908 research outputs found

    Elliptic membership functions and the modeling uncertainty in type-2 fuzzy logic systems as applied to time series prediction

    Get PDF
    In this paper, our aim is to compare and contrast various ways of modeling uncertainty by using different type-2 fuzzy membership functions available in literature. In particular we focus on a novel type-2 fuzzy membership function–”Elliptic membership function”. After briefly explaining the motivation behind the suggestion of the elliptic membership function, we analyse the uncertainty distribution along its support, and we compare its uncertainty modeling capability with the existing membership functions. We also show how the elliptic membership functions perform in fuzzy arithmetic. In addition to its extra advantages over the existing type-2 fuzzy membership functions such as having decoupled parameters for its support and width, this novel membership function has some similar features to the Gaussian and triangular membership functions in addition and multiplication operations. Finally, we have tested the prediction capability of elliptic membership functions using interval type-2 fuzzy logic systems on US Dollar/Euro exchange rate prediction problem. Throughout the simulation studies, an extreme learning machine is used to train the interval type-2 fuzzy logic system. The prediction results show that, in addition to their various advantages mentioned above, elliptic membership functions have comparable prediction results when compared to Gaussian and triangular membership functions

    Interval type-2 intuitionistic fuzzy logic system for time series and identification problems - a comparative study

    Get PDF
    This paper proposes a sliding mode control-based learning of interval type-2 intuitionistic fuzzy logic system for time series and identification problems. Until now, derivative-based algorithms such as gradient descent back propagation, extended Kalman filter, decoupled extended Kalman filter and hybrid method of decoupled extended Kalman filter and gradient descent methods have been utilized for the optimization of the parameters of interval type-2 intuitionistic fuzzy logic systems. The proposed model is based on a Takagi-Sugeno-Kang inference system. The evaluations of the model are conducted using both real world and artificially generated datasets. Analysis of results reveals that the proposed interval type-2 intuitionistic fuzzy logic system trained with sliding mode control learning algorithm (derivative-free) do outperforms some existing models in terms of the test root mean squared error while competing favourable with other models in the literature. Moreover, the proposed model may stand as a good choice for real time applications where running time is paramount compared to the derivative-based models

    Hybrid learning for interval type-2 intuitionistic fuzzy logic systems as applied to identification and prediction problems

    Get PDF
    This paper presents a novel application of a hybrid learning approach to the optimisation of membership and non-membership functions of a newly developed interval type-2 intuitionistic fuzzy logic system (IT2 IFLS) of a Takagi-Sugeno-Kang (TSK) fuzzy inference system with neural network learning capability. The hybrid algorithms consisting of decou- pled extended Kalman filter (DEKF) and gradient descent (GD) are used to tune the parameters of the IT2 IFLS for the first time. The DEKF is used to tune the consequent parameters in the forward pass while the GD method is used to tune the antecedents parts during the backward pass of the hybrid learning. The hybrid algorithm is described and evaluated, prediction and identification results together with the runtime are compared with similar existing studies in the literature. Performance comparison is made between the proposed hybrid learning model of IT2 IFLS, a TSK-type-1 intuitionistic fuzzy logic system (IFLS-TSK) and a TSK-type interval type-2 fuzzy logic system (IT2 FLS-TSK) on two instances of the datasets under investigation. The empirical comparison is made on the designed systems using three artificially generated datasets and three real world datasets. Analysis of results reveal that IT2 IFLS outperforms its type-1 variants, IT2 FLS and most of the existing models in the literature. Moreover, the minimal run time of the proposed hybrid learning model for IT2 IFLS also puts this model forward as a good candidate for application in real time systems

    Hybrid intelligent parameter tuning approach for COVID-19 time series modeling and prediction

    Get PDF
    A novel hybrid intelligent approach for tuning the parameters of Interval Type-2 Intuitionistic Fuzzy Logic System (IT2IFLS) is introduced for the modeling and prediction of coronavirus disease 2019 (COVID-19) time series. COVID-19 is known to be a virus caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARSCoV-2) with a huge negative impact on human, work and world economy. Globally, more than 100 million people have been infected with over two million deaths and it is not certain when the pandemic will end. Predicting the trend of the COVID-19 therefore becomes an important and challenging task. Many approaches ranging from statistical approaches to machine learning methods have been formulated and applied for the prediction of the disease. In this work, the sliding mode control learning algorithm is used to adjust the parameters of the antecedent parts of  IT2IFLS system while the gradient descent backpropagation is adopted to tune the consequent parameters in a hybrid manner. The results of the hybrid intelligent learning model are compared with results of single learning models using sliding mode control and gradient descent algorithms and found to provide good performance in terms of Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) especially in noisy environments. The type-2 hybrid model also outperforms its type-1 counterparts in the different problem instances

    Comparison Uncertainty of Different Types of Membership Functions in T2FLS: Case of International Financial Market

    Get PDF
    This article deals with the determination and comparison of different types of functions of the type-2 interval of fuzzy logic, using a case study on the international financial market. The model is demonstrated on the time series of the leading stock index DJIA of the US market. Type-2 Fuzzy Logic membership features are able to include additional uncertainty resulting from unclear, uncertain or inaccurate financial data that are selected as inputs to the model. Data on the financial situation of companies are prone to inaccuracies or incomplete information, which is why the type-2 fuzzy logic application is most suitable for this type of financial analysis. This paper is primarily focused on comparing and evaluating the performance of different types of type-2 fuzzy membership functions with integrated additional uncertainty. For this purpose, several model situations differing in shape and level or degree of uncertainty of membership functions are constructed. The results of this research show that type-2 fuzzy sets with dual membership functions is a suitable expert system for highly chaotic and unstable international stock markets and achieves higher accuracy with the integration of a certain level of uncertainty compared to type-1 fuzzy logic

    Input uncertainty sensitivity enhanced non-singleton fuzzy logic controllers for long-term navigation of quadrotor UAVs

    Get PDF
    Input uncertainty, e.g., noise on the on-board camera and inertial measurement unit, in vision-based control of unmanned aerial vehicles (UAVs) is an inevitable problem. In order to handle input uncertainties as well as further analyze the interaction between the input and the antecedent fuzzy sets (FSs) of non-singleton fuzzy logic controllers (NSFLCs), an input uncertainty sensitivity enhanced NSFLC has been developed in robot operating system (ROS) using the C++ programming language. Based on recent advances in non-singleton inference, the centroid of the intersection of the input and antecedent FSs (Cen-NSFLC) is utilized to calculate the firing strength of each rule instead of the maximum of the intersection used in traditional NSFLC (Tra-NSFLC). An 8-shaped trajectory, consisting of straight and curved lines, is used for the real-time validation of the proposed controllers for a trajectory following problem. An accurate monocular keyframe-based visual-inertial simultaneous localization and mapping (SLAM) approach is used to estimate the position of the quadrotor UAV in GPS denied unknown environments. The performance of the Cen-NSFLC is compared with a conventional proportional integral derivative (PID) controller, a singleton FLC (SFLC) and a Tra-NSFLC. All controllers are evaluated for different flight speeds, thus introducing different levels of uncertainty into the control problem. Visual-inertial SLAM-based real time quadrotor UAV flight tests demonstrate that not only does the Cen-NSFLC achieve the best control performance among the four controllers, but it also shows better control performance when compared to their singleton counterparts. Considering the bias in the use of model based controllers, e.g. PID, for the control of UAVs, this paper advocates an alternative method, namely Cen-NSFLCs, in uncertain working environments

    Electrical Daily Load Forecasting In Ramadhan Using Type-2 Fuzzy Logic In Sulselrabar System

    Get PDF
    This study discusses the daily electricity load forecasting 24 hours on 150 kV electric power systems sulselrabar. Forecasting electrical load requires the accuracy of the results with a small error. Peak load forecasting methods used to use smart methods Interval Type-1 Fuzzy Logic (IT1FL) and Interval Type-2 Fuzzy Logic (IT2FL) to predict the needs of the electrical load 1 Ramadan 2016. As input data, it was used load data from 2012 through 2016 for the same day each 1st of Ramadan each year, and as comparative data, it was used actual load data 1, 2016. For the Ramadan input variable, it was used two of the data Variation Load Difference (VLD Max) 2015 as an input variable X, VLD Max 2016 as an input variable Y. From the simulation results obtained highly accurate results where each method produces a very small error, where for methods of using IT1FL of 1.607778264% while using IT2FL by, 1.344510913%
    • …
    corecore