26 research outputs found

    Hyperspectral Imagery Target Detection Using Improved Anomaly Detection and Signature Matching Methods

    Get PDF
    This research extends the field of hyperspectral target detection by developing autonomous anomaly detection and signature matching methodologies that reduce false alarms relative to existing benchmark detectors, and are practical for use in an operational environment. The proposed anomaly detection methodology adapts multivariate outlier detection algorithms for use with hyperspectral datasets containing tens of thousands of non-homogeneous, high-dimensional spectral signatures. In so doing, the limitations of existing, non-robust, anomaly detectors are identified, an autonomous clustering methodology is developed to divide an image into homogeneous background materials, and competing multivariate outlier detection methods are evaluated for their ability to uncover hyperspectral anomalies. To arrive at a final detection algorithm, robust parameter design methods are employed to determine parameter settings that achieve good detection performance over a range of hyperspectral images and targets, thereby removing the burden of these decisions from the user. The final anomaly detection algorithm is tested against existing local and global anomaly detectors, and is shown to achieve superior detection accuracy when applied to a diverse set of hyperspectral images. The proposed signature matching methodology employs image-based atmospheric correction techniques in an automated process to transform a target reflectance signature library into a set of image signatures. This set of signatures is combined with an existing linear filter to form a target detector that is shown to perform as well or better relative to detectors that rely on complicated, information-intensive, atmospheric correction schemes. The performance of the proposed methodology is assessed using a range of target materials in both woodland and desert hyperspectral scenes

    Hyperspectral Clustering and Unmixing of Satellite Imagery for the Study of Complex Society State Formation

    Get PDF
    This project is an application of remote sensing techniques to the field of archaeology. Clustering and unmixing algorithms are applied to hyperspectral Hyperion imagery over Oaxaca, Mexico. Oaxaca is the birthplace of the Zapotec civilization, the earliest state-level society in Mesoamerica. A passionate debate is ongoing over whether the Zapotecs\u27 evolution was environmentally deterministic or socioeconomic. Previous archaeological remote sensing has focused on the difficult tasks of feature detection using low spatial resolution imagery or visual inspection of spectral data. This project attempts to learn about a civilization on the macro level, using unsupervised land classification techniques. Overlapping 158 band Hyperion data are tasked for approximately 30,000 km2, to be taken over several years. K-means and ISODATA are implemented for clustering. MaxD is used to find endmembers for stepwise spectral unmixing. Case studies are performed that provide insights into the best use of various algorithms. To produce results with spatial context, a method is devised to tile long hyperspectral flight lines, process them, then merge the tiles back into a single coherent image. Google Earth is utilized to effectively share the produced classification and abundance maps. All the processes are automated to efficiently handle the large amount of data. In summary, this project focuses on spectral over spatial exploitation for a land survey study, using open source tools to facilitate results. Classification and abundance maps are generated highlighting basic material spatial patterns (e.g., soil, vegetation and water). Additional remote sensing techniques that are potentially useful to archaeologists are briefly described for use in future work

    Applied Mathematics and Computational Physics

    Get PDF
    As faster and more efficient numerical algorithms become available, the understanding of the physics and the mathematical foundation behind these new methods will play an increasingly important role. This Special Issue provides a platform for researchers from both academia and industry to present their novel computational methods that have engineering and physics applications

    Reconstruction, Classification, and Segmentation for Computational Microscopy

    Full text link
    This thesis treats two fundamental problems in computational microscopy: image reconstruction for magnetic resonance force microscopy (MRFM) and image classification for electron backscatter diffraction (EBSD). In MRFM, as in many inverse problems, the true point spread function (PSF) that blurs the image may be only partially known. The image quality may suffer from this possible mismatch when standard image reconstruction techniques are applied. To deal with the mismatch, we develop novel Bayesian sparse reconstruction methods that account for possible errors in the PSF of the microscope and for the inherent sparsity of MRFM images. Two methods are proposed: a stochastic method and a variational method. They both jointly estimate the unknown PSF and unknown image. Our proposed framework for reconstruction has the flexibility to incorporate sparsity inducing priors, thus addressing ill-posedness of this non-convex problem, Markov-Random field priors, and can be extended to other image models. To obtain scalable and tractable solutions, a dimensionality reduction technique is applied to the highly nonlinear PSF space. The experiments clearly demonstrate that the proposed methods have superior performance compared to previous methods. In EBSD we develop novel and robust dictionary-based methods for segmentation and classification of grain and sub-grain structures in polycrystalline materials. Our work is the first in EBSD analysis to use a physics-based forward model, called the dictionary, to use full diffraction patterns, and that efficiently classifies patterns into grains, boundaries, and anomalies. In particular, unlike previous methods, our method incorporates anomaly detection directly into the segmentation process. The proposed approach also permits super-resolution of grain mantle and grain boundary locations. Finally, the proposed dictionary-based segmentation method performs uncertainty quantification, i.e. p-values, for the classified grain interiors and grain boundaries. We demonstrate that the dictionary-based approach is robust to instrument drift and material differences that produce small amounts of dictionary mismatch.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/102296/1/seunpark_1.pd

    Geodetic infrastructure of Serbia

    Get PDF
    Geodetic reference systems and their realization at the territory of Serbia have been created and maintained since the end of 19th century. Until mid-80s a series of reference geodetic networks were established: trigonometric networks in four orders, two levelling networks of high accuracybut also a series of gravimetric networks. In the following period of 20 years, there were not any organized worksaiming to maintenance of existing networks and creating new ones. In 1996, works started again on developing a new geodetic infrastructure in the form of realizing: a passive geodetic network, a network of permanent stations (AGROS – the active geodetic reference network of Serbia) as well as basic gravimetric networks. In this paperwork, a short review of works aiming to establish and use said networks is given but also a series of suggestions for a future development of geodetic infrastructure of Serbia

    Handbook of Mathematical Geosciences

    Get PDF
    This Open Access handbook published at the IAMG's 50th anniversary, presents a compilation of invited path-breaking research contributions by award-winning geoscientists who have been instrumental in shaping the IAMG. It contains 45 chapters that are categorized broadly into five parts (i) theory, (ii) general applications, (iii) exploration and resource estimation, (iv) reviews, and (v) reminiscences covering related topics like mathematical geosciences, mathematical morphology, geostatistics, fractals and multifractals, spatial statistics, multipoint geostatistics, compositional data analysis, informatics, geocomputation, numerical methods, and chaos theory in the geosciences
    corecore