7,499 research outputs found

    Examples of Gaussian cluster computation

    Get PDF
    We give simple examples that illustrate the principles of one-way quantum computation using Gaussian continuous-variable cluster states. In these examples, we only consider single-mode evolutions, realizable via linear clusters. In particular, we focus on Gaussian single-mode transformations performed through the cluster state. Our examples highlight the differences between cluster-based schemes and protocols in which special quantum states are prepared off-line and then used as a resource for the on-line computation.Comment: 15 pages, 3 figure

    Universal linear Bogoliubov transformations through one-way quantum computation

    Full text link
    We show explicitly how to realize an arbitrary linear unitary Bogoliubov transformation (LUBO) on a multi-mode quantum state through homodyne-based one-way quantum computation. Any LUBO can be approximated by means of a fixed, finite-sized, sufficiently squeezed Gaussian cluster state that allows for the implementation of beam splitters (in form of three-mode connection gates) and general one-mode LUBOs. In particular, we demonstrate that a linear four-mode cluster state is a sufficient resource for an arbitrary one-mode LUBO. Arbitrary input quantum states including non-Gaussian states could be efficiently attached to the cluster through quantum teleportation.Comment: 10 pages, 6 figure

    Universal Gate Set for Continuous-Variable Quantum Computation with Microwave Circuits

    Get PDF
    We provide an explicit construction of a universal gate set for continuous-variable quantum computation with microwave circuits. Such a universal set has been first proposed in quantum-optical setups, but its experimental implementation has remained elusive in that domain due to the difficulties in engineering strong nonlinearities. Here, we show that a realistic microwave architecture allows to overcome this difficulty. As an application, we show that this architecture allows to generate a cubic phase state with an experimentally feasible procedure. This work highlights a practical advantage of microwave circuits with respect to optical systems for the purpose of engineering non-Gaussian states, and opens the quest for continuous-variable algorithms based on a few repetitions of elementary gates from the continuous-variable universal set.Comment: 6+6 pages, 2 figure

    How to decompose arbitrary continuous-variable quantum operations

    Full text link
    We present a general, systematic, and efficient method for decomposing any given exponential operator of bosonic mode operators, describing an arbitrary multi-mode Hamiltonian evolution, into a set of universal unitary gates. Although our approach is mainly oriented towards continuous-variable quantum computation, it may be used more generally whenever quantum states are to be transformed deterministically, e.g. in quantum control, discrete-variable quantum computation, or Hamiltonian simulation. We illustrate our scheme by presenting decompositions for various nonlinear Hamiltonians including quartic Kerr interactions. Finally, we conclude with two potential experiments utilizing offline-prepared optical cubic states and homodyne detections, in which quantum information is processed optically or in an atomic memory using quadratic light-atom interactions.Comment: Ver. 3: published version with supplementary materia

    Hybrid quantum information processing

    Get PDF
    The development of quantum information processing has traditionally followed two separate and not immediately connected lines of study. The main line has focused on the implementation of quantum bit (qubit) based protocols whereas the other line has been devoted to implementations based on high-dimensional Gaussian states (such as coherent and squeezed states). The separation has been driven by the experimental difficulty in interconnecting the standard technologies of the two lines. However, in recent years, there has been a significant experimental progress in refining and connecting the technologies of the two fields which has resulted in the development and experimental realization of numerous new hybrid protocols. In this Review, we summarize these recent efforts on hybridizing the two types of schemes based on discrete and continuous variables.Comment: 13 pages, 6 figure

    Simulation of the elementary evolution operator with the motional states of an ion in an anharmonic trap

    Full text link
    Following a recent proposal of L. Wang and D. Babikov, J. Chem. Phys. 137, 064301 (2012), we theoretically illustrate the possibility of using the motional states of a Cd+Cd^+ ion trapped in a slightly anharmonic potential to simulate the single-particle time-dependent Schr\"odinger equation. The simulated wave packet is discretized on a spatial grid and the grid points are mapped on the ion motional states which define the qubit network. The localization probability at each grid point is obtained from the population in the corresponding motional state. The quantum gate is the elementary evolution operator corresponding to the time-dependent Schr\"odinger equation of the simulated system. The corresponding matrix can be estimated by any numerical algorithm. The radio-frequency field able to drive this unitary transformation among the qubit states of the ion is obtained by multi-target optimal control theory. The ion is assumed to be cooled in the ground motional state and the preliminary step consists in initializing the qubits with the amplitudes of the initial simulated wave packet. The time evolution of the localization probability at the grids points is then obtained by successive applications of the gate and reading out the motional state population. The gate field is always identical for a given simulated potential, only the field preparing the initial wave packet has to be optimized for different simulations. We check the stability of the simulation against decoherence due to fluctuating electric fields in the trap electrodes by applying dissipative Lindblad dynamics.Comment: 31 pages, 8 figures. Revised version. New title, new figure and new reference
    • …
    corecore