satisfy the

Poincaré inequality if there exists a constant CP such that for all locally Lipschitz f
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2

Varµ(f) =

∫
(f − µ(f))2dµ ≤ CP

∫
|∇f |2dµ, (2.14)

where µ(f) :=
∫
fdµ. The Poincaré inequality is also known as the spectral gap

inequality, because the optimal constant CP is the reciprocal of the first (nontrivial)

eigenvalue of the generator associated to the measure µ (see e.g. [Wan06]) . More

generally, we will say that, for q ≥ 1, a q-Poincaré inequality holds if there exists a

constant C such that

∫
|f − µ(f)|qdµ ≤ C

∫
|∇f |qdµ,

for all locally Lipschitz f . The case q = 1 is of special interest in relation to the

isoperimetric problem, and is known as Cheeger’s inequality. A strong result of E.

Milman [Mil08] states that under certain convexity conditions on the space if the q-

Poincaré inequality holds for some q then it holds for all q. This generalises previous

results of Buser [Bus82] (see also [Led94]) and Cheeger [Che70] which state that the

Cheeger inequality and the Poincaré inequality (for q = 2) are equivalent (always

under convexity assumptions). In the absence of convexity assumptions, if q < q′,

a q-Poincaré inequality always implies a q′-Poincaré inequality. The following result

will be of use to us in the future.

Proposition 2.17. Suppose that a measure µ satisfies

∫
|f − µ(f)|dµ ≤ CChe

∫
|∇f |dµ,

for all locally Lipschitz f , with some constant CChe independent of f . Then, for all

q ≥ 1 there exists a constant CP depending only on CChe and q, such that for all

2 It suffices for the inequality to hold for bounded smooth f with compact support. An ap-
proximation argument then shows that it holds for locally Lipschitz functions, which are almost
everywhere differentiable by Rademacher’s theorem.
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nonnegative locally Lipschitz f

∫
|f − µ(f)|q ≤ CP

∫
|∇f |qdµ.

A proof can be found in [BZ05].

The measure µ is said to satisfy a logarithmic Sobolev inequality if there exists a

constant CLS such that for all locally Lipschitz f

Entµ(f 2) =

∫
f 2 log

(
f 2

µ(f 2)

)

dµ ≤ CLS

∫
|∇f |2dµ. (2.15)

This inequality was studied by Gross [Gro75] for the Gaussian measure, in relation

to the study of hypercontractivity. By applying it to the function f = 1 + εg for

some ε > 0 and then letting ε → 0 we recover the Poincaré inequality (2.14), which

is strictly weaker than (2.15). In Euclidean space (Rn, | · |), for instance, it is known

that (2.14) is satisfied for all log-concave measures [Bob99], while (2.15) implies the

integrability condition ∫
eε|x|

2

dµ <∞,

for some ε > 0 [Wan97, Bob99]. A property that is shared by both (2.14) and (2.15)

is the stability under tensorisation. In other words, if the inequality holds for two

measures µ on (Rn, d) and ν on (Rm, ρ), then it also holds for the measure µ⊗ ν on

(Rn+m, δ), equipped with the distance δ =
√
d2 + ρ2.

There are numerous generalisations of the logarithmic Sobolev inequality in the

literature, some of which we present below. For q ∈ (1, 2], the q-logarithmic Sobolev

inequality (see e.g. [GZ03]) states that there exists a constant C such that for all

locally Lipschitz f

Entµ(f q) ≤ C

∫
|∇f |qdµ.

Let Φ : R→ R be a smooth convex function. We define the Φ-entropy of a function

by

EntΦ
µ (f) =

∫
Φ(f)dµ− Φ

(∫
fdµ

)

.

It is a nonnegative quantity as Jensen’s inequality shows. The measure µ is said
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to satisfy an Lq Φ-entropy inequality if there exists a constant CΦ such that for all

locally Lipschitz f

EntΦ
µ (f) ≤ CΦ

∫
|∇f |qdµ.

A comprehensive study of these inequalities can be found in [Cha04]. Typical ex-

amples of the function Φ(t) include t2, which corresponds to the Poincaré inequality,

tq log(tq) which gives the q-logarithmic Sobolev inequality, while for β ∈ (0, 1), one

may consider the functions |t|(log(1+ |t|))β. In Chapter 3 we will study L1 Φ-entropy

inequalities.

Although Φ-entropy inequalities preserve the additive nature of the logarithmic

Sobolev inequality, they are not necessarily homogeneous any more. The homogeneity

is preserved by another generalisation of (2.15), known as the F -Sobolev inequality.

Consider an increasing function F : [0,∞)→ R such that F (0) = 1. The measure µ

satisfies an Lq F -Sobolev inequality with constant CF , if for all locally Lipschitz f

∫
|f |qF

(
|f |q

µ(|f |q)

)

dµ ≤ CF

∫
|∇f |qdµ.

In relation to the isoperimetric problem, Φ-entropy and F -Sobolev inequalities (with

q = 2) were used for instance in [BCR06, BCR07], as well as [Led88] and [Mil09a]

(under the more general form of Orlicz-Sobolev inequalities).

We conclude this section with the following theorem, which generalises ideas of

Rothaus [Rot85].

Theorem 2.18. Let q ∈ (1, 2] and suppose that a defective q-logarithmic Sobolev

inequality holds, i.e. that there exist constants C,D such that for all locally Lipschitz

f ∫
|f |q log

(
|f |q

µ|f |q

)

dµ ≤ C

∫
|∇f |qdµ+D

∫
|f |qdµ.

If the measure µ also satisfies a q-Poincaré inequality, then the q-logarithmic Sobolev

inequality holds.

For the proof we need the following results from [BZ05]. We define the Orlicz

space LNq(µ) generated by the function Nq(x) = |x|q log(1 + |x|q) to be the space of
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measurable functions f such that

‖f‖qNq := inf

{

λ > 0 :

∫
Nq

(
f

λ

)

dµ ≤ 1

}

<∞.

Lemma 2.19. If f ≥ 0 ∈ LNq(µ) then

‖f‖qNq ≤
∫
f q log

f q

µ(f q)
dµ+

∫
f qdµ.

Lemma 2.20. If f ∈ LNq(µ) and µ(f) = 0 then

sup
a∈R

∫
|f + a|q log

|f + a|q

µ|f + a|q
dµ ≤ 16‖f‖qNq .

With these results in hand, suppose that we have a defective LSq inequality

∫
|f |q log

(
|f |q

µ|f |q

)

dµ ≤ C

∫
|∇f |q +D

∫
|f |qdµ, (2.16)

as well as a q-Poincaré inequality

∫
|f − µf |qdµ ≤ CP

∫
|∇f |qdµ. (2.17)

By Lemma 2.19 applied to the function |f − µ(f)| we have

‖f − µ(f)‖qNq ≤
∫
|f − µ(f)|q log

(
|f − µ(f)|q

∫
|f − µ(f)|qdµ

)

dµ +

∫
|f − µ(f)|qdµ

≤ C

∫
|∇f |qdµ+ (D + 1)

∫
|f − µ(f)|qdµ

≤ (C + CP (D + 1))

∫
|∇f |qdµ,

where we first used (2.16) and then (2.17). Finally, by applying Lemma 2.20 to
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f − µ(f) we obtain

∫
|f |q log

(
|f |q

µ|f |q

)

dµ =

∫
|f − µ(f) + µ(f)|q log

(
|f − µ(f) + µ(f)|q

∫
|f − µ(f) + µ(f)|qdµ

)

dµ

≤ 16‖f − µf‖qNq

≤ 16(C +K(D + 1))

∫
|∇f |qdµ.

2.3.2 Isoperimetric inequalities

Consider a metric d on Rn and let µ be a probability measure. The surface measure

of a Borel set A is defined by

µ+(A) = lim inf
h→0

µ(Ah)− µ(A)

h
,

where Ah = {x ∈ A : d(x,A) < h} is the open h-neighbourhood (or h-enlargement)

of A (with respect to d). The isoperimetric problem consists of minimising the surface

area µ+(A) over all sets of equal measure µ(A) = t, for t ∈ [0, 1] (see e.g. [Led01] for

an introduction to the subject). In other words, one looks for those sets A that have

measure t and among all sets B such that µ(A) = µ(B) = t, A has minimal surface

area µ+(A). Such sets are called extremal and identifying them is a very difficult

question in most cases, especially in dimension n ≥ 2. A second question, which we

will study in what follows, is to estimate the isoperimetric function (or isoperimetric

profile) of µ, which is defined as the optimal I = Iµ in the isoperimetric inequality

µ+(A) ≥ I(µ(A)), (2.18)

valid for all measurable sets A. In other words, for t ∈ [0, 1]

I(t) = inf{µ+(A) : A has measure µ(A) = t}

(and so extremal sets are the ones for which (2.18) becomes equality). The isoperi-

metric function is explicitly known only in a few cases, some of which we present
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below.

Let µ denote the Lebesgue measure on Rn. Then Iµ(t) = n n
√
ωn t

n−1
n , where ωn

is the volume of the n-dimensional Euclidean ball of radius 1. In this setting, it is

known that Euclidean balls solve the isoperimetric problem.

For the two-sided exponential distribution ν1(dx) = 1
2
e−|x|dx on the real line, the

isoperimetric profile is Iν1(t) = min(t, 1 − t). A systematic approach to determining

the isoperimetric profile for a large class of probability measures on the real line was

given in [BH97b].

On R with Gaussian measure ν2 = γ of density φ(x) = e−|x|
2/2

(2π)n/2
the isoperimetric

function is known to be Iγ = φ◦Φ−1 where Φ′ = φ. This is result of Sudakov-Tsirelson

[ST74] and Borell [Bor74] who showed that half-lines Hs = {x ∈ R : x ≤ s} solve the

isoperimetric problem for γ. Moreover, they showed that, for any n ≥ 2, Iγ⊗n = Iγ ;

this property actually characterises Gaussian measures [BH96].

More generally, for the measure νp, with density fp(x)dx = e−|x|
p/p

Zp
dx, x ∈ R,

p ≥ 1, the isoperimetric function is Iνp = fp ◦ F−1
p , where F ′p = fp. For p ∈ [1, 2], we

have Iν⊗np � Iνp (with equality when p = 2 as mentioned above) [BCR06], where �

denotes Lipschitz equivalence, i.e. that there exists a constant κ > 0 such that

1

κ
≤
Iν⊗np
Iνp
≤ κ.

It is moreover known (see e.g. [BZ05]) that if q = p/(p − 1) denotes the conjugate

exponent of p, then

Iνp(t) � t̂
(
− log t̂

)1/q
,

where t̂ = min(t, 1 − t). This recovers the case p = 1 mentioned above, as well as

the Gaussian case (p = 2) where a Taylor expansion at 0 shows that φ ◦ Φ−1(t) ≈

t
√
−2 log t for small t (and similarly for t near 1).

Definition 2.21. We will say that a probability measure µ satisfies a q-isoperimetric

inequality, if there exists a constant Ciso > 0 such that, for all measurable A with
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µ(A) = a,

µ+(A) ≥ Cisoâ(− log â)1/q, (2.19)

where â = min(a, 1− a).

Equivalently, there exists a constant D > 0 such that

Iµ ≥ DIνp ,

where νp are the measures introduced above. The inequality (2.19) has various equiv-

alent functional forms, amongst which, as we shall see, are L1 Φ-Entropy inequalities

and F -Sobolev inequalities. These equivalent forms were extensively studied in the

literature (see e.g. for instance [Bar01, BK08, BL96, Led94, Bob97a, Bob96b, BM00,

BH97b, Mil09a, Mil09b, BCR06, BCR07, BZ05]). A full equivalence between Orlicz-

Sobolev inequalities and isoperimetric inequalities was given in [Mil09a], under some

convexity assumptions on the space, in particular involving a lower bound on the

Ricci curvature. These convexity assumptions are usually needed in order to deduce

an isoperimetric inequality on sets such as (2.19), starting from a functional inequal-

ity involving the qth power of the length of the gradient on the right-hand-side, with

q > 1, such as the q-logarithmic Sobolev inequality

Entµ(|f |q) ≤ C

∫
|∇f |q.

In the sub-elliptic case, the convexity assumptions made in the aforementioned works

are not satisfied. Nevertheless, it is still possible to deduce isoperimetric information

from functional inequalities, which include the L1 norm of the gradient, such as an

F -Sobolev inequality of the form

∫
f(log+ f)1/qdµ ≤ C

∫
|∇f |+ (log 2)1/q

∫
fdµ.

To pass from such an inequality on functions to an inequality on sets, one considers

a Lipschitz approximation (fn)n∈N of the characteristic function of a set. In the
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functional inequality for fn, it is then possible to pass to the limit as n → ∞. This

procedure can be carried out in the general setting of a metric measure space, as

following result of [BH97a] suggests.

Proposition 2.22. Suppose (X, d) is a metric space and µ a probability measure on

X. Let A ⊂ X be a Borel set of measure µ(A) ∈ (0, 1) and let Ā be its closure. Then,

there exists a sequence of Lipschitz functions (fn)n∈N, fn : X → [0, 1], such that for

all x ∈ X

fn(x)→ χĀ(x)

and

lim sup
n→∞

∫
|∇fn|dµ ≤ µ+(A)

This gives us a way to approximate the indicator function of the closure of a set,

rather than of the set itself, but it is sufficient to obtain the isoperimetric inequality.

To see this, suppose that we start from some functional inequality and given a set

A, we apply it to fn as above to deduce, in the limit, I(µ(Ā)) ≤ µ+(A). Then,

either µ(A) = µ(Ā), in which case we arrive at the isoperimetric inequality for µ,

or µ(Ā) > µ(A), in which case the definition of surface measure gives µ+(A) = ∞.

Either way, the isoperimetric inequality I(µ(A)) ≤ µ+(A) is satisfied.

Conversely, to pass from an isoperimetric inequality on sets to an analytic inequal-

ity, we will use the following generalised coarea inequality of [BH97a] (which extends

the usual coarea formula, see e.g. [Fed69]).

Proposition 2.23. Let f be a Lipschitz function on a metric measure space (X, d, µ).

Then

∫
|∇f |dµ ≥

∫ ∞

−∞
µ+({f ≥ t})dt. (2.20)

We conclude this section by describing two functional forms of the isoperimetric

inequality, which were introduced by S.G. Bobkov in [Bob96b] and [Bob97a] in rela-

tion to the isoperimetric problem for Gaussian measures (see also [BL96] where the

inequalities were extended to other probability measures on Riemannian manifolds).
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The first one states that for all locally Lipschitz f : Rn → [0, 1],

I(µ(f))−
∫
I(f)dµ ≤ C

∫
|∇f |dµ, (2.21)

while the second one reads

I(µ(f)) ≤
∫ √

I(f)2 + C|∇f |2dµ. (2.22)

Since a2 + b2 ≤ (a + b)2 for positive numbers a, b, the second inequality implies the

first one. On the other hand, both inequalities imply the isoperimetric inequality

I(µ(A)) ≤ Cµ+(A)

in the limit as f approximates the indicator function of a set A. The advantage of

the second form (2.22) is that it has the tensorisation property.

In the case where I is the Gaussian isoperimetric function, we have the following

equivalence theorem of [BM00].

Theorem 2.24. Let µ be a probability measure on (Rn, d) and let U = φ◦Φ−1 where φ

is the density of the standard Gaussian measure on R and Φ′ = φ. Then the following

inequalities are equivalent (with the same constant C):

(1) U(µ(A)) ≤ Cµ+(A), for all Borel measurable A,

(2) U(µ(f))−
∫
U(f)dµ ≤ C

∫
|∇f |dµ, for all locally Lipschitz f : Rn → [0, 1],

(3) U(µ(f)) ≤
∫ √
U(f)2 + C2|∇f |2dµ.

The proof given in [BM00] is in the setting of Riemannian manifolds, but it ex-

tends to arbitrary metric spaces, provided that we have a coarea inequality, which is

guaranteed by Proposition 2.23.

Outside the Gaussian case, the inequality (2.22) is known to hold for the two-sided

exponential distribution ν1 on R [Bob97b, Bob09]

Iν1(ν1(f)) ≤
∫ √

Iν1(f)2 +
1

2
√

6
|∇f |2dν1,
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but the question of whether the measures νp introduced above on the real line, with

p ∈ (1, 2), satisfy

Iνp(νp(f)) ≤
∫ √

Iνp(f)2 + C2
p |∇f |2dνp,

for some constant Cp, remains open. Such a conjecture is expected to be true, since

it would reflect the fact that the isoperimetric profile of these measures is stable with

respect to the dimension [BCR06], in other words that there exists a constant c > 0

such that for all n ∈ N

cIνp ≤ Iν⊗np ≤ Iνp

(the inequality on the right is always true; e.g. considering the set A× R ⊂ R2 , for

some A ⊂ R, shows that Iµ⊗µ ≤ Iµ). Although such an inequality cannot be true for

p > 2 (because the stability with respect to the dimension breaks in this case), it was

conjectured in [BZ05, Zeg01] that the following inequality holds with q = p/(p− 1)

Iνp(νp(f)) ≤
∫ (
Iνp(f)q + C2

p |∇f |
q
)1/q

dνp.

2.3.3 Transportation of measure

Let p ≥ 1 and suppose µ, ν are two probability measures on Rn with finite pth mo-

ments, i.e. for some y ∈ Rn (and hence for all y by the triangle inequality),

∫

Rn
d(x, y)pdµ(x),

∫

Rn
d(x, y)pdν(x) <∞.

We define the p-Wasserstein distance between µ and ν by

Wp(µ, ν)p = inf

∫
d(x, y)p

p
dπ(x, y), (2.23)

where the infimum is taken over all couplings π of µ, ν, i.e. all probability measures

on Rn × Rn satisfying

∫

Rn×Rn
φ(x)dπ(x, y) =

∫

Rn
φ(x)dµ(x),

∫

Rn×Rn
φ(y)dπ(x, y) =

∫

Rn
φ(y)dν(y),
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for all bounded and measurable φ on Rn. The Wasserstein distance has the following

characterisation, known as the Kantorovich-Rubinstein duality.

Theorem 2.25. For µ and ν as above,

Wp(µ, ν)p = sup

(∫
fdµ−

∫
gdν

)

, (2.24)

where the supremum is taken over all bounded Lipschitz f, g : Rn → R satisfying

f(x) ≤ g(y) +
d(x, y)p

p

for all x, y ∈ Rn.

This theorem can be extended to arbitrary cost functions in Polish spaces; for a

concise introduction to the theory of optimal transportation we refer the reader to

[Vil03]. When p = 1, we have

W1(µ, ν) = sup

(∫
fdµ−

∫
fdν

)

, (2.25)

where the supremum is taken over all Lipschitz f with ‖f‖Lip ≤ 1. Given a bounded

Lipschitz function f , we can define a one-parameter family of operators by

(Qtf)(x) = inf
y∈Rn

(

f(y) +
d(x, y)p

ptp−1

)

, (2.26)

for t > 0. This family is known to form a semigroup, known as the Hamilton-Jacobi

semigroup, which solves the equation

∂tQtf = −
|∇Qtf |q

q

([Eva10], see also [LV07, BEHM09] for some basic properties of Qt). By the infimum

convolution of f , we mean the function Qf = Q1f. Observe that by the duality
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theorem,

Wp(µ, ν)p = sup

(∫
Qfdµ− fdν

)

, (2.27)

where the supremum is taken over all bounded Lipschitz f .

A measure µ is said to satisfy a Tp transportation inequality with p ∈ [1, 2], if for

all probability measures ν which are absolutely continuous with respect to µ, we have

Wp(µ, ν) ≤ CT

√
Entµ(ρ) (2.28)

for some constant CT independent of ν, where ρ = dν/dµ. For p ≥ 2, we will say that

µ satisfies a p-transportation inequality Tp if, for probability measures ν as above,

Wp(µ, ν) ≤ CT (Entµ(ρ))1/p . (2.29)

The particular case p = 2 is known as Talagrand’s inequality [Tal96]. Following

[BEHM09], we remark that if ρ is of the form 1 + ερ̃, with some function ρ̃, then as

ε→ 0, Entµ(ρ) is of order ε2, while Wp(µ, ν)p is typically of order εp . Therefore, we

see that for p < 2 the second inequality (2.29) cannot hold.
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Chapter 3

Sobolev-type inequalities and

isoperimetry

This chapter is devoted to the study of functional inequalities for probability measures

and their consequences on isoperimetry. The results that we present below apply to

the following three models.

1. The n-dimensional Euclidean space (Rn, | · |, dx), where | · | denotes the standard

Euclidean norm and dx the Lebesgue measure.

2. A Riemannian manifold (Rn, dR, dvol) where dR is a Riemannian metric and dvol

the Riemannian volume element.

3. An H-type group (Rn, dcc, dx) where dcc denotes the Carnot-Carathéodory met-

ric and dx denotes the Haar measure of the group.

Although the first two cases are of great interest, as mentioned in the introduction,

they were well-studied in the literature and we will therefore focus on the third one.

We will work in the setting of an H-type group on Rn and denote by d = dcc the

Carnot-Carathéodory distance. We moreover write d(x) = d(x, 0), while ∇ stands for

the sub-gradient.
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3.1 U-bounds

Consider the probability measure µ(dx) = Z−1e−Udx, where U is a smooth function,

while Z =
∫

e−Udx is a normalisation constant. We will say that µ satisfies a U -bound

if there are constants β ∈ (0, 1] and CU , DU ≥ 0 such that

∫
|f |
(
|U |β + |∇U |

)
dµ ≤ CU

∫
|∇f |dµ+DU

∫
|f |dµ, (3.1)

for all locally Lipschitz f : Rn → R. This inequality is an L1 analogue of the U -bounds

introduced in [HZ10] as a tool to prove functional inequalities.

Let us examine the above inequality when U(x) = d(x)p/p with some p > 1. In

this case, since d satisfies the eikonal equation, (3.1) reads

∫
|f |
(
dβp + pdp−1

)
dµ ≤ C

∫
|∇f |dµ+D

∫
|f |dµ.

We want this to be satisfied for some β ∈ (0, 1] and a natural choice would be

β =
1

q
:= 1−

1

p
,

since then we would have βp = p − 1. This inequality is indeed satisfied, as the

following theorem shows.

Theorem 3.1 ([HZ10]). Let µ(dx) = Z−1e−d(x)p/pdx. For all locally Lipschitz f

∫
|f |dp−1dµ ≤

∫
|∇f |dµ+

(
2p−1 +Kd + 1

) ∫
|f |dµ. (3.2)

Proof. We may assume that f ≥ 0. Suppose first that f is supported outside the unit

ball, so that by (2.6) we have −∆d ≥ −Kd on supp(f). Taking the inner product

with ∇d of the expression

∇
(
fe−d

p/p
)

= (∇f) e−d
p/p − fdp−1(∇d)e−d

p/p

and using that |∇d| = 1, then integrating over Rn with respect to Lebesgue measure
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we obtain

∫ 〈
∇
(
fe−d

p/p
)
,∇d

〉
dx =

∫
〈∇f,∇d〉 e−d

p/pdx−
∫
fdp−1e−d

p/pdx.

For the left-hand-side, an integration by parts and Theorem 2.12 give

∫ 〈
∇
(
fe−d

p/p
)
,∇d

〉
dx =

∫
f(−∆d)e−d

p/pdx ≥ −Kd

∫
fe−d

p/pdx,

and using the Cauchy-Schwarz inequality 〈∇f,∇d〉 ≤ |∇f ||∇d| = |∇f |, we arrive at

−Kd

∫
fe−d

p/pdx ≤
∫
|∇f |e−d

p/pdx−
∫
fdp−1e−d

p/pdx.

Rearranging and dividing by the normalization constant Z we conclude that if f is

supported outside the unit ball, then

∫
fdp−1dµ ≤

∫
|∇f |dµ+Kd

∫
fdµ. (3.3)

For general f ≥ 0, we may decompose f into two parts as f = φf+(1−φ)f =: f1+f2,

where φ : Rn → [0, 1] is defined as

φ(x) =






1, for x ∈ {d < 1},

2− d(x), for x ∈ {1 ≤ d < 2},

0, for x ∈ {d ≥ 2}.

(3.4)

Notice that supp(f2) ∩ {d < 1} = ∅ and so we may apply (3.3) to f2. We have

∫
fdp−1dµ =

∫

{d<2}
fdp−1dµ +

∫

{d≥2}
fdp−1dµ

≤ 2p−1

∫
fdµ +

∫
f2d

p−1dµ

≤ 2p−1

∫
fdµ +

∫
|∇f2|dµ+Kd

∫
f2dµ.



3.1. U -bounds 49

It remains to note that |∇f2| ≤ |∇f |+ f which gives

∫
fdp−1dµ ≤

∫
|∇f |dµ+

(
2p−1 +Kd + 1

) ∫
fdµ,

which is what we wanted to show.

Remark 3.2. The above result is actually a special case of the following stronger

statement proved in [HZ10]: For all locally Lipschitz f and all q ≥ 1,

∫
|f |qdq(p−1)dµ ≤

∫
|∇f |qdµ+Dq

∫
|f |qdµ,

for some constant Dq > 0.

In principle, given a general potential U , proving (3.1) may not be an easy task.

Nevertheless, the following perturbation result holds, which, coupled with Theorem

3.1, allows us to extend our results to a large class of probability measures.

Proposition 3.3. Suppose that a probability measure µ(dx) = Z−1e−U(x)dx satisfies

∫
|f |
(
|U |β + |∇U |

)
dµ ≤ CU

∫
|∇f |dµ+DU

∫
|f |dµ (3.5)

and let µ̃(dx) = Z̃−1e−Ũdx be another probability measure, where Ũ = U + W and

W : Rn → R is a smooth function such that

∫
e−Wdµ <∞

and

|∇W | ≤ δ
(
|U |β + |∇U |

)
+ Lδ, |W |β ≤ c1

(
|U |β + |∇U |

)
+ c2, (3.6)

for some constants 0 ≤ δ < C−1
U and Lδ, c1, c2 ≥ 0. Then, the measure µ̃ satisfies

∫
|f |
(
|Ũ |β + |∇Ũ |q

)
dµ̃ ≤ CŨ

∫
|∇f |dµ̃+DŨ

∫
|f |dµ̃,

for some constants CŨ , DŨ .



3.1. U -bounds 50

Proof. Without loss of generality, we may assume that f ≥ 0. Applying (3.5) to the

function fe−W and multiplying both sides by Z/Z̃ we obtain

∫
f
(
|U |β + |∇U |

)
dµ̃ ≤ CU

∫
|∇f |dµ̃+ CU

∫
f |∇W |dµ̃+DU

∫
fdµ̃

≤ CU

∫
|∇f |dµ̃+ δCU

∫
f
(
|U |β + |∇U |

)
dµ̃

+ (LδCU +DU )

∫
fdµ̃,

by the triangle inequality. Since δCU < 1 by assumption, we may rearrange this

inequality to get

∫
f
(
|U |β + |∇U |

)
dµ̃ ≤ C1

∫
|∇f |dµ̃+ C2

∫
fdµ̃,

with

C1 =
CU

1− δCU
, C2 =

LδCU +DU

1− δCU
.

By our assumptions,

∫
f
(
|W |β + |∇W |

)
dµ̃ ≤ (δ + c1)

∫
f
(
|U |β + |∇U |

)
dµ̃+ (Lδ + c2)

∫
fdµ̃

≤ (δ + c1)C1

∫
|∇f |dµ̃+ C3

∫
fdµ̃,

with

C3 = Lδ + c2 + (δ + c1)C2.

Finally, using the inequality (a+ b)β ≤ aβ + bβ for a, b ≥ 0 and β ∈ (0, 1] we have

∫
f
(
|Ũ |β + |∇Ũ |

)
dµ̃ ≤

∫
f
(
|U +W |β + |∇U +∇W |

)
dµ̃

≤
∫
f(|U |β + |∇U |)dµ̃+

∫
f
(
|W |β + |∇W |

)
dµ̃

≤ CŨ

∫
|∇f |dµ̃+DŨ

∫
fdµ̃,
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with

CŨ =
CU

1− δCU
(1 + δ + c1), DŨ =

LδCU +DU

1− δCU
(1 + δ + c1) + Lδ + c2.

When U(x) = d(x)p/p and β = (p− 1)/p, the assumptions (3.6) on W become

|∇W | ≤ 2δdp−1 + Lδ, |W |(p−1)/p ≤ 2c1d
p−1 + c2.

Examples of functions satisfying these assumptions are bounded functions with

bounded derivative (in which case we may take δ = c1 = 0) as well as polynomi-

als in d of order less than p, whereas if W is a polynomial of order p we need the

leading coefficient to be small enough. The U -bound inequality is also stable under

perturbation by a function of bounded oscillation. We formulate the above remarks

as a corollary, which will be particularly useful in Chapter 4.

Corollary 3.4 ([HZ10]). Let µ(dx) = Z−1e−V−W−d
p/pdx be a probability measure,

where V is a function such that

osc(V ) = sup V − inf V <∞

and W satisfies

|∇W | ≤ δdp−1 + Lδ,

for some constants δ < 1 and Lδ ≥ 0. Then there exist constants C,D such that

∫
fdp−1dµ ≤ C

∫
|∇f |dµ+D

∫
fdµ

for all nonnegative locally Lipschitz f .
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Proof. For the case where V = 0 we apply (3.2) to the function fe−W to get

∫
fe−Wdp−1e−d

p/pdx

Z
≤
∫
|∇f |e−W−d

p/pdx

Z
+

∫
f |∇W |e−W−d

p/pdx

Z

+
(
2p−1 +Kd + 1

) ∫
fe−W−d

p/pdx

Z
,

with Z =
∫

e−d
p/pdx. We can now argue as above in order to conclude that

∫
fdp−1e−W−d

p/pdx

Z
≤ C

∫
|∇f |e−W−d

p/pdx

Z
+D′

∫
fe−W−d

p/pdx

Z
,

with

C =
1

1− δ
, D′ =

2p−1 +Kd + 1 + Lδ
1− δ

.

Then we can multiply through by Z/
∫

e−W−d
p/pdx to get the result. When V 6= 0,

we have

∫
fdp−1 e−V−W−d

p/p

∫
e−V−W−dp/pdx

dx ≤ eosc(V )

∫
fdp−1 e−W−d

p/p

∫
e−W−dp/p

dx

≤ eosc(V )

(

C

∫
|∇f |

e−W−d
p/p

∫
e−W−dp/p

dx+D′
∫
f

e−W−d
p/p

∫
e−W−dp/p

dx

)

≤ e2osc(V )

(

C

∫
|∇f |

e−V−W−d
p/p

∫
e−V−W−dp/p

dx+D′
∫
f

e−V−W−d
p/p

∫
e−V−W−dp/p

dx

)

.

The inequality (3.1) has a number of interesting consequences, including isoperi-

metric as well as entropy inequalities. As we will see in the following sections, it turns

out that the exponent of d on the left-hand-side reflects the correct behaviour of the

tails of the measure.

As a concluding remark for this section, we would like to mention a connection

between U -bounds and a method which has been recently developed for proving func-

tional inequalities under a Lyapunov condition [BBCG08] (see also [CG10, CGW10,

CG06, CGWW09, CGGR10] and the references therein for further developments).

More specifically, consider the metric d on Rn and the measure µ(dx) = Z−1e−Udx.

The corresponding operator is L = ∆ − (∇U) · ∇ (where the ∆ and ∇ are to be
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understood appropriately, depending on the metric). A Lyapunov function for L is a

smooth function W ≥ 1 for which there exist constants θ > 0 and b, r ≥ 0 such that

LW ≤ −θW + bχBr .

In some cases, the U -bound inequality may be seen as an integrated version of this

Lyapunov condition. For example, when U = d2/2, if we know that

|∇d| = 1 and ∆d ≤
K

d

(in the sense of distributions), we can then compute

L

(

1 +
d2

2

)

= |∇d|2 + d∆d− d2|∇d|2 ≤ 3 +K − 2

(
d2

2
+ 1

)

,

which is a Lyapunov-type condition with W = 1 + d2/2. Therefore, if we multiply by

f 2, where f is a smooth function, and integrate with respect to µ(dx), we obtain

∫
f 2d2dµ ≤ −

∫
f 2L

(

1 +
d2

2

)

dµ+ (K + 1)

∫
f 2dµ.

After an integration by parts and an application of Young’s inequality, this implies

that for all ε > 0,

∫
f 2d2dµ ≤

1

ε

∫
|∇f |2dµ+ ε

∫
f 2d2dµ+ (K + 1)

∫
f 2dµ,

so that choosing ε < 1 and rearranging, we arrive at the U -bound

∫
f 2d2dµ ≤

1

ε(1− ε)

∫
|∇f |2dµ+

K + 1

1− ε

∫
f 2dµ

(which is (3.2) with q = 2). It is also worth mentioning that both the U -bound

inequality and the Lyapunov condition are related to the following assumption of
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[KS85] on the potential of the measure

min

(

U,−∆U +
1

2
|∇U |2

)

≥ c, (3.7)

for some constant c > 0. Indeed, for a potential U growing to infinity as d(x)→∞,

the above is satisfied if

−∆U +
1

2
|∇U |2 ≥ cU ≥ cU(r), (3.8)

outside a ball Br for some r > 0. In this case, as explained in [BBCG08], it is possible

to find a Lyapunov function. Moreover, arguing as in the proof of Theorem 3.1, we

may start from the expression

∇(fe−U ) = (∇f)e−U − f(∇U)e−U ,

take the inner product with ∇U and integrate (with respect to dx), to obtain

∫
f
(
−∆U + |∇U |2

)
dµ ≤

∫
|∇f ||∇U |dµ,

after an integration by parts and an application of the Cauchy-Schwarz inequality.

Applying this to f 2 and using Young’s inequality, we obtain that for all ε > 0,

∫
f 2
(
−∆U + (1− ε)|∇U |2

)
dµ ≤

1

ε

∫
|∇f |2dµ.

Therefore, under the assumption (3.8), choosing ε = 1/2 we can conclude that

∫
f 2Udµ ≤ 2

∫
|∇f |2dµ,

which is a slightly weaker inequality than (1.8) with q = 2. The fact that all the

above assumptions are related is not surprising, since the motivation for them comes

from the need to control the terms that appear after integrating by parts.
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3.2 Cheeger inequality

In what follows, we continue to work with the measure µ(dx) = Z−1e−Udx. At this

point, we need to introduce the following assumption on the function U. Let β ∈ (0, 1].

We assume that for every M ≥ 0, there exists a constant r depending only on U,M, β,

such that

{|U |β ≤M} ⊂ {d < r}. (3.9)

We will eventually make use of this assumption with β being the constant appearing

in (3.1). In other words, we need that

lim
d(x)→∞

U(x) =∞.

Lemma 3.5. Suppose that the measure µ(dx) = Z−1e−Udx satisfies the U-bound

(3.1) with some β ∈ (0, 1], and assume that U satisfies (3.9). Then, µ satisfies the

following Cheeger inequality

∫
|f − µ(f)|dµ ≤ CChe

∫
|∇f |dµ, (3.10)

for all nonnegative locally Lipschitz f , with some constant CChe > 0 independent of

f .

Proof. By using an approximation argument, we may assume that f is smooth and

bounded. For all α ∈ R, by the triangle inequality,

∫
|f − µ(f)|dµ ≤

∫
|f − α|dµ+ |α− µ(f)| ≤ 2

∫
|f − α|dµ. (3.11)

Let M > 0 to be chosen later. By our assumption, there exists r > 0 such that, if

|U(x)|β ≤M then x ∈ Br, where Br is the ball of radius r centred at 0. We split the

range of integration as follows

∫
|f − α|dµ =

∫
|f − α|χ{|U(d)|β<M}dµ+

∫
|f − α|χ{|U(d)|β≥M}



3.2. Cheeger inequality 56

and treat each integral separately. If we choose

α = f̄ =

∫

Br

f
dx

|Br|
,

then the first integral can be estimated by using the Cheeger inequality in the ball

(2.11) as follows

∫
|f − α|χ{|U |β<M}dµ ≤

∫

Br

|f − f̄ |dµ

≤
|Br|
Z

sup
Br

e−U
∫

Br

|f − f̄ |
dx

|Br|

≤
|Br|
Z

sup
Br

e−Umr

∫

Br

|∇f |
dx

|Br|

≤ mr

supBr e−U

infBr e−U

∫
|∇f |dµ.

For the second integral, we have

∫
|f − α|χ{|U |β≥M} ≤

1

M

∫
|f − f̄ ||U |βdµ

≤
CU
M

∫
|∇f |dµ+

DU

M

∫
|f − f̄ |dµ,

by (3.1). Combining these facts, we conclude that

∫
|f − f̄ |dµ ≤

(

mr

supBr e−U

infBr e−U
+
CU
M

)∫
|∇f |dµ+

DU

M

∫
|f − f̄ |dµ.

Finally, choosing M = 2DU and rearranging we arrive at

∫
|f − f̄ |dµ ≤

CChe
2

∫
|∇f |dµ,

with

CChe = 4

(

mr

supBr e−U

infBr e−U
+

CU
2DU

)

,

which, together with (3.11), gives the desired result.

The assumption (3.9) is evidently true when U = dp/p and β = (p− 1)/p. There-
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fore, we have shown the following.

Corollary 3.6. For p > 1, the measure µ(dx) = Z−1e−d
p/p satisfies

∫
|f − µ(f)|dµ ≤ CChe

∫
|∇f |dµ

for all locally Lipschitz f with some constant CChe independent of f .

By Proposition 2.17, a further consequence of this is that the measure above

satisfies a q- Poincaré inequality for every q ≥ 1, i.e.

∫
|f − µ(f)|q ≤ Cq

∫
|∇f |qdµ,

for all nonnegative locally Lipschitz f with some constant Cq independent of f.

At the level of sets, it is well-known that the inequality (3.10) is equivalent to the

existence of a constant C such that for all measurable A

min(µ(A), 1− µ(A)) ≤ Cµ+(A). (3.12)

As we will see in the next sections, the measure Z−1e−d
p/p actually satisfies a much

stronger property, namely the q-isoperimetric inequality.

3.3 Ledoux Inequality

We will say that a measure µ satisfies a β-Ledoux inequality, where β ∈ (0, 1], if there

exist constants CL, DL such that

∫
f logβ+

(
f

µ(f)

)

dµ ≤ CL

∫
|∇f |dµ+DL

∫
fdµ,

for all nonnegative locally Lipschitz functions f . This is an L1 F -Sobolev inequality,

with F (t) = t logβ+ t. Starting from the Gaussian isoperimetric inequality, the inequal-

ity above was derived in [Led88] for the Gaussian measure on Rn with β = 1/2 (in

an equivalent formulation in the language of Orlicz-spaces).
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Theorem 3.7. Let µ(dx) = Z−1e−Udx. If the U -bound (3.1) holds, then, for all

nonnegative locally Lipschitz f : Rn → R with µ(f) = 1,

∫
f(log+ f)βdµ ≤ CL

∫
|∇f |dµ+ DL, (3.13)

with some constants CL, DL ≥ 0 independent of f .

Proof. We may assume that U ≥ 0; if not, we can replace U by U − inf U . Suppose

that f is a nonnegative smooth function with µ(f) = 1. We consider the quantity
∫
f logβ+(fe−U )dµ and show that

∫
f logβ+ fdµ−

∫

{f≥1}
fUβdµ ≤

∫
f logβ+(fe−U )dµ (3.14)

and

∫
f logβ+(fe−U )dµ ≤ k1

∫
|∇f |dµ+ k2

∫
f |∇U |dµ+ k3, (3.15)

with some constants k1, k2, k3. Once this has been established, we will be able to

conclude that

∫
f logβ+ fdµ ≤ k1

∫
|∇f |dµ+ max(k2, 1)

∫
f(Uβ + |∇U |)dµ+ k3

which, combined with the U -bound (3.1), will give the result. It is not difficult to see

(3.14). Indeed, using the inequality |a − b|β ≥ aβ − bβ, which holds for all a, b ≥ 0
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since β ∈ (0, 1], we have

∫
f logβ+

(
fe−U

)
dµ =

∫

{f≥eU}
f(log(f)− U)βdµ

≥
∫

{f≥eU}
f logβ fdµ−

∫

{f≥eU}
fUβdµ

=

∫
f logβ+ fdµ−

∫

{f≥eU}
fUβdµ

−
∫

{1≤f≤eU}
f logβ+ fdµ

≥
∫
f logβ+ fdµ−

∫

{f≥1}
fUβdµ.

For (3.15), recall that by the classical Sobolev inequality (2.10), there exist constants

αcs > 1, ACS, BCS such that

(∫
|f |αcsdx

) 1
αcs

≤ ACS

∫
|∇f |dx+ BCS

∫
|f |dx. (3.16)

We use Jensen’s inequality for the probability measure

νf (dx) =
fχ{f≥eU}e

−U

Zf
dx =

fχ{f≥eU}e
−U

∫
{f≥eU} fe−Udx

dx
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and the positive concave function t 7→ logβ t, t ≥ 1, to get

∫
f logβ+(fe−U )dµ =

Zf
Z

∫
logβ(fe−U)dνf

=
Zf

(αcs − 1)βZ

∫
logβ

(
f (αcs−1)e−(αcs−1)U

)
dνf

≤
Zf

(αcs − 1)βZ
logβ

(∫

{f≥eU}
fαcse−αcsU

dx

Zf

)

=
αβcsZf

(αcs − 1)βZ
logβ

((∫

{f≥eU}
fαcse−αcsU

dx

Zf

) 1
αcs

)

≤
αβcsZ

1− 1
αcs

f

(αcs − 1)βZ

(∫

{f≥eU}
fαcse−αcsUdx

) 1
αcs

≤
αβcsZ

1− 1
αcs

f

(αcs − 1)βZ

(∫
fαcse−αcsUdx

) 1
αcs

,

where in the last but one step we used the elementary inequality (log x)β ≤ x for

x ≥ 1. Applying the classical Sobolev inequality to the function fe−U and using that

|∇(fe−U )| ≤ (|∇f |+ f |∇U |)e−U , we arrive at

∫
f(log+(fe−U ))βdµ ≤

αβcsZ
1− 1

αcs
f

(αcs − 1)βZ

(

ACS

∫
(|∇f |+ f |∇U |)e−Udx+ BCSZ

)

=
αβcs

(αcs − 1)β
Z

1− 1
αcs

f

(

ACS

∫
(|∇f |+ f |∇U |)dµ + BCS

)

.

Finally, we observe that

1 =

∫
fdµ ≥

Zf
Z

=

∫
fχ{f≥eU}e

−Udx

Z

and thus

∫
f(log+(fe−U ))βdµ ≤

αβcs

(1− αcs)β
Z1− 1

αcs

(

ACS

∫
(|∇f |+ f |∇U |)dµ+ BCS

)

.
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The claim now follows by (3.1) with

CL = kαACS + max{1, kαACS}CU , DL = kαBCS + max{1, kαACS}DU ,

where kα = αβcs

(1−αcs)β
Z1− 1

αcs .

In particular, the assumptions of the theorem are satisfied for the measure

µ(dx) = Z−1e−d
p/pdx with β = 1/q = (p− 1)/p.

Remark 3.8. If the result holds for a measure µ defined with a potential U and µ̃ is

the perturbed measure defined in Proposition 3.3, then the result continues to hold for

µ̃.

The Ledoux inequality (3.13) already gives us some isoperimetric information.

Approximating the indicator function of a set A of measure a ≤ 1/2, it leads to

a (− log a)β ≤ CLµ
+(A) +DLa.

Therefore, if a is sufficiently small, say

a ≤ a0 := e−(2DL)1/β

<
1

2
,

then

a(− log a)β ≤ 2CLµ
+(A), (3.17)

i.e. Iµ(a) ≥ a(− log a)β/2CL for a ≤ a0. By an analogous argument, considering now

an approximation of 1−χA, we can get the result for the range a ∈ [1−a0, 1], so that

Iµ(a) ≥ â(− log â)β/2CL, (3.18)

with â = min(a, 1 − a), for all a ∈ [0, a0] ∪ [1 − a0, 1]. It remains to prove the

inequality for sets of measure a near 1/2. Suppose we know that the isoperimetric

profile is concave. In the Euclidean setting as well as for Riemannian manifolds with
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Ricci curvature bounded from below, this is indeed the case for measures which are

log-concave (see [MJ00, Bay04, Bob96a, Mil08] and references therein). Then, the

inequality (3.18) for small a immediately gives us the inequality on the whole range

a ∈ [0, 1], since we may extend the lower bound for Iµ by letting it be constant over

the interval (a0, 1− a0). More precisely, for all a ∈ [0, 1],

Iµ(a) ≥ Ψ(a) ≥ Câ(− log â)β,

with some constant C > 0, where

Ψ(a) =






a(− log a)β

2CL
, for a ≤ a0,

a0(− log a0)β

2CL
= DL

CL
e−(2DL)1/β

, for a ∈ (a0, 1− a0),

(1−a)(− log(1−a))β

2CL
, for a ≥ 1− a0.

We are not aware of a result about the concavity of the isoperimetric function for

the types of measures we are considering on H-type groups. Another approach to

reach the isoperimetric inequality, which does not rely on the concavity of Iµ, would

be to use the inequality (3.17) for small a combined with the Cheeger inequality (3.10)

for large a. We have already seen that if a measure µ satisfies the U - bound (3.1)

together with the assumption (3.9), it then satisfies the Cheeger inequality. Recall

that this can be stated equivalently as

min(a, 1− a) ≤ Cµ+(A),

for all A with µ(A) = a. Let now a ∈ (a0, 1/2). Since (− log a)β < 2DL we have

a(− log a)β ≤ 2DLa ≤ 2DLCµ
+(A),

so we conclude that

a(− log a)β ≤ max (2DLC, 2CL)µ+(A), (3.19)
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for all a = µ(A) ∈ [0, 1/2]. A similar argument for a ∈ (1/2, 1− a0) shows that

â(− log â)1/β ≤ max (2DLC, 2CL)µ+(A),

for all a ∈ [0, 1]. A more rigorous proof of this result, starting from a Φ-Entropy

inequality, will be given in Section 3.4.

Conversely, we may start from (3.19) and use an idea of [Led88] to go back to the

functional form (3.13).

Theorem 3.9. If the measure µ satisfies

â(− log â)β ≤ Cµ+(A)

for some constant C and all sets A of measure a = µ(A) ∈ [0, 1/2), then there exist

constants CL, DL depending only on C such that

∫
f(log+ f)βdµ ≤ CL

∫
|∇f |dµ+DL

for all positive locally Lipschitz functions f with µ(f) = 1.

Proof. Let f be nonnegative, with µ(f) = 1. The coarea inequality (2.20) together

with our assumption imply

∫
|∇f |dµ ≥

∫ ∞

0

µ+({f > s})ds ≥
1

C

∫ ∞

2

µ({f > s})(− log µ({f > s}))βds.

By Markov’s inequality,

µ({f > s}) ≤ µ({f > 2}) ≤ 1/2,



3.3. Ledoux Inequality 64

for all s ≥ 2. Therefore,

∫
|∇f |dµ ≥

1

C

∫ ∞

0

µ({f > s}) (− log µ({f > s}))β ds

−
1

C

∫ 2

0

µ({f > s}) (− log µ({f > s}))β ds

≥
1

C

∫ ∞

0

µ({f > s}) (− log µ({f > s}))β ds−
2

C
M,

where M = supt∈[0,1] t logβ 1
t
. Next, again by Markov’s inequality, µ({f > s}) ≤

1/s. Therefore, when s ≥ 1 we have − log µ({f > s}) ≥ log s and we always have

− log µ({f > s}) ≥ 0. Therefore, − log µ({f > s}) ≥ log+ s, which implies

∫
|∇f |dµ ≥

1

C

∫ ∞

0

(
log+ s

)β
µ({f > s})ds−

2M

C
≥ CL

∫
f
(
log+ f

)β
dµ−DL,

with CL = 1/C and DL = (2M/C) + 1. To see the last inequality, let F (s) =
∫ s

0
(log+ t)

βdt and H(s) = s(log+ s)
β − s. Then F (s) ≥ 0 ≥ H(s) on [0, e] and when

s ≥ e, F ′(s) = (log s)β and H ′(s) = (log s)β + β(log s)β−1 − 1. Therefore, since

log s ≥ 1 and β ∈ (0, 1], F ′ ≥ H ′ for s ≥ e from which it follows that F ≥ H on

[0,∞). Therefore,

∫ ∞

0

(log+ s)
βµ({f > s})ds =

∫ ∞

0

F ′(s)µ({f > s})ds

=

∫
F (f)dµ

≥
∫
H(f)dµ

=

∫
f(log+ f)βdµ− 1.

Finally, let us remark that the inequality

â(− log â)β ≤ Cµ+(A)
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directly implies

min(a, 1− a) ≤
C

(− log 2)β
µ+(A),

or, equivalently, ∫
|f − µ(f)|dµ ≤ CChe

∫
|∇f |dµ

for all locally Lipschitz f , with some constant CChe.

We conclude this section with a theorem which essentially summarises the above

results for our model measures.

Theorem 3.10. Let µ(dx) = Z−1e−d
p/pdx. Then, there exists constants CL, DL and

CChe such that ∫
f(log+ f)1/qdµ ≤ CL

∫
|∇f |dµ+DL

and ∫
|f − µ(f)|dµ ≤ CChe

∫
|∇f |dµ,

for all nonnegative locally Lipschitz f : Rn → R, where q = p/(p − 1). Equivalently,

there exists a constant Ciso such that for all measurable sets A of measure a

â(− log â)1/q ≤ Cisoµ
+(A),

where â = min(a, 1− a), i.e. Iµ(a) ≥ â(− log â)1/q.

3.4 Φ-Entropy inequality

As we will see, the inequality (3.13) can be formally strengthened by controlling

the defective term DL. To do this, we pass to an additive form of the inequality (Φ-

entropy) and then use a Rothaus-type argument together with the Cheeger inequality

(3.10). Throughout this section, we denote Φ(t) = t logβ(1 + t). Recall that the Φ-

Entropy of a function is defined by

EntΦ
µ (|f |) :=

∫
Φ(|f |)dµ− Φ(µ|f |).



3.4. Φ-Entropy inequality 66

It is a nonnegative quantity, since Φ is a convex function. The following theorem is

the main result of this section.

Theorem 3.11. Suppose that µ(dx) = Z−1e−Udx satisfies the U-bound (3.1) with

some β ∈ (0, 1] and suppose that U satisfies (3.9). Then for all locally Lipschitz f

EntΦ
µ (|f |) ≤ CΦ

∫
|∇f |dµ, (3.20)

with some constant CΦ independent of f .

For the proof, we will need a monotonicity property of the entropy, which is stated

in the following lemma.

Lemma 3.12. For any probability measure µ and for any functions f, g with 0 ≤ g ≤

f , µ(f) <∞, one has

EntΦ
µ (g) ≤

∫
f log+

(
f

µf

)β
dµ +Dreµ(f),

for some constant Dre independent of f and g.

Proof. The proof follows an idea of [FRZ07], where a generalised relative entropy

inequality was proved. We start by noticing that, since xβ − yβ ≤ |x− y|β,

EntΦ
µ (g) =

∫ (
g
(
logβ(1 + g)− logβ(1 + µ(g))

))
dµ

≤
∫
g logβ

(

1 +
g

µ(g)

)

dµ

≤
∫
f logβ

(

1 +
g

µ(g)

)

dµ, (3.21)

where in the last line we used our assumption that g ≤ f . The function F (x) =

logβ(1 + x), defined for x ∈ [0,∞), is increasing and concave, with F (0) = 0. Let θ

be a constant such that xF ′(x) ≤ θ for all x ≥ 0. We claim that xF (y) ≤ xF (x) + θy

for all x, y ≥ 0. This is clear when y ≤ x, while when x ≤ y we have

x(F (y)− F (x)) = x

(
F (y)− F (x)

y − x

)

(y − x) ≤ xF ′(x)y ≤ θy.
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Choosing x = f/µ(f) and y = g/µ(g) and integrating both sides with respect to the

measure µ we arrive at

∫
f logβ

(

1 +
g

µ(g)

)

dµ ≤
∫
f logβ

(

1 +
f

µ(f)

)

dµ+ θµ(f).

Thus, by (3.21)

EntΦ
µ (g) ≤

∫
f logβ

(

1 +
f

µ(f)

)

dµ+ θµ(f). (3.22)

Now

∫
f logβ

(

1 +
f

µ(f)

)

dµ =

∫

{f≤µ(f)}
f logβ

(

1 +
f

µ(f)

)

dµ

+

∫

{f≥µ(f)}
f logβ

(

1 +
f

µ(f)

)

dµ

≤ (log 2)βµ(f) +

∫

{f≥µ(f)}
f logβ

(
2f

µ(f)

)

dµ

≤ 2(log 2)βµ(f) +

∫
f logβ+

(
f

µ(f)

)

dµ

using once again the inequality (x + y)β ≤ xβ + yβ for x, y ≥ 0 and β ∈ (0, 1]. The

inequality is proved with Dre = 2(log 2)β + θ.

We are now in position to prove the theorem.

Proof of Theorem 3.11. By Lemma A.1 of the appendix of [ LZ07], there exist con-

stants ã and b̃ such that

EntΦ
µ (f 2) ≤ ãEntΦ

µ

(
(f − µf)2

)
+ b̃Varµ(f).

Thus, for any t ∈ R, we have that

EntΦ
µ |f + t| = EntΦ

µ

[(
|f + t|

1
2

)2
]

≤ ãEntΦ
µ

[(
|f + t|

1
2 − µ|f + t|

1
2

)2
]

+ b̃Varµ

(
|f + t|

1
2

)
. (3.23)
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Let G =
(
|f + t|

1
2 −

∫
|f + t|

1
2dµ
)2

. Note that we can write

G =

(∫
|f(ω) + t|

1
2 − |f (ω̃) + t|

1
2dµ (ω̃)

)2

≤
∫ (
|f(ω) + t|

1
2 − |f (ω̃) + t|

1
2

)2

dµ (ω̃)

≤
∫
|f(ω)− f (ω̃) |dµ (ω̃)

≤ |f |+
∫
|f |dµ,

using the elementary inequality
∣
∣
∣|x+ t|

1
2 − |y + t|

1
2

∣
∣
∣ ≤ |x − y|

1
2 in the last but one

step. Hence, since µ(G) = Varµ

(
|f + t|

1
2

)
, we have by (3.23) that

EntΦ
µ |f + t| ≤ ãEntΦ

µ (G) + 2b̃

∫
|f |dµ. (3.24)

Since 0 ≤ G ≤ |f |+
∫
|f |dµ, by Lemma 3.12 and Theorem 3.7, we have

EntΦ
µ (G) ≤

∫ (

|f |+
∫
|f |dµ

)

logβ+
|f |+

∫
|f |dµ

µ
(
|f |+

∫
|f |dµ

)dµ + 2Dre

∫
|f |dµ

≤ CL

∫
|∇f |dµ + 2(DL +Dre)

∫
|f |dµ. (3.25)

Combining (3.24) and (3.25) yields

sup
t∈R

EntΦ
µ |f + t| ≤ ãCL

∫
|∇f |dµ + 2(ã(DL +Dre) + b̃)

∫
|f |dµ . (3.26)

This implies the following bound

EntΦ
µ |f | ≤ ãCL

∫
|∇f |dµ+ 2(ã(DL +Dre) + b̃)

∫
|f − µ(f)|dµ . (3.27)

Finally we can apply the Cheeger inequality of Lemma 3.5 to the last term on the
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right-hand side of (3.27) to arrive at

EntΦ
µ (|f |) ≤ CΦ

∫
|∇f |dµ ,

with CΦ = ãCL + 2CChe

(
ã(DL +Dre) + b̃

)
.

Corollary 3.13. Consider a probability measure

µ(dx) = Z−1e−V−W−d
p/pdx (3.28)

on an H- type group, where p > 1, V is a function such that

osc(V ) = sup V − inf V <∞

and W satisfies

|∇W | ≤ δdp−1 + Lδ,

for some constants δ < 1 and Lδ ≥ 0. There exists a constant CΦ such that for all

locally Lipschitz f

EntΦ
µ (|f |) ≤ CΦ

∫
|∇f |dµ.

Proof. The proof follows from Corollary 3.4 and Theorem 3.11.

The conclusion of the theorem allows us to ‘tighten’ inequality (3.13), in a sense

made precise below. Let us apply the Φ-Entropy inequality to a function f with mean

1. We then obtain the following homogeneous inequality

∫
f(log+(1 + f))βdµ ≤ CΦ

∫
|∇f |dµ+ (log 2)β. (3.29)

In other words, by enlarging the constant in front of
∫
|∇f |dµ if necessary, we may

assume that DL = (log 2)β in (3.13).

This now gives an alternative proof of the isoperimetric inequality (3.19) obtained

in the previous section.
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Corollary 3.14. The measure µ(dx) = Z−1e−d
p/pdx satisfies the isoperimetric in-

equality

â(− log â)1/q ≤ Cµ+(A)

for some constant C and all sets A of measure µ(A) = a where q = p/(p − 1) and

â = min(a, 1− a). In other words, Iµ(a) ≥ â(− log â)1/q/C for all a ∈ [0, 1].

Proof. The assumptions of Theorem 3.11 are satisfied for µ with β = 1/q = (p−1)/p.

Therefore, for all nonnegative locally Lipschitz f,

∫
f log

(

1 +
f

µ(f)

)1/q

dµ ≤ C

∫
|∇f |dµ+ (log 2)1/q

∫
fdµ. (3.30)

Let A be a Borel set with measure a = µ(A) ≤ 1/2. By Proposition 2.22 (and the

remark following it) we may assume that µ(A) = µ(Ā) and approximate the indicator

function of Ā by a sequence of Lipschitz functions (fn)n∈N satisfying 0 ≤ fn ≤ 1 and

lim sup
n→∞

∫
|∇fn|dµ ≤ µ+(A).

Taking fn in (3.30), in the limit as n→∞ we obtain

a

(

log

(

1 +
1

a

)1/q

− (log 2)1/q

)

≤ Cµ+(A). (3.31)

We now observe that for a ∈
[
0, 1

2

]
we have

η

(

log

(
1

a

))1/q

≤

(

log

(

1 +
1

a

))1/q

− (log 2)1/q, (3.32)

with η =
(

log 3
log 2

)1/q

− 1 > 0. This implies

a

(

log

(
1

a

))1/q

≤
C

η
µ+(A), (3.33)

for all a ∈
[
0, 1

2

]
.



3.4. Φ-Entropy inequality 71

Now suppose that a = µ(A) ∈
(

1
2
, 1
]
. For functions f ∈ [0, 1], we can apply (3.30)

to 1− f , which yields

∫
(1− f)

((

log

(

1 +
1− f

1− µ(f)

))1/q

− (log 2)β

)

dµ ≤ C

∫
|∇f |dµ.

If we now take fn in this inequality (where (fn)n∈N is again the Lipschitz approxi-

mation of the characteristic function of Ā) and pass to the limit as n → ∞, we see

that

(1− a)

((

log

(

1 +
1

1− a

))1/q

− (log 2)1/q

)

≤ Cµ+(A).

Arguing as before, this implies that

s

(

log

(
1

s

))1/q

≤
C

η
µ+(A)

for s = 1− a ≤ 1/2.

Corollary 3.15. The Φ-entropy inequality (3.20) implies the Cheeger inequality.

Proof. This can be directly seen at the level of sets. Since (3.20) implies

â(− log â)β ≤ Cµ+(A)

with some constant C, for all sets A with µ(A) = a, we immediately deduce that

â ≤
C

(− log 2)β
µ+(A),

which is the Cheeger inequality.

We have seen that under the compactness assumption (3.9) on U, the U -bound

(3.1) implies the Φ-Entropy inequality (3.20). We now show that under a convexity

assumption on U , the converse also holds.
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Theorem 3.16. Suppose µ(dx) = Z−1e−Udx satisfies the Φ-entropy inequality (3.20)

with some β ∈ [1/2, 1] and assume that there exist constants a, b such that

|∇U | ≤ a|U |β + b. (3.34)

Then there exist constants CU , DU such that

∫
f(|U |β + |∇U |)dµ ≤ CU

∫
|∇f |dµ+DU

∫
fdµ

for all nonnegative locally Lipschitz f : Rn → R.

Let us observe that, typically (e.g. when U(d) = dp), we have U ′(d(x))/Uβ(d(x))→

1 as d(x)→∞ so that assumption (3.34) is satisfied. For the proof we will need the

following result.

Lemma 3.17. Let µ be a probability measure. Then

∫
fhdµ ≤ s−1EntΦ

µ (f) + s−1Θ(sh) (3.35)

for all s > 0 and suitable functions f, h ≥ 0 such that µ(f) = 1, where

Θ(h) ≡

(

θ + (log 2)β +

(

log

∫
eh

q

dµ

)β)

with θ = supx≥0 βx(log(1 + x))β−1/(1 + x).

Moreover, if µ satisfies (3.20) for some β ∈ [1/2, 1] and g ≥ 0 is a locally Lipschitz

function such that

|∇g|1/β ≤ ag + b (3.36)

for some constants a, b ∈ (0,∞), then Θ(sβgβ) <∞ for sufficiently small s > 0 and

∫
fgβdµ ≤

c

sβ

∫
|∇f |dµ +

c

sβ
Θ(sβgβ)µ(f), (3.37)

for all locally Lipschitz functions f ≥ 0.
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Proof. Let f, h ≥ 0, µ(f) = 1 , with s ∈ (0,∞) and β ≡ 1
q
∈ (0, 1). Setting H = es

qhq ,

we have

∫
fhdµ = s−1

∫
f logβ Hdµ

≤ s−1

∫

{H≥µ(H)}
f logβ

(

1 +
H

µ(H)

)

+ s−1 logβ µ(H).

By the generalised relative entropy inequality of [FRZ07], we have

∫
f logβ

(

1 +
H

µ(H)

)

dµ ≤
∫
f logβ (1 + f) dµ+ θ

≤ EntΦ
µ (f) + θ + (log 2)β,

since µ(f) = 1. We therefore get the following bound

∫
fhdµ ≤ s−1EntΦ

µ (f) + s−1
(
θ + (log 2)β + logβ µ(H)

)
. (3.38)

This ends the proof of the first part of the lemma.

Replacing h by gβ and s by sβ in (3.38), we see that the second part is a consequence

of the fact that, for g satisfying (3.36),
∫
etgdµ <∞ (see [HZ10]).

Proof of Theorem 3.16. We may assume that f ≥ 0 and U ≥ 0 (otherwise we can

shift it by a constant). We ote that from (3.34), it follows that

|∇U |1/β ≤ ãU + b̃.

Hence we may apply Lemma 3.17, to see that

∫
fUβdµ ≤

c

sβ

∫
|∇f |dµ+

c

sβ
Θ(sβUβ)

∫
fdµ,

with Θ(sβUβ) <∞ for sufficiently small s.
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3.5 Transportation inequalities

In this section we discuss some consequences of the inequalities obtained above in

terms of measure transportation. As a preliminary observation, we show that the

inequality

∫
fd dµ ≤ C

∫
|∇f |dµ+D

∫
f (3.39)

directly implies a T1 transportation inequality (defined in (2.28)). As we already saw

in Section 3.1, the measures µ(dx) = Z−1e−d
p/pdx, as well as the perturbed measures

defined in Corollary 3.4, satisfy

∫
fdp−1dµ ≤ C

∫
|∇f |dµ+D

∫
fdµ, (3.40)

for all nonnegative locally Lipschitz f . Therefore, if p ≥ 2, using the inequality

dp−1 ≥ d − 1 and enlarging the constant D, we see they also satisfy (3.39). Note

that for such a measure we have
∫
d(x)dµ(x) < ∞. Suppose that the compactness

assumption (3.9) also holds for the potential of the measure. By the results of Section

3.2, the inequality (3.40) implies a Cheeger inequality, which when combined with

(3.39), applied to the function |f − µ(f)|, gives

∫
|f − µ(f)|d dµ ≤ C

∫
|∇f |dµ,

with some constant C independent of f . Let g be a bounded continuous Lipschitz

function with µ(g) = 0 and ‖g‖Lip ≤ 1. Since, for all x ∈ Rn,

|g(x)− g(0)| ≤ d(x),

we arrive at ∫
(f(x)− µf)(g(x)− g(0))dµ ≤ C

∫
|∇f |dµ,

which in turn implies ∫
fgdµ ≤ C

∫
|∇f |dµ,
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using the assumption µ(g) = 0. Now, choosing f(x) = etg(x) with some t ∈ R and

using the fact that |∇g| ≤ ‖g‖Lip ≤ 1 almost everywhere, we arrive at

∫
getgdµ ≤ C

∫
tetgdµ,

which can be written as a differential inequality for the function H(t) =
∫
etgdµ, as

H ′(t) ≤ CtH(t).

After integration, this yields ∫
etgdµ ≤ et

2C/2, (3.41)

for all bounded continuous g with ‖g‖Lip ≤ 1 and µ(g) = 0. As observed in [BG99],

(3.41) is equivalent to the T1 transportation inequality. To see this, recall that the

duality formula for the Wasserstein distance states that

W1(µ, ν) = sup (ν(g)− µ(g)) , (3.42)

where the supremum is taken over all continuous and bounded g with ‖g‖Lip ≤ 1.

Let ϕ = dν/dµ and g be such that ‖g‖Lip ≤ 1 (we now drop the assumption that

µ(g) = 0). Applying (3.41) to the function g − µ(g) we obtain

∫
etg−

Ct2

2
−tµgdµ ≤ 1.

Using Sanov’s variational characterisation of the entropy, which reads

Entµ(ϕ) = sup

{∫
ϕψdµ :

∫
eψdµ ≤ 1

}

,

we conclude that

Entµ(ϕ) ≥
∫ (

tg −
Ct2

2
− tµ(g)

)

ϕdµ

= t(ν(g)− µ(g))−
C

2
t2.
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Rearranging this, we obtain

C

2
t+

1

t
Entµ(ϕ) ≥ ν(g)− µ(g),

and optimising in t we arrive at

√
2CEntµ(ϕ) ≥ ν(g)− µ(g).

Finally, taking supremum over g we conclude by (3.42) that

√
2CEntµ(ϕ) ≥ W1(µ, ν).

As we will see below, the stronger inequality T2 actually holds for the measures

satisfying (3.39). The proof uses a result of [OV00] (see also [BGL01]), which says that

the logarithmic Sobolev inequality implies the T2 inequality. It would be interesting

to find a direct proof of the Tp inequality starting from (3.40).

Theorem 3.18. Let p ≥ 2 and consider a probability measure

µ(dx) = Z−1e−V−W−d
p/pdx (3.43)

on an H- type group, where V is a function such that

osc(V ) = sup V − inf V <∞

and W satisfies

|∇W | ≤ δdp−1 + Lδ,

for some constants δ < 1 and Lδ ≥ 0. Then, for all probability measures which are

absolutely continuous with respect to µ, we have

Wp(µ, ν)p ≤ CEntµ

(
dν

dµ

)

,

with some constant C independent of ν.
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Let us now state the Otto-Villani theorem.

Theorem 3.19. Suppose that a measure µ satisfies the logarithmic Sobolev inequality

Ent(f 2) ≤ CLS

∫
|∇f |2dµ.

Then the measure µ satisfies a Talagrand inequality

W2(µ, ν)2 ≤ CTEntµ

(
dν

dµ

)

with constant CT = CLS/2.

The result actually holds for arbitrary q ∈ (1, 2]: the q-logarithmic Sobolev in-

equality implies Tp (where p ≥ 2 is the conjugate exponent to q). This can be seen

by following the proof of [BGL01], which uses the Hamilton-Jacobi semigroup and a

Herbst-type argument. We apply the q-logarithmic Sobolev inequality

∫
f q log

f q

µ(f q)
dµ ≤ CLS

∫
|∇f |qdµ

to the function f = eat
αQtg/q, where g is a bounded Lipschitz function and a, α are

constants to be determined. We obtain

∫
eat

αQtgatQtgdµ−G(t) logG(t) ≤ CLS

∫
aqtαq

qq
|∇Qtg|

qeat
αQtgdµ,

where

G(t) =

∫
eat

αQtgdµ.

Recall that Qtg solves

∂tQtf = −
|∇Qtf |q

q

and therefore the inequality above can be rewritten as

∫
eat

αQtg

(

αatα−1Qtg +
αCLS

qq−1
aqtαq−1∂tQtf

)

dµ ≤ α
G(t) logG(t)

t
.
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If we now choose

α = p− 1 =
p

q
, a =

(
qq−1

αCLS

) 1
q−1

,

this can be rewritten as

G′(t) =

∫
eat

p−1Qtg∂t
(
atp−1Qtg

)
dµ ≤ (p− 1)

G(t) logG(t)

t
.

In other words, (
logG(t)

tp−1

)′
≤ 0.

In particular,

logG(1) ≤
logG(ε)

εp−1

for any ε ≤ 1 and letting ε→ 0 we conclude that, since G′(0) = aµ(g) 1,

∫
eaQ(g)dµ ≤ eaµ(g)

(recall that we denote Q = Q1). This is known as an infimum-convolution inequality

and is equivalent to the Tq transportation inequality, as observed in [BGL01]. Let

ν be a probability measure which is absolutely continuous with respect to µ and let

ϕ = dν/dµ. Arguing as in the proof of T1, the infimum–convolution inequality implies

that

Entµ(ϕ) = sup

{∫
ϕψdµ :

∫
eψ ≤ 1

}

≥ a

∫
ϕ (Q(g)− µ(g)) dµ.

Taking supremum over all bounded Lipschitz g, by the dual description of the Wasser-

stein distance (2.27), we obtain

Wp(µ, ν)p = sup

(∫
Qfdµ− fdν

)

≤
1

a
Entµ(ϕ), (3.44)

which is the Tp inequality (2.29). Therefore, to establish Theorem 3.18 it remains to

1For a proof of all the regularity properties of Qt used in this discussion we refer the reader to
[LV07] ([BEHM09]).
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prove that the measure defined in (3.43) satisfies the q- logarithmic Sobolev inequality.

Recall that we have already seen in Corollary 3.13 that the measure satisfies a Φ-

Entropy inequality with Φ(x) = t log1/q(1 + t). We now show that this implies the

q-logarithmic Sobolev inequality.

Theorem 3.20. Suppose that a measure µ satisfies the Φ-entropy inequality (3.20)

for some β ∈ [1/2, 1] and set q = 1
β
∈ [1, 2]. Then there exists a constant Cq such

that the q-logarithmic Sobolev inequality holds

Entµ(f q)dµ ≤ cq

∫
|∇f |qdµ, (3.45)

for all nonnegative locally Lipschitz functions f .

Proof. We apply (3.20) to the function g = f (1 + log(1 + f))1−β ≥ f ≥ 0, where f

is such that µ(f) = 1. Note that µ(g) ≥ 1. We have

∫
g log

(

1 +
g

µ(g)

)β
dµ =

∫
f (1 + log(1 + f))1−β log

(

1 +
g

µ(g)

)β
dµ

≥
∫
f (1 + log(1 + f))1−β log

(

1 +
f

µ(g)

)β
dµ

≥
∫
f

(

1 + log

(

1 +
f

µ(g)

))1−β

log

(

1 +
f

µ(g)

)β
dµ

≥
∫
f log

(

1 +
f

µ(g)

)

dµ

=

∫
f(log(µ(g) + f)− log µ(g))dµ

≥
∫
f log(1 + f)dµ− µ(g).
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Thus for all f ≥ 0 with µ(f) = 1,

∫
f log(1 + f)dµ ≤ CΦ

∫ ∣
∣
∣∇
(
f (1 + log (1 + f))1−β

)∣∣
∣ dµ

+
(
(log 2)β + 1

) ∫
f (1 + log(1 + f))1−β dµ

≤ CΦ

∫
(1 + log(1 + f))1−β |∇f |dµ

+ CΦ(1− β)

∫
f

(1 + log(1 + f))β
1

1 + f
|∇f |dµ

+
(
(log 2)β + 1

) ∫
f (1 + log(1 + f))1−β dµ

≤ CΦ

∫
(1 + log(1 + f))1−β |∇f |dµ + CΦ(1− β)

∫
|∇f |dµ

+
(
(log 2)β + 1

) ∫
f (1 + log(1 + f))1−β dµ. (3.46)

Since we have assumed β ≥ 1
2
, we have 1− β ≤ β and hence

∫
f (1 + log(1 + f))1−β dµ = 1 +

∫
f log(1 + f)1−βdµ

≤
∫
f log(1 + f)βdµ+ 2

≤ CΦ

∫
|∇f |dµ+ (log 2)β + 2

by another application of (3.20) the last step. Summarising, we have shown that for

f ≥ 0,

∫
f log

(

1 +
f

µf

)

dµ ≤ CΦ

∫ (

1 + log

(

1 +
f

µf

))1−β

|∇f |dµ

+ CΦ(2− β + (log 2)β)

∫
|∇f |dµ

+
(
(log 2)β + 1

) (
(log 2)β + 2

) ∫
fdµ.
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Replacing f by f q with q = 1
β

in the above and using Young’s inequality we arrive at

∫
f q log

(

1 +
f q

µf q

)

dµ ≤ qCΦ

∫ (

1 + log

(

1 +
f q

µf q

))1−β

f q−1|∇f |dµ

+ qCΦ(2− β + (log 2)β)

∫
f q−1|∇f |dµ

+
(
(log 2)β + 1

) (
(log 2)β + 2

) ∫
f qdµ

≤
qCΦε

p−1

p

∫
f q
(

1 + log

(

1 +
f q

µf q

))

dµ

+

(
CΦ

ε
+ c(2− β + (log 2)β)

)∫
|∇f |qdµ

+ c̃µ(f q),

for all ε > 0, with

c̃ =
qCΦ

p
(2− β + (log 2)β) +

(
(log 2)β + 1

) (
(log 2)β + 2

)
.

Choosing qcεp−1/p < 1, we can simplify this bound as follows

∫
f q log

(

1 +
f q

µf q

)

dµ ≤ C

∫
|∇f |qdµ+D

∫
f qdµ,

where

C ′ =
CΦ

ε
+ CΦ(2− β + (log 2)β)

1− qCΦεp−1

p

, D′ =
pc̃

p− qCΦεp−1
.

From this one obtains the defective q-log Sobolev inequality, which for all f ≥ 0 such

that µ(f q) = 1 can be equivalently represented as

∫
f q log f qdµ ≤ C ′

∫
|∇f |qdµ +D′. (3.47)

Let us now recall that by Corollary 3.15 and Proposition 2.17, there exists a constant

Cq such that ∫
|f − µf |qdµ ≤ Cq

∫
|∇f |qdµ.

Finally, by Theorem 2.18, we can remove the defective term in (3.47) to arrive at the
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result.
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Chapter 4

Gradient bounds for the heat

semigroup

Let G = (Rm+r, ·) be an H-type group and consider the sub-Laplacian

∆ = ∆G =
m∑

i=1

X2
i .

Let Pt = et∆ be the heat semigroup. It is known that Pt is given by a convolution

kernel, i.e.

Ptf(q) =

∫

G
f(q · w)ht(w)dw

and moreover if w = (x, z) with x ∈ Rm, z ∈ Rr, then ht(w) has the representation

[Ran96]

ht(w) =

∫

Rr
ei〈q,z〉−

1
4
|q| coth(t|q|)|x|2

(
|q|

sinh(t|q|)n

)

dq. (4.1)

Note that this depends only on the norms of x and z. For simplicity, in the sequel we

will write h = h1 while we denote ν(dw) = h(w)dw.

Theorem 4.1. Let q ≥ 1. For all smooth f : G→ R and all x ∈ G, t ≥ 0

|∇Ptf |
q ≤ κqPt(|∇f |

q), (4.2)

for some constant κq > 0.
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The above gradient bound was naturally first studied in the case of the Heisenberg

group. For q > 1 the result first appeared in [DM05]. Eventually, the whole range

q ≥ 1 was treated in [Li06]. Another proof for q > 1 was later given in [LP10]. In

[BBBC08], the authors gave various proofs of (4.2) for q ≥ 1 (still restricted to the

Heisenberg group case). Finally, their methods were extended in [Eld10], where the

result for arbitrary H-type groups was obtained. Let us point out that the case q = 1

is of particular interest, because it implies the logarithmic Sobolev inequality as well

as Bobkov’s isoperimetric inequality (2.21) (in a local form for the semigroup Pt).

By Jensen’s inequality it is plain that the gradient bound for q = 1 implies the

others (up to a universal constant) since

|∇Ptf | ≤ κ1(t)Pt|∇f | ≤ κ1(t) (Pt|∇f |
q)1/q

and therefore (4.2) is satisfied with κq(t) = κ1(t)q.

We also note that, by the structure of the group, it suffices to prove (4.2) at t = 1

and x = 0. Following [BBBC08, DM05], given y ∈ G, consider the left-translation

Ly(x) = y · x, x ∈ G. Since ∆ is given as a sum of squares of left-invariant vector

fields, it follows that ∆ is left-invariant and thus Pt commutes with left-translations,

i.e.

LyPt(f)(x) = (Ptf)(Ly(x)) = Pt(Lyf)(x).

Therefore, choosing x = 0 we see that, for all y,

∇(Ptf)(y) = ∇(Ptf ◦ Ly)(0) = ∇(Pt(f ◦ Ly))(0),

since ∇ is invariant under translations. Moreover, for any λ, t > 0, we can see directly

from formula (4.1) that

Pt(f ◦ δλ) = (Pλ2tf) ◦ δλ,

so that P1 gives the whole of Pt.

We begin by stating the following result of [Eld09] (see also [Li06]), which provides

a Gaussian estimate for the heat kernel. Recall that we use the notation (x, z) = w
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and d(0, w) = d(w).

Proposition 4.2. Let G = (Rm+r, ·) be an H-type group. There exists R > 0 such

that for all points w = (x, z) = (x1, . . . , xm, z1, . . . , zr) with d(w) = d(0, (x, z)) > R,

h(x, z) �
d(w)m−r−1

1 + (|x|d(w))(m−1)/2
e−d(w)2/4 (4.3)

and

|∇ log h(w)| ≤ Ch(1 + d(w)), (4.4)

for some constant Ch independent of w.

As a consequence, when combined with Theorem 3.1 and Proposition 3.3, the

above bounds imply that the heat kernel measure satisfies a U -bound as well as a

Cheeger inequality.

Lemma 4.3. For all nonnegative smooth f ,

∫
fd dν ≤ C

∫
|∇f |dν +D

∫
fdν

and ∫
|f − ν(f)|dν ≤ C ′

∫
|∇f |dν

where C,D,C ′ ≥ 0 are constants independent of f .

Before proving the lemma, let us see how it can be used to reach (4.2). Given a

smooth f , we observe that

∣
∣
∣
∣

∫
f(∇h)dx

∣
∣
∣
∣ =

∣
∣
∣
∣

∫
(f − ν(f)) (∇h)dx

∣
∣
∣
∣ ≤

∫
|f − ν(f)| |∇ log h| dν, (4.5)

which, combined with (4.4), implies

∣
∣
∣
∣

∫
f(∇h)dx

∣
∣
∣
∣ ≤ Ch

∫
|f − ν(f)|d dν + Ch

∫
|f − ν(f)|dν.
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Now Lemma 4.3 applied to the function |f − ν(f)| allows us to conclude that

∣
∣
∣
∣

∫
f(∇h)dx

∣
∣
∣
∣ ≤ ChC

∫
|∇f |dν + Ch(1 + D)

∫
|f − ν(f)|dν ≤ κ

∫
|∇f |dν,

with

κ = ChC + C ′Ch(1 + D).

We have thus established (4.2) for q = 1 at t = 1 and x = 0.

Proof of Lemma 4.3. The proof is based on perturbative arguments, similar to the

ones used in [HZ10] (Theorem 7.1). We note that if f, g are functions such that f � g,

then we may write f = eψg, where ψ is a function of bounded oscillation. Indeed, we

may define ψ pointwise by

ψ(x) = log
f(x)

g(x)
.

Then ψ is well defined since the ratio f/g is bounded from above and below by

absolute constants. Now, consider the function

W (w) = log

(
d(w)m−r−1

(1 + ε|x|d(w))(m−1)/2

)

,

on {d > R}, where R is as in Proposition 4.2, with some ε ∈ (0, 1) to be determined

later. Since

(1 + |x|d(w))(m−1)/2 � 1 + (|x|d(w))(m−1)/2

and

ε(m−1)/2(1 + |x|d(w))(m−1)/2 ≤ (1+ε|x|d(w))(m−1)/2 ≤ (1 + |x|d(w))(m−1)/2,

we see that

eW (w) �
d(w)m−r−1

1 + (|x|d(w))(m−1)/2
.
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Therefore, by (4.3), on the set {d > R}, we may write

h(w) = eψ(w)+W (w)e−d(w)2/4,

with a function ψ satisfying osc(ψ) < ∞. Let f be a nonnegative smooth function.

By Corollary 3.4, the proof of

∫

{d>R}
fd dν ≤ C

∫

{d>R}
|∇f |dν +D

∫

{d>R}
fdν

amounts to showing that

|∇W | ≤ δd+ Lδ,

for some δ < 1 and Lδ ≥ 0. Indeed, using the triangle inequality we compute

|∇W | ≤ (m− r − 1)
|∇d(w)|
d(w)

+ ε
m− 1

2

|∇|x||d(w) + |x||∇d(w)|
1 + ε|x|d(w)

≤
m− r − 1

R
+ ε (m− 1) d(w)

where we used that |∇|x|| = |∇d| = 1 and |x| ≤ d(w). To conclude, we choose

ε < (m− 1)−1. Finally, we have

∫
fd dν ≤

∫

{d>R}
fd dν + R

∫
fdν ≤ C

∫
|∇f |dν + (D + R)

∫
fdν.

The proof of the Cheeger inequality is essentially the same as the proof of Lemma

3.5, so we sketch it briefly. Let r > 0 to be determined and set f̄ =
∫
Br
fdx/|Br|. We

have

∫
|f − ν(f)|dν ≤ 2

∫
|f − f̄ |dν = 2

∫

{d<r}
|f − f̄ |dν + 2

∫

{d≥r}
|f − f̄ |dν.

For the first term we use the Cheeger inequality in the ball to conclude that

∫

{d<r}
|f − f̄ |dν ≤ Cr

∫
|∇f |dν,
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with some Cr > 0, while for the second one, we use the U -bound for the function

|f − f̄ | to obtain

∫

{d≥r}
|f − f̄ |dν ≤

1

r

∫
|f − f̄ |ddν ≤

C1

r

∫
|∇f |dν +

D

r

∫
|f − f̄ |dν.

Choosing r large enough and rearranging we obtain the desired result.

In conclusion, let us mention that the gradient bound

|∇Ptf | ≤ κPt|∇f |

has many interesting consequences in terms of functional and isoperimetric inequali-

ties for the semigroup, which are outlined in [BBBC08, Bon09] (see also [BÉ85, BL96,

BL06, Fou00]).
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Chapter 5

Markov Semigroups with

Hörmander Generators on H-type

groups

In this chapter, we consider second order differential operators which are given

in terms of vector fields satisfying Hörmander’s condition. We will prove gradient

bounds for the associated semigroup, with the full gradient (which includes all the

vector fields needed to span the Lie algebra, instead of only the fields appearing in

the sub-gradient), as well as some Li-Yau estimates.

Consider an H-type group on Rn = Rm × Rr. As before, we write the elements

of Rn as w = (x, z) with x ∈ Rm, z ∈ Rr. We denote by X1, . . . , Xm the vector

fields that belong to the first layer of the stratification, while we denote by {Zk}nk=1,

a basis for the Lie algebra. In other words, we take Xk = Zk, for k = 1, . . . ,m, while

the remaining Zm+1, . . . , Zn are ordered commutators of length 2. The Lie algebra

is naturally equipped with a first order operator D which generates dilations and

satisfies

esDZke
−sD = eslkZk and [Zk, D] = lkZk, (5.1)

for all k = 1, . . . , n and s > 0, where lk = 1 for k = 1, . . .m and lk = 2 otherwise (the

constants lk reflect the layer of the Lie algebra that Zk belongs to). More specifically,
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D is given as the generator of the dilations δλ(w) = (λx, λ2z), by

D = ∂λ |λ=1
δλ(w) = x · ∇m + 2z · ∇r, (5.2)

where ∇m and ∇r denote the Euclidean gradients on Rm and Rr, respectively.

We consider the operator

L =
m∑

i=1

(δij +Gij)XiXj +
n∑

k=1

αkZk − βD, (5.3)

acting on smooth bounded functions on Rn, where β > 0 and α1, . . . , αn ∈ R are

constants, while G = (Gij)
m
i,j=1 is a constant matrix satisfying

G∗ ≥ 0,

where G∗ij = (Gij + Gji)/2 is the symmetrised matrix of G. Let (Pt)t≥0 denote the

semigroup generated by L. By Theorem 2.16 , for every x ∈ Rn, Ptf(x) is given by a

smooth Markov kernel. The sub-gradient of a smooth function f , will be denoted by

Γ(f) =
m∑

i=1

(Xif)2, (5.4)

while the full gradient of f will be denoted by

Γ(f) =
n∑

k=1

(Zkf)2. (5.5)

The corresponding quadratic forms are given by

Γ(f, g) =
m∑

i=1

(Xif)(Xig), Γ(f, g) =
n∑

k=1

(
Zkf

)(
Zkg

)
,

respectively. Finally, we define Γ̂(f, g) := Γ(f, g)−Γ(f, g). The operator Γ2 is defined

as

Γ2(f, g) =
1

2
(LΓ(f, g)− Γ(f,Lg)− Γ(g,Lf)).



91

We define similarly

Γ2(f, g) =
1

2
(LΓ(f, g)− Γ(f,Lg)− Γ(g,Lf))

and

Γ̂2(f, g) =
1

2
(LΓ̂(f, g)− Γ̂(f,Lg)− Γ̂(g,Lf))

and set Γ2(f) = Γ2(f, f) (and similarly for Γ2 and Γ̂2). Our definition of Γ is conve-

nient for the analysis below, but it is not the standard one, i.e. it doesn’t denote the

carré du champ of L, defined as ΓL(f) := 1
2
Lf 2 − fLf. However, we have

Γ(f) ≤ ΓL(f) =
m∑

i,j=1

(δij +G∗ij)(Xif)(Xjf) ≤

(

1 + max
i

m∑

j=1

G∗ij

)

Γ(f),

where the estimate on the left follows from the assumption that G∗ ≥ 0, while the one

on the right by Young’s inequality. Therefore, Γ(f) can be thought of as the carré du

champ of L, up to a constant.

For i, j = 1, . . . ,m, we set

[Xi, Xj ] =: Yij . (5.6)

For example, in the Heisenberg group we have X1 = (1, 0,−y/2)T andX2 = (0, 1, x/2)T

on (x, y, z) ∈ R3. In this case Z1 = X1, Z2 = X2 and Z3 = Y12 = [X1, X2] = (0, 0, 1)T .

We conclude this introductory section with a few remarks about the derivatives

of the Folland-Kaplan gauge N . Recall that this is defined as

N(w) =
(
|x|4 + 16|z|2

)1/4
. (5.7)

A computation shows [DGN03] that the sub-gradient and the sub-Laplacian of N

read
m∑

i=1

|XiN |
2(w) =

|x|2

N2(w)
(5.8)

and
m∑

i=1

X2
iN(w) = 3

|x|2

N3(w)
, (5.9)
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respectively, where w = (x, z) and | · | is Euclidean norm on Rm. In particular,

Γ(N) ≤ 1, since |x| ≤ N . Moreover, recalling that for j > m, Zj = ∂j , for all

i = 1, . . . , r we have

Zm+iN =
8zi
N3

,

and therefore
n∑

i=1

|ZiN |
2(w) =

|x|2

N2(w)
+

64|z|2

N6(w)
≤ 1 +

4

N2(w)
,

using that |x| ≤ N(w) and 16|z|2 ≤ N4(w). Let (HessN)∗ denote the symmetrised

Hessian of N , i.e. the matrix with elements

(HessN)∗ij =
1

2
(XiXjN +XjXiN),

for i, j = 1, . . . ,m. It was shown in [GT10] that

(HessN)∗ij =
1

N7

(

N4|x|2δij + 2N4

(

xixj +
r∑

s=1

BisBjs

)

− 3 〈A, ei〉 〈A, ej〉

)

,

where, for s = 1, . . . , r,

Bis = Bis(w) =
〈
Jem+sx, ei

〉

and A = |x|2x + 4Jzx. Using the identities |Jzx| = |x||z| and 〈Jzx, x〉 = 0 (see

Proposition 2.7), we see that Bis ≤ |Jem+sx| = |x| and |A|2 = |x|4|x|2 + 16|x|2|z|2 =

N4|x|2. Using Young’s inequality, we thus arrive at the estimate

∣
∣(HessN)∗ij

∣
∣ ≤

1

N7

(

N4|x|2δij + 2N4

(
x2
i + x2

j

2
+ r|x|2

)

+ 3|A|2
)

≤
1

N7

(
N4|x|2δij + 2(1 + r)N4|x|2 + 3N4|x|2

)

≤
δij + 2r + 5

N
,

where we used once again that |x| ≤ N . Summing over i, j, we obtain

m∑

i,j=1

∣
∣(HessN)∗ij

∣
∣ ≤

m+ 2rm2 + 5m2

N
.
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Let us also observe that

DN =
m∑

i=1

xi∂iN + 2
r∑

i=1

zi∂m+iN = N−3
(
|x|4 + 16|z|2

)
= N.

Combining the above estimates and using the Cauchy-Schwarz inequality, we conclude

that

LN =
m∑

i,j=1

(δij +Gij)(XiXjN) +
n∑

i=1

αiZiN − βDN

≤ max
i,j

(δij +Gij)
m∑

i,j=1

∣
∣(HessN)∗ij

∣
∣+ |α|

√√
√
√

n∑

i=1

|ZiN |2 − βDN

≤
c1

N
+ |α|

√

1 +
4

N2
− βN,

where c1 = maxi,j(δij +Gij)(m+ 2rm2 + 5m2) and |α|2 =
∑n

i=1 α
2
i . Let

W (w) = 1 + N(w)2. (5.10)

Then W ≥ 1 is a smooth function. Since L is a diffusion generator, we have

LW = 2NLN + 2Γ(N) ≤ 2N

(
c1

N
+ |α|

√

1 +
4

N2
− βN

)

+ 2

= −2βN 2 + 2|α|
√
N2 + 4 + 2(c1 + 1).

Recall that, if d denotes the Carnot-Carathéodory distance and dN (w, y) = N(y−1w)

is the distance induced by N , then there is a universal constant R such that

1

R
d(w, y) ≤ dN (w, y) ≤ Rd(w, y),

for all w, y ∈ Rn. There exists therefore a number r̃ > 0 such that if N(w) ≥ r̃, then

LW (w) ≤ −βW (w).
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Setting r = r̃/R, we conclude that W satisfies the Lyapunov condition

LW (w) ≤ −βW (w) + BχBr(w), (5.11)

for some constant B > 0, where χBr is the indicator function of the ball of radius r,

Br = {d(x) < r}. As we already mentioned in Section 3.1, if there is a reversible in-

variant measure µ for this generator, such an estimate can be used to prove functional

inequalities for µ.

5.1 Gradient Bounds

We start by proving a gradient bound for the semigroup Pt = etL and the gradient Γ.

We then use this bound to prove that the semigroup converges weakly to a probability

measure on Rn as t→∞.

Theorem 5.1. For any q > 1 there exists a constant κq ∈ R such that

Γ(Ptf)
q
2 ≤ e−κqtPt

(
Γ(f)

q
2

)
, (5.12)

for all smooth f and all t > 0. Moreover, there exists βq > 0 such that if β > βq,

then κq > 0.

Let us begin with a preliminary calculation.

Lemma 5.2. There exists a constant c > 0 such that for all λ > 0 and all smooth

nonnegative functions f ,

Γ2(f) + λΓ̂2(f) ≥
1

2

m∑

i,k=1

(XiXkf)2 +
λ

2

m∑

i=1

n∑

k=m+1

(XiZkf)2 +
(
β −

c

λ

)
Γ(f) +

1

16
Γ̂(f).

(5.13)

Therefore, there exist constants A,B > 0 such that

Γ2(f) ≥ A
m∑

i=1

n∑

k=1

(XiZkf)2 + BΓ(f). (5.14)
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Proof. We first estimate Γ2(f) = 1
2
LΓ(f)− Γ(f,Lf). On the one hand,

LΓ(f) =
m∑

i,j=1

n∑

k=1

(δij +Gij)XiXj(Xkf)2 +
n∑

i=1

m∑

k=1

αiZi(Xkf)2 − β
m∑

k=1

D(Xkf)2

= 2
m∑

i,j,k=1

(δij +Gij)(XiXkf)(XjXkf) + 2
m∑

k=1

(Xkf)(LXkf),

while on the other hand

Γ(f,Lf) =
m∑

k=1

(Xkf)(XkLf).

Therefore,

Γ2(f) =
m∑

i,j,k=1

(δij +Gij)(XiXkf)(XjXkf) +
m∑

k=1

(Xkf)([L, Xk]f)

=
m∑

i,j,k=1

(δij +G∗ij)(XiXkf)(XjXkf) +
m∑

k=1

(Xkf)([L, Xk]f)

≥
m∑

i,k=1

(XiXkf)2 +
m∑

k=1

(Xkf)([L, Xk]f),

since G∗ ≥ 0. Next, we estimate the commutator [L, Xk]. For every k = 1, . . . ,m, we
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have

[L, Xk] =
m∑

i,j=1

(δij +Gij)[XiXj , Xk] +
n∑

i=1

αi[Zi, Xk]− β[D,Xk]

=
m∑

i,j=1

(δij +Gij)(Xi[Xj , Xk] + [Xi, Xk]Xj) +
m∑

i=1

αi[Xi, Xk] + βXk

=
m∑

i,j=1

(δij +Gij)XiY
jk +

m∑

i,j=1

(δij +Gij)Y
ikXj +

m∑

i=1

αiY
ik + βXk

= 2
m∑

i,j=1

(δij +G∗ij)(XiY
jk + Y jkXi) +

m∑

i=1

αiY
ik + βXk

= 4
m∑

i,j=1

(δij +G∗ij)XiY
jk +

m∑

i=1

αiY
ik + βXk,

where we used that −β[D,Xk] = βXk and the fact that Xi and Y jk commute for all

i, j, k, since Y jk is in the centre of the Lie algebra. Summing over k ∈ {1, . . . ,m} and

using Young’s inequality, we obtain

m∑

k=1

(Xkf)([L, Xk]f) =4
m∑

i,j,k=1

(δij +G∗ij)(Xkf)(XiY
jkf)

+
m∑

i,k=1

αi(Xkf)(Y ikf) + β
m∑

k=1

(Xkf)2

≥− 4
m∑

i,j,k=1

(
(δij +G∗ij)

2(Xkf)2

2ε
+ ε

(XiY
jkf)2

2

)

−
m∑

i,k=1

(
α2
i (Xkf)2

2ε
+ ε

(Y ikf)2

2

)

+ β
m∑

k=1

(Xkf)2

≥−
c1

ε
Γ(f)− 2ε

m∑

i,j,k=1

(XiY
jkf)2 −

ε

2

m∑

i,k=1

(Y ikf)2 + βΓ(f),

(5.15)



5.1. Gradient Bounds 97

for all ε > 0 with

c1 = 2
m∑

i,j=1

(δij +G∗ij)
2 +

1

2

m∑

i=1

α2
i .

Now, for every j, k = 1, . . . ,m there exist constants σjkr ∈ R such that

Y jk =
n∑

r=m+1

σjkr Zr,

since the vector field Y ik is obtained as a commutator of fields from the first layer of the

Lie algebra and hence belongs to the second layer, which is spanned by Zm+1, . . . , Zn.

Therefore,

m∑

i,k,j=1

(XiY
jkf)2 ≤

m∑

i,k,j=1

n∑

r=m+1

(
σjkr
)2

(XiZrf)2 ≤ c2

m∑

i=1

n∑

r=m+1

(XiZrf)2

and
m∑

i,k=1

(Y ikf)2 ≤
m∑

i,k=1

n∑

r=m+1

(
σikr
)2

(Zrf)2 ≤ c2

n∑

r=m+1

(Zrf)2,

with

c2 = max
r=m+1,...n

m∑

k,j=1

(
σjkr
)2
.

Inserting these estimates in (5.15) we arrive at

m∑

k=1

(Xkf)([L, Xk]f) ≥−
c1

ε
Γ(f)− 2εc2

m∑

i,j,k=1

n∑

r=m+1

(XiZrf)2 − c2
ε

2
Γ̂(f) + βΓ(f),

for any ε > 0. We conclude that

Γ2(f) ≥
m∑

i,k=1

(XiXkf)2 +
(
β −

c1

ε

)
Γ(f)− 2εc2

m∑

i=1

n∑

k=m+1

(XiZkf)2 −
c2

2
εΓ̂(f).

(5.16)
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A similar computation shows that

Γ̂2(f) ≥
m∑

i=1

n∑

k=m+1

(XiZkf)2 +
n∑

k=m+1

(Zkf)([L, Zk]f).

We note that, for k ∈ {m+ 1, . . . , n},

[L, Zk] = −β[D,Zk] = 2βZk,

since Zk commutes with Zj for all j = 1, . . . , n. Therefore,

Γ̂2(f) ≥
m∑

i=1

n∑

k=m+1

(XiZkf)2 + 2βΓ̂(f). (5.17)

Adding up (5.16) and (5.17) we obtain that for any ε > 0 and λ > 0,

Γ2(f) + λΓ̂2(f) ≥
m∑

i,k=1

(XiXkf)2 + (λ− 2εc2)
m∑

i=1

n∑

k=m+1

(XiZkf)2

+
(
β −

c1

ε

)
Γ(f) +

(
2βλ−

c2

2
ε
)

Γ̂(f). (5.18)

Moreover, by Young’s inequality, for any γ > 0,

m∑

i,k=1

(XiXkf)2 =
1

2

m∑

i,k=1

(
(XiXkf)2 + (XkXif)2

)

=
1

2

m∑

i,k=1

(
(XiXkf +XkXif)2 − 2(XiXkf)(XkXif)

)

=
1

2

m∑

i,k=1

(
(2XiXkf + [Xk, Xi]f)2 − 2(XiXkf)(XkXif)

)

≥
1

2

m∑

i,k=1

(
(2XiXkf + Y kif)2 − 2(XiXkf)2

)

≥
m∑

i,k=1

(

(XiXkf)2 +
1

2
(Y kif)2 − γ(XiXkf)2 −

1

γ
(Y kif)2

)

.
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By choosing γ = 4, say, and rearranging we obtain

m∑

i,k=1

(XiXkf)2 ≥
1

16

m∑

i,k=1

(Y kif)2 ≥
1

8
Γ̂(f), (5.19)

where the inequality on the right follows from the facts that {Y ik}mi,k=1 ⊃ {Zr}
n
r=m+1

and that for every r ∈ {m + 1, . . . , n}, the term (Zrf)2 appears twice in the sum,

since, Zr = [Xi, Xk] = Y ik = −Y ki, for some i and k. Therefore, (5.18) implies that

for all λ, ε > 0,

Γ2(f) + λΓ̂2(f) ≥
1

2

m∑

i,k=1

(XiXkf)2 + (λ− 2εc2)
m∑

i=1

n∑

k=m+1

(XiZkf)2

+
(
β −

c1

ε

)
Γ(f) +

(
1

16
+ 2βλ−

c2

2
ε

)

Γ̂(f).

Finally, we choose ε = λmin(1/4, 4β)/c2 to obtain

Γ2(f) + λΓ̂2(f) ≥
1

2

m∑

i,k=1

(XiXkf)2 +
λ

2

m∑

i=1

n∑

k=m+1

(XiZkf)2 +
(
β −

c

λ

)
Γ(f) +

1

16
Γ̂(f),

with c = c1c2/min(1/4, 4β), which is (5.13). This in turn implies

Γ2(f) ≥
min(1, λ)

2 max(1, λ)

m∑

i=1

n∑

k=1

(XiZkf)2 +
min

(
1
16
, β − c

λ

)

max(1, λ)
Γ(f).

Finally, by choosing λ > c/β we can ensure that the coefficient in front of Γ(f) is

positive.

The first inequality in the lemma is close to the generalised curvature dimension

inequality of [BBBC08, BG11]. We are now in position to prove the main theorem.

Proof of Theorem 5.1. We follow the classical strategy, as outlined for example in

[ABC+00]. We aim to show that

∂sPt−sΓ(fs)
q
2 ≤ −κPt−sΓ(f)

q
2 ,
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with fs = Psf , from which the result will follow by integration. To this end, we note

that, since by the diffusion property L satisfies (2.12),

∂sPt−sΓ(fs)
q
2 = Pt−s

(
−L
(

Γ(fs)
q
2

)
+ qΓ(fs)

q
2
−1Γ(fs,Lfs)

)

= Pt−s

(

−
q

2

LΓ(fs)

Γ(fs)
1− q

2

+
q

2

(
1−

q

2

) Γ(Γ(fs))

Γ(fs)
2− q

2

+ q
Γ(fs,Lfs)

Γ(fs)
1− q

2

)

= Pt−s

(

−q
Γ2(fs)

Γ(fs)
1− q

2

+
q

2

(
1−

q

2

) Γ(Γ(fs))

Γ(fs)
2− q

2

)

where we made use of the diffusion property of L. To estimate the first term, we use

(5.18) with λ = 1, to obtain

Γ2(fs) ≥
n∑

k=1

Γ(Zkfs)− 2εc2

n∑

k=m+1

Γ(Zkfs) +
(
β −

c1

ε

)
Γ(fs) +

(
2β − ε

c2

2

)
Γ̂(f).

Therefore,

−Γ2(fs) ≤ −
n∑

k=1

Γ(Zkfs) + 2εc2

n∑

k=m+1

Γ(Zkfs)− CεΓ(f),

with

Cε = min
(
β −

c1

ε
, 2β − ε

c2

2

)
.

Moreover, by the Cauchy-Schwarz inequality we have

Γ(Γ(fs)) =
m∑

i=1

(

Xi

(
n∑

k=1

(Zkfs)
2

))2

= 4
m∑

i=1

(
n∑

k=1

(Zkfs)(XiZkfs)

)2

≤ 4

(
n∑

k=1

(Zkfs)
2

)(
m∑

i=1

n∑

k=1

(XiZkfs)
2

)

= 4Γ(fs)

(
m∑

i=1

n∑

k=1

(XiZkfs)
2

)

.



5.1. Gradient Bounds 101

Combining the above, we obtain

∂sPt−sΓ(fs)
q
2

≤ Pt−s

(

qΓ(fs)
q
2
−1

(

(1− q)
n∑

k=1

Γ(Zkfs) + 2εc2

n∑

k=m+1

Γ(Zkfs)− CεΓ(f)

))

≤ Pt−s

(

qΓ(fs)
q
2
−1

(

(1− q + 2εc2)
n∑

k=1

Γ(Zkfs)− CεΓ(f)

))

.

Since q > 1, we can choose ε = εq small enough so that

1− q + 2c2εq ≤ 0, (5.20)

which implies

∂sPt−sΓ(fs)
q
2 ≤ −κqPt−sΓ(fs)

q
2 ,

with

κq = qCεq = qmin

(

β −
c1

εq
, 2β − εq

c2

2

)

.

Therefore, if β > βq := max(c1/εq, c2εq/4), we have κq > 0. In the particular case

where q = 2, we can choose ε = ε2 := 1/2c2 so that (5.20) is satisfied, and therefore

κ2 is positive as soon as β > max(2c1c2, 1/8).

We conclude this section by showing that one can extract a subsequence (Ptk)
∞
k=1

which converges weakly to a probability measure ν on Rn, i.e. that for all bounded

Lipschitz f

Ptkf →
∫
fdν

as k → ∞. We first use a compactness argument (c.f. [DP06]) to prove that the

function t 7→ PtW is bounded, where W = 1 + N2. Recall that by (5.11) there exist

constants B, r > 0 such that

LW ≤ −βW + BχBr .
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Differentiating PtW, we obtain

∂tPtW = PtLW ≤ −βPtW + B,

and integrating this inequality we arrive at

PtW ≤ W e−βt +
B

β
(1− e−βt).

This shows that PtW is bounded as a function of t, for all t > 0. With the help of

this observation, we are in position to prove the following result.

Theorem 5.3. Suppose that β > β2, where β2 is as in Theorem 5.12. Then, there

exists a sequence {tk}∞k=1 ⊂ R and a probability measure ν on Rn such that for all

bounded and Lipschitz f and all x ∈ Rn

Ptkf(x)→
∫
fdν

as k →∞. Moreover, ν is invariant for Pt, i.e. for all t ≥ 0 and f as above,

∫
Ptfdν =

∫
fdν.

Proof. Let w ∈ Rn. To keep track of the dependence on w, we write Ptf(w) = Pw
t f .

For ` > 0, the sets Υ` = {W ≤ `} are compact. Markov’s inequality together with

the fact that PtW is bounded in time, imply

Pw
t (Υ`) ≥ 1−

K

`
,

for some constant K > 0 independent of t. Therefore (Pw
t )t>0 represents a tight family

of measures on Rn and we deduce from Prokhorov’s theorem (see e.g. [DP06]) that

there exists a weakly convergent subsequence Pw
tk
→ limk→∞ P

w
tk

=: νw. Furthermore,

the family (µs)s>0 defined by

µs(E) =
1

s

∫ s

0

Pw
t (E)dt
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for Borel sets E, is tight, since

µs(Υ`) ≥ 1−
K

`
,

so by the Krylov-Bogoliubov theorem (see e.g. [DP06]) we conclude that the measure

ν is invariant under Pw
t . To see that νw does in fact not depend on w, let y ∈ Rn,

T = d(w, y), and suppose γs : [0, T ]→ Rn is a path joining w to y such that |γ̇| = 1.

We will show that if f is a bounded and smooth function with compact support then

P y
tk
f → νwf =: νf.

Let ε > 0. By the triangle inequality,

|P y
tk
f − νf | ≤ |Pw

tk
f − νf |+ |Pw

tk
f − P y

tk
f |.

There exists k0 such that for k > k0 we have

|Pw
tk
f − νf | ≤

ε

2
.

Moreover, since Γ(Ptkf) ≤ Γ(Ptkf), we have

|Ptkf(w)− Ptkf(y)| ≤
∫ T

0

∣
∣
∣
∣

√
Γ(Ptkf)(γs) · γ̇s

∣
∣
∣
∣ ds

≤ T e−κ2tk/2
√
‖Γ(f)‖∞,

with a constant κ2 > 0, by using the gradient bound (5.12) with q = 2 together with

the fact that Pt is contractive. Therefore, there exists k1 such that for k > k1,

tk ≥ −
2

κ2

log
ε

2T
√
‖Γ(f)‖∞

and thus

|Ptkf(w)− Ptkf(y)| ≤
ε

2
.
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Combining the above and choosing we conclude that for all k > max(k0, k1),

|P y
tk
f − νf | ≤ ε.

Since ε was arbitrary, the proof is complete.

5.2 Li-Yau estimates

In this section, we prove a Li-Yau estimate for the operator

L = ∆−
1

2
D =

m∑

i=1

X2
i −

1

2
D.

This is a special case of the operator considered in the previous section (defined in

(5.3)), when Gij = 0, αi = 0 for all i, j and β = 1/2. The main idea behind the

strategy that we use comes from [BL06], where such estimates were proved using

semigroup tools in the elliptic setting, as well as [BBBQ09], where these techniques

were extended to the sub-Riemannian setting, for L being the sub-Laplacian of the

group. Recently, Li-Yau estimates for the sub-Laplacian were proved for a large class

of nilpotent groups [BG11].

Let f be a smooth function and suppose that the functions ζi are the coefficients

in the representation

Df(w) =
n∑

i=1

ζi(w)Zif(w). (5.21)

From (5.2) we see that D is homogeneous of degree 0, i.e. D(f(δλ(w))) = (Df)(δλ(w)),

and therefore its components ζi must be homogeneous of degree 1 for 1 ≤ i ≤ m and

homogeneous of degree 2 otherwise, i.e

ζi(δλ(w)) =






λζi(w), if i ∈ {1, . . . ,m}

λ2ζi(w), if i ∈ {m+ 1, . . . , n}.

It follows by Proposition 1.3.4 of [BLU07] that the ζi are either zero or polynomials
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of the form

ζi(w) =






∑
l(α)=1 cαw

α, if i ∈ {1, . . . ,m}
∑

l(α)=2 cαw
α, if i ∈ {m+ 1, . . . , n},

for some constants cα, where the length of a multi-index α ∈ Rn is defined as

l(α) =
m∑

i=1

αi + 2
n∑

i=m+1

αi.

Therefore, for some constants C and p, we have the bound

|ζ|2 :=
∑

i

ζ2
i ≤ CW p,

where we recall that W = 1 + N2. Hence

Pt|ζ|
2 ≤ CPtW

p ≤ Cζ , (5.22)

for some constant Cζ and all t > 0, where the inequality on the right follows by consid-

erations similar to the ones in the previous section, noting that Γ(W ) = 4N2Γ(N) ≤

4W and that, by the diffusion property of L,

L(W p) = pW p−1LW + p(p− 1)W p−2Γ(W ) ≤ −AW p + BW p−1,

for some constants A,B > 0.

In order to justify why the choice of the constants Gij = αi = 0 and β = 1/2 is of

particular interest, let us consider the heat semigroup St = et∆. Let t > 0 and f be

a smooth function. For s ∈ [0, t] consider the function F (s) = SsDSt−sf. We have

F ′(s) = Ss(∆DSt−sf −D∆St−sf) = Ss[∆, D]St−sf.
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Since [∆, D] = 2∆ and ∆ commutes with St, we conclude that

F ′(s) = 2∆Stf.

Integrating this over s ∈ [0, t], we arrive at the commutation relation

StDf = DStf + 2t∆Stf. (5.23)

Since ζi(0) = 0, evaluating the above at 0 we obtain

S1

(

∆−
1

2
D

)

f(0) = 0.

In other words, if h is the density of S1 at 0 and ν(dw) = h(w)dw (as in Chapter 4) the

measure ν is invariant for the operator L = ∆ −D/2. This observation was already

made in [BBBC08] in the Heisenberg group based on the commutation relation (5.23),

which remains true in our setup. For a smooth function f , the carré du champ of L

is given by

ΓL(f) =
m∑

i=1

(Xif)2 = Γ(f).

Let us also note that Γ̂(f,Γ(f)) = Γ(f, Γ̂(f)). Indeed, we compute

Γ(f, Γ̂(f))− Γ̂(f,Γ(f)) =
m∑

i=1

n∑

j=m+1

((Xif)(Xi(Zjf)2)− (Zjf)(Zj(Xif)2))

= 2
m∑

i=1

n∑

j=m+1

(Xif)(Zjf)[Xi, Zj ]f = 0,

since Zj belongs to the centre of the Lie algebra.

Our goal is to prove the following estimate.

Proposition 5.4. For all nonnegative smooth f and all x ∈ Rn, t > 0,

Γ(Ptf)

Ptf
+

t

24

Γ̂(Ptf)

Ptf
≤ c1

et − t− 1

t2
LPtf + c2

et − t− 1

t2
DPtf + c3

Ptf

t
, (5.24)
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where c1, c2, c3 > 0 are absolute constants.

For the proof we will need the following commutation relation of Pt and D.

Lemma 5.5. For all smooth functions f , for all x ∈ Rn and all t > 0,

PtDf = etDPtf + 2(et − 1)LPtf. (5.25)

Proof. As before, we define F (s) = PsDPt−sf and we compute

F ′(s) = Ps[L, D]Pt−sf = Ps(2L + D)Pt−sf = 2LPtf + F (s).

Integrating this inequality we obtain the result.

We are now ready to prove (5.24).

Proof of Proposition 5.4. We follow [BBBQ09]. Let Φ1(s) = Ps(usΓ(log us)) and
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Φ2(s) = Ps(usΓ̂(log us)), with us = Pt−sf. We start by computing Φ′1(s). We have

Φ′1(s) = Ps

(

L

(

u
m∑

k=1

(Xk log us)
2

)

− (Lus)
m∑

k=1

(Xk log us)
2 + us∂s

m∑

k=1

(Xk log us)
2

)

= Ps

(

(Lus)
m∑

k=1

(Xk log us)
2 + 2

m∑

i=1

(Xius)

(

Xi

m∑

k=1

(Xk log us)
2

)

+ usL
m∑

k=1

(Xk log us)
2 − (Lus)

m∑

k=1

(Xk log us)
2

− 2us

m∑

k=1

(Xk log us)Xk
Lus
us

)

= Ps

(

usLΓ(log us) + 2us

m∑

i=1

(Xi log us)
(
XiΓ(log us)

)

− 2us

m∑

k=1

(Xk log us)(XkL log us)− 2us

m∑

k=1

(Xk log us)(XkΓ(log us))

)

= Ps

(

usLΓ(log us) + 2usΓ(log us,Γ(log us))

− 2usΓ(log us,L log us)− 2usΓ(log us,Γ(log us))

)

= 2Ps
(
usΓ2(log us)

)
,

where we used that, for smooth functions f ,

L log f =
Lf

f
− Γ(log f).

Similarly, using that Γ̂(f,Γ(f)) = Γ(f, Γ̂(f)), one can show that

Φ′2(s) = 2Ps(usΓ̂2(log us)).

Therefore, by (5.13), we have

Φ′1(s) + λΦ′2(s) ≥ Ps

(

us

m∑

i=1

(X2
i log us)

2

)

+

(

1−
2c

λ

)

Φ1(s) +
1

8
Φ2(s),
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for all λ > 0. The first term can be further estimated using the inequality a2 ≥

2γa− γ2, which is valid for all a, γ ∈ R :

Ps

(

us

m∑

i=1

(X2
i log us)

2

)

≥ Ps

(

2γus

m∑

i=1

X2
i log us − γ

2us

)

= Ps
(
2γusL log us + γusD log us − γ

2us
)

= Ps
(
2γLus − 2γusΓ(log us) + γDus − γ

2us
)
,

where we used once again that usL log us = Lus − usΓ(log us). The commutation

relation (5.25) at time s applied to the function us becomes

PsDus = esDPtf + 2(es − 1)LPtf.

Therefore,

Ps

(

us

m∑

i=1

(X2
i log us)

2

)

≥ 2γesLPtf − 2γΦ1(s) + γesDPtf − γ
2Ptf.

We thus arrive at the estimate

Φ′1(s) ≥ 2γesLPtf + γesDPtf − γ
2Ptf −

(
2c

λ
+ 2γ

)

Φ1(s) +
1

8
Φ2(s)− λΦ′2(s).

Therefore, if b : [0, t] → [0,∞) is a positive twice differentiable decreasing function,

we have

(−8b′Φ1 + bΦ2)′ = −8b′Φ′1 − 8b′′Φ1 + b′Φ2 + bΦ′2

≥ −8b′(2γesLPtf + γesDPtf − γ
2Ptf) + 8

(

b′
(

2c

λ
+ 2γ

)

− b′′
)

Φ1

+ (−b′ + b′) Φ2 + (8b′λ+ b)Φ′2

Choosing

λ =
−b
8b′
≥ 0, γ =

b′′

2b′
+ 8c

b′

b
,
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we finally arrive at

(−8b′Φ1 + bΦ2)′ ≥ −16b′γesLPtf − 8b′γesDPtf + 8b′γ2Ptf

= −16b′
(
b′′

2b′
+ 8c

b′

b

)

esLPtf − 8b′
(
b′′

2b′
+ 8c

b′

b

)

esDPtf + 8b′
(
b′′

2b′
+ 8c

b′

b

)2

Ptf.

In the particular case where b(s) = (t− s)3, this reads

(
24(t− s)2Φ1(s) + (t− s)3Φ2(s)

)′
≥ −k1(t− s)esLPtf − k2(t− s)esDPtf − k3Ptf,

with k1 = 48(2 + 48c), k2 = 48(1 + 24c) and k3 = −24(2 + 48c)2. Integrating this

inequality over s ∈ [0, t], we obtain

−24t2Φ1(0)− t3Φ2(0) ≥ −k1(et − t− 1)LPtf − k2(et − t− 1)DPtf − k3tPtf.

Rearranging, we conclude that

Γ(Ptf)

Ptf
+

t

24

Γ̂(Ptf)

Ptf
≤
k1

24

et − t− 1

t2
LPtf +

k2

24

et − t− 1

t2
DPtf +

k3

24

Ptf

t
,

which is what we wanted to show.

As a concluding remark, we note that DPtf can be controlled using Young’s

inequality as follows

|DPtf | =

∣
∣
∣
∣
∣

n∑

j=1

ζjZjPtf

∣
∣
∣
∣
∣

≤
1

2δ

n∑

j=1

ζj(x)2Ptf +
δ

2

Γ(Ptf)

Ptf
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for all δ > 0. Therefore, (5.24) implies that for all δ, t > 0,

(

1− c2
et − t− 1

t2
δ

2

)
Γ(Ptf)

Ptf
+

(
t

24
− c2

et − t− 1

t2
δ

2

)
Γ̂(Ptf)

Ptf

≤ c1
et − t− 1

t2
LPtf +

(
c2|ζ|2

2δ

et − t− 1

t2
+
c3

t

)

Ptf.

If t < 24, we may choose

δ =
1

c2

t

24

t2

et − t− 1

so that the left-hand-side is nonnegative and the above inequality yields

0 ≤ c1
et − t− 1

t2
LPtf +

(
24c2

2|ζ|
2

2t

(
et − t− 1

t2

)2

+
c3

t

)

Ptf

If t > 24, we can choose

δ =
1

c2

t2

et − t− 1

to obtain

0 ≤ c1
et − t− 1

t2
LPtf +

(
c2

2|ζ|
2

2

(
et − t− 1

t2

)2

+
c3

t

)

Ptf.

Combining the above, we arrive at

0 ≤ c1
et − t− 1

t2
LPtf +

(
c2

2|ζ|
2

2

(

1 +
24

t

)(
et − t− 1

t2

)2

+
c3

t

)

Ptf,

for t > 0. Since et− t− 1 = O(t2) as t→ 0, for any T > 0 there exists a constant CT

such that for all t ≤ T ,

1 ≤
et − t− 1

t2
≤ CT .

We conclude that for some K > 0, for all T > 0 and all t ≤ T

(LPtf)− ≤

(

K +
C̃T
t

)

Ptf ≤
KT + C̃T

t
Ptf,
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where C̃T is a constant depending on T and as usual, we denote the positive and

negative parts of a function f by f+ = max(f, 0) and f− = −min(f, 0). Following

[Led94], since 0 =
∫

LPtfdν =
∫

(LPtf)+dν−
∫

(LPtf)−dν and
∫
Ptfdν =

∫
fdν, this

implies ∫
|LPtf |dν = 2

∫
(LPtf)−dν ≤ 2

KT + C̃T
t

∫
fdν.

If, in addition, we know that Pt is symmetric in L2(ν), such an estimate can be used

to derive isoperimetric results for ν [Led94].
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with applications to H-type groups, J. Funct. Anal. 260 (2011), no. 1,

76–116. MR 2733571

[IP09] J. Inglis and I. Papageorgiou, Logarithmic Sobolev inequalities for infi-
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type generators in infinite dimensions, J. Funct. Anal. 247 (2007), no. 2,

438–476. MR 2323442 (2008e:35025)

[Mel04] T. Melcher, Hypoelliptic heat kernel inequalities on lie groups, PhD the-

sis, University of California, San Diego, 2004.
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