14,573 research outputs found

    Intuitionism and the Modal Logic of Vagueness

    Get PDF
    Intuitionistic logic provides an elegant solution to the Sorites Paradox. Its acceptance has been hampered by two factors. First, the lack of an accepted semantics for languages containing vague terms has led even philosophers sympathetic to intuitionism to complain that no explanation has been given of why intuitionistic logic is the correct logic for such languages. Second, switching from classical to intuitionistic logic, while it may help with the Sorites, does not appear to offer any advantages when dealing with the so-called paradoxes of higher-order vagueness. We offer a proposal that makes strides on both issues. We argue that the intuitionist’s characteristic rejection of any third alethic value alongside true and false is best elaborated by taking the normal modal system S4M to be the sentential logic of the operator ‘it is clearly the case that’. S4M opens the way to an account of higher-order vagueness which avoids the paradoxes that have been thought to infect the notion. S4M is one of the modal counterparts of the intuitionistic sentential calculus and we use this fact to explain why IPC is the correct sentential logic to use when reasoning with vague statements. We also show that our key results go through in an intuitionistic version of S4M. Finally, we deploy our analysis to reply to Timothy Williamson’s objections to intuitionistic treatments of vagueness

    On the Correspondence between Display Postulates and Deep Inference in Nested Sequent Calculi for Tense Logics

    Full text link
    We consider two styles of proof calculi for a family of tense logics, presented in a formalism based on nested sequents. A nested sequent can be seen as a tree of traditional single-sided sequents. Our first style of calculi is what we call "shallow calculi", where inference rules are only applied at the root node in a nested sequent. Our shallow calculi are extensions of Kashima's calculus for tense logic and share an essential characteristic with display calculi, namely, the presence of structural rules called "display postulates". Shallow calculi enjoy a simple cut elimination procedure, but are unsuitable for proof search due to the presence of display postulates and other structural rules. The second style of calculi uses deep-inference, whereby inference rules can be applied at any node in a nested sequent. We show that, for a range of extensions of tense logic, the two styles of calculi are equivalent, and there is a natural proof theoretic correspondence between display postulates and deep inference. The deep inference calculi enjoy the subformula property and have no display postulates or other structural rules, making them a better framework for proof search

    Classical BI: Its Semantics and Proof Theory

    Full text link
    We present Classical BI (CBI), a new addition to the family of bunched logics which originates in O'Hearn and Pym's logic of bunched implications BI. CBI differs from existing bunched logics in that its multiplicative connectives behave classically rather than intuitionistically (including in particular a multiplicative version of classical negation). At the semantic level, CBI-formulas have the normal bunched logic reading as declarative statements about resources, but its resource models necessarily feature more structure than those for other bunched logics; principally, they satisfy the requirement that every resource has a unique dual. At the proof-theoretic level, a very natural formalism for CBI is provided by a display calculus \`a la Belnap, which can be seen as a generalisation of the bunched sequent calculus for BI. In this paper we formulate the aforementioned model theory and proof theory for CBI, and prove some fundamental results about the logic, most notably completeness of the proof theory with respect to the semantics.Comment: 42 pages, 8 figure

    The present moment in quantum cosmology: challenges to the arguments for the elimination of time

    Get PDF
    Barbour, Hawking, Misner and others have argued that time cannot play an essential role in the formulation of a quantum theory of cosmology. Here we present three challenges to their arguments, taken from works and remarks by Kauffman, Markopoulou and Newman. These can be seen to be based on two principles: that every observable in a theory of cosmology should be measurable by some observer inside the universe, and all mathematical constructions necessary to the formulation of the theory should be realizable in a finite time by a computer that fits inside the universe. We also briefly discuss how a cosmological theory could be formulated so it is in agreement with these principles.Comment: This is a slightly revised version of an essay published in Time and the Instant, Robin Durie (ed.) Manchester: Clinamen Press, 200

    Dependence in Propositional Logic: Formula-Formula Dependence and Formula Forgetting -- Application to Belief Update and Conservative Extension

    Full text link
    Dependence is an important concept for many tasks in artificial intelligence. A task can be executed more efficiently by discarding something independent from the task. In this paper, we propose two novel notions of dependence in propositional logic: formula-formula dependence and formula forgetting. The first is a relation between formulas capturing whether a formula depends on another one, while the second is an operation that returns the strongest consequence independent of a formula. We also apply these two notions in two well-known issues: belief update and conservative extension. Firstly, we define a new update operator based on formula-formula dependence. Furthermore, we reduce conservative extension to formula forgetting.Comment: We find a mistake in this version and we need a period of time to fix i

    The simplest derivation of the Lorentz transformation

    Get PDF
    Starting from the well-known light-clock thought experiment to derive time dilation and length contraction, it is shown that finding the Lorentz Transformation requires nothing more than the most trivial vector addition formula. The form which is obtaine for the L.T. allows an easy derivation of the velocity and acceleration transformations which are also given.Comment: Latex, 4 pages, 1 figure. Two first paragraphs rewritten. Error in formula corrected. Various typo corrected. Example added (Should really be V3. But V3 identical to V2 for some reason
    • 

    corecore