17,968 research outputs found

    Domain-Specific Acceleration and Auto-Parallelization of Legacy Scientific Code in FORTRAN 77 using Source-to-Source Compilation

    Get PDF
    Massively parallel accelerators such as GPGPUs, manycores and FPGAs represent a powerful and affordable tool for scientists who look to speed up simulations of complex systems. However, porting code to such devices requires a detailed understanding of heterogeneous programming tools and effective strategies for parallelization. In this paper we present a source to source compilation approach with whole-program analysis to automatically transform single-threaded FORTRAN 77 legacy code into OpenCL-accelerated programs with parallelized kernels. The main contributions of our work are: (1) whole-source refactoring to allow any subroutine in the code to be offloaded to an accelerator. (2) Minimization of the data transfer between the host and the accelerator by eliminating redundant transfers. (3) Pragmatic auto-parallelization of the code to be offloaded to the accelerator by identification of parallelizable maps and reductions. We have validated the code transformation performance of the compiler on the NIST FORTRAN 78 test suite and several real-world codes: the Large Eddy Simulator for Urban Flows, a high-resolution turbulent flow model; the shallow water component of the ocean model Gmodel; the Linear Baroclinic Model, an atmospheric climate model and Flexpart-WRF, a particle dispersion simulator. The automatic parallelization component has been tested on as 2-D Shallow Water model (2DSW) and on the Large Eddy Simulator for Urban Flows (UFLES) and produces a complete OpenCL-enabled code base. The fully OpenCL-accelerated versions of the 2DSW and the UFLES are resp. 9x and 20x faster on GPU than the original code on CPU, in both cases this is the same performance as manually ported code.Comment: 12 pages, 5 figures, submitted to "Computers and Fluids" as full paper from ParCFD conference entr

    Coordinate noun phrase disambiguation in a generative parsing model

    Get PDF
    In this paper we present methods for improving the disambiguation of noun phrase (NP) coordination within the framework of a lexicalised history-based parsing model. As well as reducing noise in the data, we look at modelling two main sources of information for disambiguation: symmetry in conjunct structure, and the dependency between conjunct lexical heads. Our changes to the baseline model result in an increase in NP coordination dependency f-score from 69.9% to 73.8%, which represents a relative reduction in f-score error of 13%

    On the Effect of Semantically Enriched Context Models on Software Modularization

    Full text link
    Many of the existing approaches for program comprehension rely on the linguistic information found in source code, such as identifier names and comments. Semantic clustering is one such technique for modularization of the system that relies on the informal semantics of the program, encoded in the vocabulary used in the source code. Treating the source code as a collection of tokens loses the semantic information embedded within the identifiers. We try to overcome this problem by introducing context models for source code identifiers to obtain a semantic kernel, which can be used for both deriving the topics that run through the system as well as their clustering. In the first model, we abstract an identifier to its type representation and build on this notion of context to construct contextual vector representation of the source code. The second notion of context is defined based on the flow of data between identifiers to represent a module as a dependency graph where the nodes correspond to identifiers and the edges represent the data dependencies between pairs of identifiers. We have applied our approach to 10 medium-sized open source Java projects, and show that by introducing contexts for identifiers, the quality of the modularization of the software systems is improved. Both of the context models give results that are superior to the plain vector representation of documents. In some cases, the authoritativeness of decompositions is improved by 67%. Furthermore, a more detailed evaluation of our approach on JEdit, an open source editor, demonstrates that inferred topics through performing topic analysis on the contextual representations are more meaningful compared to the plain representation of the documents. The proposed approach in introducing a context model for source code identifiers paves the way for building tools that support developers in program comprehension tasks such as application and domain concept location, software modularization and topic analysis
    corecore