8,758 research outputs found

    Modelling of a rope-free passenger transportation system for active cabin vibration damping

    Get PDF
    Conventional vertical passenger transportation is performed by lifts. Conventional traction-drive electrical lifts use ropes to transfer the rotational motion of an electrical motor into a vertical motion of the cabin. The vertical passenger transportation system discussed in this paper does not use any ropes, the motor directly provides a driving force, which moves the cabin. This new propulsion is realized through an electrical linear motor. The use of the linear motor requires a new design of the passenger transportation system (PTS), which includes reducing the weight of the car through lightweight construction. The reduced stiffness of the lightweight design renders the construction more vulnerable to vibrations. In order to improve ride quality of the transportation system it is necessary to develop new concepts to damp the vibrations. One way to increase stiffness characteristics of the system is to introduce active damping components to be used alongside passive damping components. It is essential to derive a dynamic model of the system in order to design and also later control these damping components in the best possible way. This paper describes the fundamental steps undertaken to derive a dynamic model for designing and controlling active damping components for the new type of vertical PTS. The model is derived as a Multi-Body System (MBS), where the connections between the bodies are modelled as spring damper elements. The derivation of the MBS is demonstrated on a transportation system, consisting of three main components: a sledge, holding the rotor of the linear motor; a mounting frame, which is used to provide support for the cabin; and the actual cabin. The modelling of the propulsion system, thus the electrical part of the PTS, will not be the focus of this work

    Evaluating a holistic energy benchmarking parameter of lift systems by using computer simulation

    Get PDF
    At present, there are benchmarking parameters to assess the energy performance of lifts, e.g. one in Germany adopted by VDI (4707-1/2), one internationally published by ISO (BS EN ISO 25745-2:2015), and the other in Hong Kong adopted by The Hong Kong Special Administrative Region (HKSAR) Government. These parameters are mainly checking the energy consumed by a lift drive without considering real time passenger demands and traffic conditions; the one in Hong Kong pinpointing a fully loaded up-journey under rated speed and the two in Europe pinpointing a round trip, bottom floor to top floor and return with an empty car, though including energy consumed by lighting, displays, ventilation etc. A holistic normalization method by Lam et al [1] was developed a number of years ago by one of the co-authors of this article, which can assess both drive efficiency and traffic control, termed J/kg-m, which is now adopted by the HKSAR Government as a good practice, but not specified in the mandatory code. In Europe, the energy unit of Wh has been used but here, Joule (J), i.e. Ws, is adopted to discriminate the difference between the two concepts. In this article, this parameter is evaluated under different lift traffic scenarios using computer simulation techniques, with an aim of arriving at a reasonable figure for benchmarking an energy efficient lift system with both an efficient drive as well as an efficient supervisory traffic control

    A study into the influence of the car geometry on the aerodynamic transient effects arising in a high rise lift installation

    Get PDF
    One of the main goals in designing a high-speed lift system is developing a more aerodynamically efficient car geometry that guarantees a good ride comfort and reduces the energy consumption. In this study, a three-dimensional computational fluid dynamics (CFD) model has been developed to analyse an unsteady turbulent air flow around two cars moving in a lift shaft. The paper is focused on transient aerodynamic effects arising when two cars pass each other in the same shaft at the same speed. The scenarios considered in the paper involve cars having three different geometries. Aerodynamic forces such as the drag force that occur due to the vertical opposite motions of the cars have been investigated. Attention is paid to the airflow velocity and pressure distribution around the car structures. The flow pattern in the boundary layer around each car has been calculated explicitly to examine the flow separation in the wake region. The results presented in the paper would be useful to guide the lift designers to understand and mitigate the aerodynamic effects arising in the lift shaft

    Privacy, Security, and the Connected Hairbrush

    Get PDF

    Cyber-Physical Embedded Systems with Transient Supervisory Command and Control: A Framework for Validating Safety Response in Automated Collision Avoidance Systems

    Get PDF
    The ability to design and engineer complex and dynamical Cyber-Physical Systems (CPS) requires a systematic view that requires a definition of level of automation intent for the system. Since CPS covers a diverse range of systemized implementations of smart and intelligent technologies networked within a system of systems (SoS), the terms “smart” and “intelligent” is frequently used in describing systems that perform complex operations with a reduced need of a human-agent. The difference between this research and most papers in publication on CPS is that most other research focuses on the performance of the CPS rather than on the correctness of its design. However, by using both human and machine agency at different levels of automation, or autonomy, the levels of automation have profound implications and affects to the reliability and safety of the CPS. The human-agent and the machine-agent are in a tidal lock of decision-making using both feedforward and feedback information flows in similar processes, where a transient shift within the level of automation when the CPS is operating can have undesired consequences. As CPS systems become more common, and higher levels of autonomy are embedded within them, the relationship between human-agent and machine-agent also becomes more complex, and the testing methodologies for verification and validation of performance and correctness also become more complex and less clear. A framework then is developed to help the practitioner to understand the difficulties and pitfalls of CPS designs and provides guidance to test engineering design of soft computational systems using combinations of modeling, simulation, and prototyping

    Detecting Safety and Security Faults in PLC Systems with Data Provenance

    Full text link
    Programmable Logic Controllers are an integral component for managing many different industrial processes (e.g., smart building management, power generation, water and wastewater management, and traffic control systems), and manufacturing and control industries (e.g., oil and natural gas, chemical, pharmaceutical, pulp and paper, food and beverage, automotive, and aerospace). Despite being used widely in many critical infrastructures, PLCs use protocols which make these control systems vulnerable to many common attacks, including man-in-the-middle attacks, denial of service attacks, and memory corruption attacks (e.g., array, stack, and heap overflows, integer overflows, and pointer corruption). In this paper, we propose PLC-PROV, a system for tracking the inputs and outputs of the control system to detect violations in the safety and security policies of the system. We consider a smart building as an example of a PLC-based system and show how PLC-PROV can be applied to ensure that the inputs and outputs are consistent with the intended safety and security policies

    Remote monitoring and failure prediction of guiding elements and diverting pulleys in passenger elevators

    Get PDF
    Accelerated urbanization has lead to the rising height of buildings and demand for intensive high performance of elevators in recent years. Consequently, condition monitoring has become a highly desirable capability as the complexity of elevator systems increased. The goal of this study is to develop a monitoring method for elevator components which are subjected to mechanical degradation and failures. The method is capable of indicating the current health condition, predicting future failure as well as detecting emerging issues during operation. Studies of the fundamental principle of elements of condition monitoring such as measurement and measuring equipment, remaining useful life models laid the foundation for new method developing. Moreover, there were reviews of the implementation of health management systems in aerospace and marine industry. A prototype was built from the inductive sensor and open sources embedded system. The device has been installed in two different elevators for data acquisition. Basic data visualization and analysis models were employed for current health state assessment and failure trend prediction. The results include validation of the condition monitoring method and prediction of time-to-failure. Arithmetic means of displacement data determined operating condition whereas the linear regression model was used to predict failure event. Moreover, while suggesting the potential usefulness of the method for system condition assessment, the analysis of the data also exposed challenges inconsistency of the measuring method, data filtering technique as well as large data size requirement
    corecore