531 research outputs found

    Approximate computations with modular curves

    Full text link
    This article gives an introduction for mathematicians interested in numerical computations in algebraic geometry and number theory to some recent progress in algorithmic number theory, emphasising the key role of approximate computations with modular curves and their Jacobians. These approximations are done in polynomial time in the dimension and the required number of significant digits. We explain the main ideas of how the approximations are done, illustrating them with examples, and we sketch some applications in number theory

    Non-canonical extension of theta-functions and modular integrability of theta-constants

    Full text link
    This is an extended (factor 2.5) version of arXiv:math/0601371 and arXiv:0808.3486. We present new results in the theory of the classical θ\theta-functions of Jacobi: series expansions and defining ordinary differential equations (\odes). The proposed dynamical systems turn out to be Hamiltonian and define fundamental differential properties of theta-functions; they also yield an exponential quadratic extension of the canonical θ\theta-series. An integrability condition of these \odes\ explains appearance of the modular ϑ\vartheta-constants and differential properties thereof. General solutions to all the \odes\ are given. For completeness, we also solve the Weierstrassian elliptic modular inversion problem and consider its consequences. As a nontrivial application, we apply proposed techni\-que to the Hitchin case of the sixth Painlev\'e equation.Comment: Final version; 47 pages, 1 figure, LaTe

    Sigma, tau and Abelian functions of algebraic curves

    Full text link
    We compare and contrast three different methods for the construction of the differential relations satisfied by the fundamental Abelian functions associated with an algebraic curve. We realize these Abelian functions as logarithmic derivatives of the associated sigma function. In two of the methods, the use of the tau function, expressed in terms of the sigma function, is central to the construction of differential relations between the Abelian functions.Comment: 25 page

    Higher dimensional 3-adic CM construction

    Full text link
    We find equations for the higher dimensional analogue of the modular curve X_0(3) using Mumford's algebraic formalism of algebraic theta functions. As a consequence, we derive a method for the construction of genus 2 hyperelliptic curves over small degree number fields whose Jacobian has complex multiplication and good ordinary reduction at the prime 3. We prove the existence of a quasi-quadratic time algorithm for computing a canonical lift in characteristic 3 based on these equations, with a detailed description of our method in genus 1 and 2.Comment: 23 pages; major revie
    corecore