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Abstract: In this paper we introduce the notion of elementary numerosity as a
special function defined on all subsets of a given set Ω which takes values in a
suitable non-Archimedean field and satisfies the same formal properties as finite
cardinality. By improving a classic result by C. W. Henson in nonstandard analysis,
we prove a general compatibility result between such elementary numerosities and
measures.
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Introduction

In mathematics there are essentially two main ways to estimate the size of a set,
depending on whether one is working in a discrete or in a continuous setting. In the
continuous case one uses the notion of (finitely) additive measure, namely a real-valued
function (possibly taking also the value +∞) which satisfies the following properties:

(1) m(∅) = 0

(2) m(A) ≥ 0

(3) m(A ∪ B) = m(A) + m(B) whenever A ∩ B = ∅.

In the discrete case one uses the notion of cardinality n that strengthens the three
properties itemized above as follows:

(n.1) n(∅) = 0

(n.2) n(A) ≥ 0

(n.3) n(A ∪ B) = n(A) + n(B) whenever A ∩ B = ∅
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(n.4) n
(
{x}
)

= 1 for all singletons.

The goal of this paper is to investigate the relationships between these two notions. To
this end, we will introduce the concept of elementary numerosity as a special function
defined on all subsets of a given set Ω that takes values in a suitable ordered field F
and satisfies the four properties of finite cardinalities itemized above (see Definition
1.1). We remark that if Ω is infinite, then the range of such a function n necessarily
contains infinite numbers, and hence the field F must be non-Archimedean. Notice that
Cantorian cardinality also satisfies properties (n.1), (n.2), (n.3), (n.4), the fundamental
difference being that “numerosities” are required to be elements of an ordered field.

We will assume the reader to be familiar with the basics of nonstandard analysis; a
classic reference is Davis [6] (see also the more recent book by Goldblatt [8]). For the
used terminology of measure theory, we refer to Yeh [11]. A comprehensive exposition
of nonstandard measure theory and probability theory is given in Ross [14].

Acknowledgement. The authors thank the editor D.A. Ross and the anonymous
referees for several useful remarks on previous versions of this paper, and for pointing
out relevant bibliographic references.

1 Elementary numerosity

The notion of numerosity was introduced in Benci [1] and in Benci and Di Nasso [3]
as a generalization of finite cardinality that also applies to infinite sets. (Its theory
has then been developed in a series of papers; see eg [4] and [7]). The main feature
of numerosities is that they preserve the spirit of the ancient Euclidean principle that
“the whole is larger than the part”; indeed, the numerosity of a proper subset is strictly
smaller than the numerosity of the whole set. Inspired by the same idea, we now aim
at refining the notion of finitely additive measure in such a way that also single points
count. To this end, we will consider ordered fields F ⊃ R which properly extend the
real line. We remark that such fields are necessarily non-Archimedean, ie they contain
infinitesimal numbers ε 6= 0 such that −1/n < ε < 1/n for all n ∈ N. Following the
same terminology used in nonstandard analysis, we say that two elements ξ, ζ ∈ F
are infinitely close, and write ξ ≈ ζ , when their difference ξ − ζ is infinitesimal; we
say that a number ξ ∈ F is finite when −n < ξ < n for some n ∈ N, and is infinite
otherwise. By the completeness property of R it is easily verified that every finite
ξ ∈ F is infinitely close to a unique real number r , namely r = inf{x ∈ R | x > ξ}.
Such a number r is called the standard part of ξ , and we use notation r = st(ξ). The
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Elementary numerosity and measures 3

standard part is extended to all numbers in F by setting st(ξ) = +∞ when ξ is infinite
and positive, and st(ξ) = −∞ when ξ is infinite and negative.

Definition 1.1 An elementary numerosity on a set Ω is a function

n : P(Ω)→ [0,+∞)F

defined on all subsets of Ω, taking values in the non-negative part of an ordered field
F ⊇ R, and such that the following two conditions are satisfied:

(1) n({x}) = 1 for every point x ∈ Ω ;

(2) n(A ∪ B) = n(A) + n(B) whenever A and B are disjoint.

Elementary numerosities satisfy the same basic properties as finite cardinalities. In-
deed:

Proposition 1.2 Let n be an elementary numerosity. Then:

(1) n(A) = 0 if and only if A = ∅;

(2) If A ⊂ B is a proper subset, then n(A) < n(B);

(3) If F is a finite set of cardinality n, then n(F) = n.

Proof Notice that n(∅) = n(∅ ∪ ∅) = n(∅) + n(∅), and x = 0 is the only number
x ∈ F such that x + x = x . If A ⊆ B then n(B) = n(A) + n(B \ A) ≥ n(A). Moreover,
if A ⊂ B is a proper subset and x ∈ B \A, then n(B) ≥ n(A∪{x}) = n(A) + n({x}) =

n(A) + 1 > n(A). In consequence, n(A) > 0 for all nonempty sets A. Finally, the last
property directly follows by additivity and the fact that every singleton has numerosity
1.

Remark 1.3 If one takes F = R, then elementary numerosities n exist on a set Ω if
and only if Ω is finite; and in this case, the only numerosity n is given by the finite
cardinality.

We will show in the sequel that by taking suitable non-Archimedean fields that properly
extend the real line, elementary numerosities exist on every infinite set.

Given an elementary numerosity and a “measure unit” β > 0, there is a canonical way
to construct a (real-valued) finitely additive measure.

Journal of Logic & Analysis 6:3 (2014)
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Definition 1.4 Let n : P(Ω)→ [0,+∞)F be an elementary numerosity, and let β ∈ F
be a positive number. The function µn,β : P(Ω)→ [0,+∞]R is defined by setting

µn,β(A) = st
(
n(A)
β

)
.

It is easily verified from the properties of the standard map st that µn,β is a finitely
additive measure. Moreover, notice that µn,β is non-atomic if and only if µn,β({x}) =

st(1/β) = 0 for all singletons, and this holds if and only if β is infinite.

The class of measures that we just introduced turns out to be really general. Indeed,
the goal of this paper is to prove a strong version of the following

• Claim. Every finitely additive non-atomic measure is a restriction of a suitable
µn,β .

2 The main result

In the 60s and early 70s of the last century, researchers in nonstandard analysis deeply
investigated the possibility of representing finitely additive measures as counting mea-
sures on suitable hyperfinite samples.1 The starting point was the following key
observation, pointed out by A.R. Bernstein and F. Wattenberg in [5]:

• For every nonempty hyperfinite set F ⊆ ∗Ω,

µF(A) = st
(
‖∗A ∩ F‖
‖F‖

)
is a finitely additive probability measure defined on all subsets of Ω.2

In that paper, the tool of hyperfinite counting measures was used to give a nonstandard
proof of the existence of a totally defined translation-invariant extension of the Lebesgue
measure on R. In 1972, extending a previous result obtained by A. Robinson [13],
C.W. Henson proved the following general representation theorem:

• (Theorem 1 of [10]) Let Ω be an infinite set and assume that the nonstandard
extension ∗ satisfies the property of

(
2|Ω|
)+

-enlargement. If m is a non-atomic
finitely additive probability measure defined on all subsets of Ω, then there exists
a nonempty hyperfinite set F ⊆ ∗Ω such that m = µF .

1 After the introduction of the Loeb measure [12] in 1975, this line of research has been
almost abandoned; however, see D.A. Ross’ paper [15] for a survey of alternative nonstandard
approaches to measure theory.

2 By ‖ · ‖ is denoted the hyperfinite internal cardinality.
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Remark 2.1 In any model of nonstandard analysis, every hyperfinite set F ⊆ ∗Ω
such that ∗x ∈ F for all x ∈ Ω determines an elementary numerosity nF : P(Ω)→ ∗R
simply by letting:

nF(A) = ‖∗A ∩ F‖.

In consequence, by taking ratios of the elementary numerosity n = nF to the fixed
“measure unit” β = ‖F‖ > 0, the above Henson’s Theorem yields the following
corollary:

• For every non-atomic finitely additive probability measure (Ω,P(Ω), µ) defined
on all subsets of a set Ω, there exist an ordered field of hyperreals ∗R, an
elementary numerosity n : P(Ω)→ [0,+∞)∗R , and a positive number β ∈ ∗R,
such that µ = µn,β .

The above result shows that elementary numerosities can be found which are compatible
with any given non-atomic finitely additive probability measure provided one takes
ratios over a suitable measure unit and identities are taken only up to infinitesimals.
Here, we investigate the possibility of a stronger coherence of elementary numerosities
with measures. Most notably, a natural requirement would be to have equal numerosity
for sets of equal measure.

• Given a non-atomic finitely additive measure µ defined on an algebra A ⊆
P(Ω), is there an elementary numerosity n : P(Ω) → [0,+∞)F which is
“coherent” with µ, in the following strong sense?

(1) There exists a positive β such that µn,β(A) = µ(A) for all A ∈ A;

(2) µ(A) = µ(A′)⇐⇒ n(A) = n(A′) for all A,A′ ∈ A.

Unfortunately, in the presence of nonempty null sets or of sets of infinite measure, it is
readily seen that (2) cannot hold in general. (Recall that proper subsets have a strictly
smaller numerosity.) However, these are basically the only obstacles; indeed, for any
given measure, we will be able to find elementary numerosities that satisfy (1) and that
satisfy also the “strong” coherence property (2) on suitable subalgebras. To this end,
we will prove an improvement of Henson’s Theorem about nonstandard representation
of measures, as given by the theorem below.

We remark that our proof is grounded on a combinatorial lemma, and uses different
arguments with respect to the ones used in the original proofs of the classic results by
Bernstein, Wattenberg and Henson.

Since the proof is rather long, it is put off to Section 3.
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Theorem 2.2 Let (Ω,A, µ) be a non-atomic finitely additive measure on the infinite
set Ω, and let B ⊆ A be a subalgebra that does not contain nonempty null sets. Then
in any model of nonstandard analysis that satisfies the property of

(
2|Ω|
)+

-enlargement
there exists a hyperfinite set F ⊆ ∗Ω such that:

(1) ∗x ∈ F for every x ∈ Ω;

(2) ‖F ∩ ∗B‖ = ‖F ∩ ∗B′‖ ⇔ µ(B) = µ(B′) for all B,B′ ∈ B of finite measure;

(3) for every hyperreal number of the form β = ‖F∩∗Z‖
µ(Z) where Z ∈ A has positive

finite measure, and for every A ∈ A:

µ(A) = st
(
‖F ∩ ∗A‖

β

)
.

Let us see now the relevant corollary about elementary numerosities.

Theorem 2.3 Let (Ω,A, µ) and B ⊆ A satisfy the hypotheses of Theorem 2.2. Then
there exists an elementary numerosity n on Ω such that:

(1) µ(B) = µ(B′)⇔ n(B) = n(B′) for all B,B′ ∈ B of finite measure;

(2) For every β = n(Z)/µ(Z) where Z ∈ A has positive finite measure, µ = (µn,β)|A
is the restriction of µn,β to A.

Proof Let F ⊆ ∗Ω be the hyperfinite set as given by Theorem 2.2, and let n = nF .

We stress the fact that in (2), the measure µn,β that represents µ does not depend on
the choice of β , as long as β = n(Z)/µ(Z) for some Z with 0 < µ(Z) < +∞.

In several examples, one naturally finds subalgebras B with the property that every
nonempty B ∈ B has positive measure. For instance, if one considers the Lebesgue
measure m on R then one can take B as the algebra of the finite unions of half-open
intervals [a, b) where possibly b = +∞, and intervals of the form (−∞, b) where
possibly b = +∞. In this case, the above theorem guarantees the existence of an
elementary numerosity n defined on all subsets of R such that m(A) ≈ n(A)/n([0, 1))
for all Lebesgue measurable A ⊆ R, and with the strong translation-invariant property
that n([a, a + `)) = n([b, b + `)) for every a, b and for every length ` > 0. This
example, along with others, is studied in Benci, Bottazzi and Di Nasso [2].

Remark 2.4 Notice that Theorem 2.3 still does not provide a full proof for our claim
(made at the end of Section 1) that every finitely additive non-atomic measure (Ω,A, µ)
be a restriction of a measure of the form µn,β . Indeed, if µ only takes the values 0
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Elementary numerosity and measures 7

and +∞, then there are no suitable “measure units” β , because there are no sets
Z ∈ A with positive finite measure. Nevertheless, we remark that even such measures
are restrictions of suitable µn,β . To see this, pick any non-atomic finitely additive
probability measure (Ω′,P(Ω′), µ′) where Ω′ ∩ Ω = ∅. Then let

C = {A ∪ B | A ∈ A,B ∈ P(Ω′)},

and define ν : C→ [0,+∞]R by putting

ν(C) = µ(C ∩ Ω) + µ′(C ∩ Ω′).

It is easily verified that ν is a non-atomic finitely additive measure over Ω ∪ Ω′ ;
notice also that ν(Ω′) = µ′(Ω′) = 1. So, Theorem 2.3 can be applied to ν and
we obtain the existence of an elementary numerosity n and of a number β (eg,
β = n(Ω′)/ν(Ω′) = n(Ω′)) such that µn,β(C) = ν(C) for all C ∈ C. In particular,
µn,β(A) = µ(A) for all A ∈ A, as desired.

3 Proof of the Main Theorem 2.2

The proof of the main theorem is grounded on the following combinatorial property.

Lemma 3.1 Let (Ω,A, µ) be a non-atomic finitely additive measure, and let B ⊆ A

be a subalgebra of subsets of Ω whose nonempty sets have all positive measure. Denote
by Af (by Bf ) the family of sets in A (in B, respectively) which have finite measure.
Given m ∈ N, finitely many points x1, . . . , xk ∈ Ω, and finitely many nonempty
sets A1, . . . ,Av ∈ A, there exists a finite subset λ ⊂ Ω that satisfies the following
properties:

(1) x1, . . . , xk ∈ λ ;

(2) If Ai,Aj ∈ Bf are nonempty sets such that µ(Ai) = µ(Aj), then |λ ∩ Ai| =

|λ ∩ Aj| ;

(3) If Ai ∈ Af and µ(Ai) 6= 0, then for all j such that Aj ∈ Af :∣∣∣∣ |λ ∩ Aj|
|λ ∩ Ai|

−
µ(Aj)
µ(Ai)

∣∣∣∣ < 1
m

;

(4) If Ai ∈ Af and µ(Ai) 6= 0, then for all j such that Aj ∈ A \ Af :

|λ ∩ Aj|
|λ ∩ Ai|

> m.
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8 Vieri Benci, Emanuele Bottazzi and Mauro Di Nasso

Proof Without loss of generality, we can assume that the given sets Ai are arranged in
such a way that A1, . . . ,Al ∈ Bf , Al+1, . . . ,An ∈ Af \Bf and An+1, . . . ,Av ∈ A \Af

for suitable l and n. It will be convenient in the sequel that the considered elements in
Bf be pairwise disjoint. To this end, consider the partition {B1, . . . ,Bh} induced by
{A1, . . . ,Al}.3 Notice that, by the algebra properties of B, every piece Bs belongs to
Bf . Finally, let

n⋃
i=1

Ai = C1 t . . . t Cp t D1 t . . . t Dq

be the partition of
⋃n

i=1 Ai induced by {B1, . . . ,Bh,Al+1, . . . ,Av}, where 0 < µ(Cs) <
+∞ for s = 1, . . . , p and µ(Dt) = 0 for t = 1, . . . , q. (The union

⋃n
i=1 Ai has finite

measure because it is a finite union of sets of finite measure.) For every s = 1, . . . , h, the
set Bs includes at least one piece Cj . Moreover, since B1, . . . ,Bh are pairwise disjoint,
by re-arranging if necessary, we can also assume that Cs ⊆ Bs for s = 1, . . . , h.

We now need the following result:

• “Given finitely many real numbers ys > 0, for every ε > 0 there exists N ∈ N
such that every fractional part {N · ys} = N · ys − [N · ys] < ε”.

Recall that by Dirichlet’s simultaneous approximation theorem (see eg Hardy and
Wright [9, §11.12]), the above property holds if at least one of the ys is irrational.
On the other hand, when all ys ∈ Q, if N is any multiple of the greatest common
denominator of the numbers ys , then trivially all fractional parts {N · ys} = 0.

Let

• α = µ
(⋃n

i=1 Ai
)

;

• c = min{µ(Cs) | s = 1, . . . , p}.

By the above property we can pick a natural number N such that:

(a) N > α (2m+1) (k+1)
c2 ;

(b) es = {N · µ(Cs)} < 1
p for all s = 1, . . . , p .

Denote by

• C =
⊔p

s=1 Cs the “relevant part” of the partition ;

3 Recall that the partition induced by a finite family {A1, . . . ,An} is the partition on
A1 ∪ . . . ∪ An given by the nonempty intersections

⋂n
i=1 Aχ(i)

i for χ : {1, . . . , n} → {−1, 1} ,
where A1

j = Aj and A−1
j = (

⋃n
i=1 Ai) \ Aj .
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• D =
⊔q

t=1 Dt the “negligible part” of the partition ;

• F = {x1, . . . , xk}.

Then, set

• Ns = [N · µ(Cs)] for s = 1, . . . , p ;

• Ms = |Bs ∩ D ∩ F| for s = 1, . . . , h .

Notice that Ns > k for all s. In fact, by the above conditions (a) and (b):

Ns = N · µ(Cs)− es >
α (2m + 1) (k + 1)

c2 · µ(Cs)− es >

>
α · µ(Cs)

c2 · (k + 1)− es > 1 · (k + 1)− 1 = k.

For s = 1, . . . , h, pick a finite subset λs ⊂ Cs containing exactly (Ns − Ms)-many
elements, and such that Cs ∩ F ⊆ λs . Observe that this is possible because

|Cs ∩ F| ≤ |Bs ∩ C ∩ F| = |Bs ∩ F| −Ms ≤ k −Ms < Ns −Ms.

For s = h + 1, . . . , p, pick a finite subset λs ⊂ Cs containing exactly Ns -many
elements. Finally, define

λ = F ∪
p⋃

s=1

λs.

We claim that λ satisfies the desired properties (1), (2), (3). Since F ⊆ λ, condition
(1) is trivially satisfied. For every i = 1, . . . , n let:

G(i) = {s ≤ h | Cs ⊆ Ai} and G′(i) = {s > h | Cs ⊆ Ai}.

With the above definitions, we obtain:

|λ ∩ Ai| =
∑

s∈G(i)

|λs|+
∑

s∈G′(i)

|λs| + |Ai ∩ D ∩ F|

=
∑

s∈G(i)

(Ns −Ms) +
∑

s∈G′(i)

Ns + |Ai ∩ D ∩ F|

=
∑

s∈G(i)∪G′(i)

Ns −
∑

s∈G(i)

Ms + |Ai ∩ D ∩ F|

= N ·

 ∑
s∈G(i)∪G′(i)

µ(Cs)

− εi − ηi + ϑi

= N · µ(Ai)− εi − ηi + ϑi

where:

Journal of Logic & Analysis 6:3 (2014)
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• εi =
∑

s∈G(i)∪G′(i) es ≤
∑p

s=1 es < 1 by condition (b) ;

• ηi =
∑

s∈G(i) Ms ≤
∑h

s=1 |Bs ∩ D ∩ F| ≤ |F| = k ;

• ϑi = |Ai ∩ D ∩ F| ≤ k .

If Ai ∈ Bf , i.e. if i ≤ l, recall that Ai =
⊔

s∈S(i) Bs for a suitable S(i) ⊆ {1, . . . , h}.
Since Cs ⊆ Bs for all s = 1, . . . , h, it must be G(i) = S(i). So, for i ≤ l we have

ηi =
∑

s∈S(i)

Ms =
∑

s∈S(i)

|Bs ∩ D ∩ F| =

∣∣∣∣∣∣
 ⊔

s∈S(i)

Bs

 ∩ D ∩ F

∣∣∣∣∣∣
= |Ai ∩ D ∩ F| = ϑi,

and hence |λ ∩ Ai| = N · µ(Ai) − εi . In consequence, for every i, j ≤ l such that
µ(Ai) = µ(Aj), one has that

||λ ∩ Ai| − |λ ∩ Aj|| = |N · µ(Ai)− εi − N · µ(Aj) + εj| = |εj − εi|.

Now notice that |εj − εi| ≤ max{εi, εj} < 1, and so the natural numbers |λ ∩ Ai| =

|λ ∩ Aj| necessarily coincide. This completes the proof of (2).

As for (3), notice that |λ ∩ Ai| = N · µ(Ai) + ζi where ζi = (ϑi − ηi)− εi is such that
−(k + 1) < ζi ≤ k . For every i, j such that µ(Aj) 6= 0, we have that

N · µ(Ai) + ζi

N · µ(Aj) + ζj
− µ(Ai)
µ(Aj)

=
µ(Aj) · ζi − µ(Ai) · ζj

N · µ(Aj)2 + µ(Aj) · ζj
.

Now, the absolute value of the numerator

|µ(Aj) · ζi − µ(Ai) · ζj| < (µ(Ai) + µ(Aj)) · (k + 1) ≤ 2α (k + 1) ;

and the absolute value of the denominator

|N · µ(Aj)2 + µ(Aj) · ζj| > N c2 − α (k + 1)

≥ α (2m + 1) (k + 1)− α (k + 1) = 2mα (k + 1).

So, we reach the thesis:∣∣∣∣ |λ ∩ Ai|
|λ ∩ Aj|

− µ(Ai)
µ(Aj)

∣∣∣∣ < 2α (k + 1)
2mα (k + 1)

=
1
m
.

In order to get a finite subset λ′ satisfying also property (4), for t = n + 1, . . . , v pick
a finite subset ηt ⊂ At \

⋃n
i=1 Ai with |ηt| > m · |λ|, and set λ′ = λ ∪

⋃v
t=n+1 ηt . It is

clear that such a λ′ still satisfies properties (1), (2), (3), and it is readily checked that
it also satisfies property (4).

Journal of Logic & Analysis 6:3 (2014)
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Proof of Theorem 2.2 Let Λ = Fin(Ω) be the family of all finite subsets of Ω, and
define the following subsets of Λ:

• For all x ∈ Ω, let
x̂ = {λ ∈ Λ : x ∈ λ} .

• For all A,A′ ∈ Af with µ(A′) > 0 and for all n ∈ N, let

Γ(A,A′, n) =

{
λ ∈ Λ : λ ∩ A′ 6= ∅ and

∣∣∣∣ |λ ∩ A|
|λ ∩ A′|

− µ(A)
µ(A′)

∣∣∣∣ < 1
n

}
.

• For all nonempty B,B′ ∈ Bf , let

Θ(B,B′) =
{
λ ∈ Λ : |B ∩ λ| = |B′ ∩ λ|

}
.

• For all C ∈ A \ Af , for all C′ ∈ Af with µ(C′) > 0, and for all n ∈ N, let

Ξ(C,C′, n) =

{
λ ∈ Λ : λ ∩ C′ 6= ∅ and

|λ ∩ C|
|λ ∩ C′|

> n
}
.

Then consider the following family:

G = {x̂ | x ∈ Ω}
⋃ {

Γ(A,A′, n) | A,A′ ∈ Af , µ(A′) > 0, n ∈ N
}⋃{

Θ(B,B′) | B,B′ ∈ Bf , µ(B) = µ(B′) > 0
}⋃{

Ξ(C,C′, n) | C ∈ A \ Af , C′ ∈ Af , µ(C′) > 0, n ∈ N
}
.

As a consequence of the Lemma, the family G has the finite intersection property.
Indeed, let finitely many elements of G be given, say

x̂1, . . . , x̂k; Γ(A1,A′1, n1), . . . ,Γ(Au,A′u, nu);

Θ(B1,B′1), . . . ,Θ(Bw,B′w); Ξ(C1,C′1,m1), . . . ,Ξ(Cs,C′s,ms) .

Without loss of generality, we can assume that the set {x1, . . . , xk} includes at least one
point from each of the above sets A′i and C′j . Pick m = max{n1, . . . , nu,m1, . . . ,ms}
and apply Lemma 3.1 to get the existence of a finite set λ ∈ Λ such that:

(1) x1, . . . , xk ∈ λ ;

(2) For all i = 1, . . . ,w, if µ(Bi) = µ(B′i) then |λ ∩ Bi| = |λ ∩ B′i| ;

(3) For all i, j = 1, . . . , u, then∣∣∣∣ |λ ∩ Aj|
|λ ∩ A′i|

−
µ(Aj)
µ(A′i)

∣∣∣∣ < 1
m

;

Journal of Logic & Analysis 6:3 (2014)
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(4) for all i, j = 1, . . . , s:
|λ ∩ Ci|
|λ ∩ C′j|

> m.

Then it is readily verified that such a λ belongs to all considered sets of G . Since
|G| ≤ 2|Ω| , we can apply the enlarging property and pick a set

F ∈
⋂

G∈G

∗G.

Now notice that:

(a) For every x ∈ Ω, F ∈ ∗x̂ means that ∗x ∈ F ;

(b) For every A,A′ ∈ Af with µ(A′) > 0, F ∈ ∗Γ(A,A′, n) for every n ∈ N means
that

‖F ∩ ∗A‖
‖F ∩ ∗A′‖

≈ µ(A)
µ(A′)

;

(c) For every B,B′ ∈ Bf with µ(B) = µ(B′) > 0, F ∈ ∗Θ(B,B′) means that
‖F ∩ ∗B‖ = ‖F ∩ ∗B′‖;

(d) For every C,C′ ∈ A with µ(C) = +∞ and 0 < µ(C′) < +∞, F ∈ ∗Ξ(C,C′, n)
for every n ∈ N means that

‖F ∩ ∗C‖
‖F ∩ ∗C′‖

is infinite.

Properties (1) and (2) of the thesis are directly given by (a) and (c), respectively. As
for (3), let β = ‖F ∩ ∗Z‖/µ(Z) where Z ∈ A is such that 0 < µ(Z) < +∞. If
µ(A) < +∞, by property (b) where A′ = Z , we get

‖F ∩ ∗A‖
β

=
‖F ∩ ∗A‖
‖F ∩ ∗Z‖

· µ(Z) ≈ µ(A)
µ(Z)

· µ(Z) = µ(A);

and if µ(A) = +∞, by property (d) where C = A and C′ = Z , we have that the
following number is infinite:

‖F ∩ ∗A‖
β

=
‖F ∩ ∗A‖
‖F ∩ ∗Z‖

· µ(Z).
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