1,298 research outputs found

    Elementary numerosity and measures

    Get PDF
    In this paper we introduce the notion of elementary numerosity as a special function defined on all subsets of a given set which takes values in a suitable nonArchimedean field and satisfies the same formal properties as finite cardinality. By improving a classic result by C.W. Henson in nonstandard analysis, we prove a general compatibility result between such elementary numerosities and measures

    Developmental changes in the association between approximate number representations and addition skills in elementary school children

    Get PDF
    The approximate number system (ANS) is assumingly related to mathematical learning but evidence supporting this assumption is mixed. The inconsistent findings might be attributed to the fact that different measures have been used to assess the ANS and mathematical skills. Moreover, associations between the performance on a measure of the ANS and mathematical skills may be discontinuous, i.e., stronger for children with lower math scores than for children with higher math scores, and may change with age. The aim of the present study was to examine the development of the ANS and arithmetic skills in elementary school children and to investigate how the relationship between the ANS and arithmetic skills develops. Individual markers of children's ANS (internal Weber fractions and mean reaction times in a non-symbolic numerical comparison task) and addition skills were assessed in their first year of school and 1 year later. Children showed improvements in addition performance and in the internal Weber fractions, whereas mean reaction times in the non-symbolic numerical comparison task did not change significantly. While children's addition performance was associated with the internal Weber fractions in the first year, it was associated with mean reaction times in the non-symbolic numerical comparison task in the second year. These associations were not found to be discontinuous and could not be explained by individual differences in reasoning, processing speed, or inhibitory control. The present study extends previous findings by demonstrating that addition performance is associated with different markers of the ANS in the course of development

    Preschool predictors of mathematics in first grade children with autism spectrum disorder

    Get PDF
    AbstractUp till now, research evidence on the mathematical abilities of children with autism spectrum disorder (ASD) has been scarce and provided mixed results. The current study examined the predictive value of five early numerical competencies for four domains of mathematics in first grade. Thirty-three high-functioning children with ASD were followed up from preschool to first grade and compared with 54 typically developing children, as well as with normed samples in first grade. Five early numerical competencies were tested in preschool (5–6 years): verbal subitizing, counting, magnitude comparison, estimation, and arithmetic operations. Four domains of mathematics were used as outcome variables in first grade (6–7 years): procedural calculation, number fact retrieval, word/language problems, and time-related competences. Children with ASD showed similar early numerical competencies at preschool age as typically developing children. Moreover, they scored average on number fact retrieval and time-related competences and higher on procedural calculation and word/language problems compared to the normed population in first grade. When predicting first grade mathematics performance in children with ASD, both verbal subitizing and counting seemed to be important to evaluate at preschool age. Verbal subitizing had a higher predictive value in children with ASD than in typically developing children. Whereas verbal subitizing was predictive for procedural calculation, number fact retrieval, and word/language problems, counting was predictive for procedural calculation and, to a lesser extent, number fact retrieval. Implications and directions for future research are discussed

    Does the number sense represent number?

    Get PDF
    On a now orthodox view, humans and many other animals are endowed with a “number sense”, or approximate number system (ANS), that represents number. Recently, this orthodox view has been subject to numerous critiques, with critics maintaining either that numerical content is absent altogether, or else that some primitive analog of number (‘numerosity’) is represented as opposed to number itself. We distinguish three arguments for these claims – the arguments from congruency, confounds, and imprecision – and show that none succeed. We then highlight positive reasons for thinking that the ANS genuinely represents numbers. The upshot is that proponents of the orthodox view should not feel troubled by recent critiques of their position

    A Neural Model of How The Brain Represents and Compares Numbers

    Full text link
    Many psychophysical experiments have shown that the representation of numbers and numerical quantities in humans and animals is related to number magnitude. A neural network model is proposed to quantitatively simulate error rates in quantification and numerical comparison tasks, and reaction times for number priming and numerical assessment and comparison tasks. Transient responses to inputs arc integrated before they activate an ordered spatial map that selectively responds to the number of events in a sequence. The dynamics of numerical comparison are encoded in activity pattern changes within this spatial map. Such changes cause a "directional comparison wave" whose properties mimic data about numerical comparison. These model mechanisms are variants of neural mechanisms that have elsewhere been used to explain data about motion perception, attention shifts, and target tracking. Thus, the present model suggests how numerical representations may have emerged as specializations of more primitive mechanisms in the cortical Where processing stream.National Science Foundation (IRI-97-20333); Defense Advanced research Projects Agency and the Office of Naval Research (N00014-95-1-0409); National Institute of Health (1-R29-DC02952-01

    Number sense : the underpinning understanding for early quantitative literacy

    Get PDF
    The fundamental meaning of Quantitative Literacy (QL) as the application of quantitative knowledge or reasoning in new/unfamiliar contexts is problematic because how we acquire knowledge, and transfer it to new situations, is not straightforward. This article argues that in the early development of QL, there is a specific corpus of numerical knowledge which learners need to integrate into their thinking, and to which teachers should attend. The paper is a rebuttal to historically prevalent (and simplistic) views that the terrain of early numerical understanding is little more than simple counting devoid of cognitive complexity. Rather, the knowledge upon which early QL develops comprises interdependent dimensions: Number Knowledge, Counting Skills and Principles, Nonverbal Calculation, Number Combinations and Story Problems - summarised as Number Sense. In order to derive the findings for this manuscript, a realist synthesis of recent Education and Psychology literature was conducted. The findings are of use not only when teaching very young children, but also when teaching learners who are experiencing learning difficulties through the absence of prerequisite numerical knowledge. As well distilling fundamental quantitative knowledge for teachers to integrate into practice, the review emphasises that improved pedagogy is less a function of literal applications of reported interventions, on the grounds of perceived efficacy elsewhere, but based in refinements of teachers' understandings. Because teachers need to adapt instructional sequences to the actual thinking and learning of learners in their charge, they need knowledge that allows them to develop their own theoretical understanding rather than didactic exhortations
    corecore