54,521 research outputs found

    Cognitive control in belief-laden reasoning during conclusion processing: An ERP study

    Get PDF
    Belief bias is the tendency to accept conclusions that are compatible with existing beliefs more frequently than those that contradict beliefs. It is one of the most replicated behavioral findings in the reasoning literature. Recently, neuroimaging studies using functional magnetic resonance imaging (fMRI) and event-related potentials (ERPs) have provided a new perspective and have demonstrated neural correlates of belief bias that have been viewed as supportive of dual-process theories of belief bias. However, fMRI studies have tended to focus on conclusion processing, while ERPs studies have been concerned with the processing of premises. In the present research, the electrophysiological correlates of cognitive control were studied among 12 subjects using high-density ERPs. The analysis was focused on the conclusion presentation phase and was limited to normatively sanctioned responses to valid–believable and valid–unbelievable problems. Results showed that when participants gave normatively sanctioned responses to problems where belief and logic conflicted, a more positive ERP deflection was elicited than for normatively sanctioned responses to nonconflict problems. This was observed from −400 to −200 ms prior to the correct response being given. The positive component is argued to be analogous to the late positive component (LPC) involved in cognitive control processes. This is consistent with the inhibition of empirically anomalous information when conclusions are unbelievable. These data are important in elucidating the neural correlates of belief bias by providing evidence for electrophysiological correlates of conflict resolution during conclusion processing. Moreover, they are supportive of dual-process theories of belief bias that propose conflict detection and resolution processes as central to the explanation of belief bias

    Electrophysiological correlates of high-level perception during spatial navigation

    Get PDF
    We studied the electrophysiological basis of object recognition by recording scalp\ud electroencephalograms while participants played a virtual-reality taxi driver game.\ud Participants searched for passengers and stores during virtual navigation in simulated\ud towns. We compared oscillatory brain activity in response to store views that were targets or\ud nontargets (during store search) or neutral (during passenger search). Even though store\ud category was solely defined by task context (rather than by sensory cues), frontal ...\ud \u

    Dynamic BOLD functional connectivity in humans and its electrophysiological correlates

    Get PDF
    Neural oscillations subserve many human perceptual and cognitive operations. Accordingly, brain functional connectivity is not static in time, but fluctuates dynamically following the synchronization and desynchronization of neural populations. This dynamic functional connectivity has recently been demonstrated in spontaneous fluctuations of the Blood Oxygen Level-Dependent (BOLD) signal, measured with functional Magnetic Resonance Imaging (fMRI). We analyzed temporal fluctuations in BOLD connectivity and their electrophysiological correlates, by means of long (≈50 min) joint electroencephalographic (EEG) and fMRI recordings obtained from two populations: 15 awake subjects and 13 subjects undergoing vigilance transitions. We identified positive and negative correlations between EEG spectral power (extracted from electrodes covering different scalp regions) and fMRI BOLD connectivity in a network of 90 cortical and subcortical regions (with millimeter spatial resolution). In particular, increased alpha (8-12 Hz) and beta (15-30 Hz) power were related to decreased functional connectivity, whereas gamma (30-60 Hz) power correlated positively with BOLD connectivity between specific brain regions. These patterns were altered for subjects undergoing vigilance changes, with slower oscillations being correlated with functional connectivity increases. Dynamic BOLD functional connectivity was reflected in the fluctuations of graph theoretical indices of network structure, with changes in frontal and central alpha power correlating with average path length. Our results strongly suggest that fluctuations of BOLD functional connectivity have a neurophysiological origin. Positive correlations with gamma can be interpreted as facilitating increased BOLD connectivity needed to integrate brain regions for cognitive performance. Negative correlations with alpha suggest a temporary functional weakening of local and long-range connectivity, associated with an idling state

    Malleability of the self: electrophysiological correlates of the enfacement illusion

    Get PDF
    Self-face representation is fundamentally important for self-identity and self-consciousness. Given its role in preserving identity over time, self-face processing is considered as a robust and stable process. Yet, recent studies indicate that simple psychophysics manipulations may change how we process our own face. Specifically, experiencing tactile facial stimulation while seeing similar synchronous stimuli delivered to the face of another individual seen as in a mirror, induces 'enfacement' illusion, i.e. the subjective experience of ownership of the other’s face and a bias in attributing to the self, facial features of the other person. Here we recorded visual Event-Related Potentials elicited by the presentation of self, other and morphed faces during a self-other discrimination task performed immediately after participants received synchronous and control asynchronous Interpersonal Multisensory Stimulation (IMS). We found that self-face presentation after synchronous as compared to asynchronous stimulation significantly reduced the late positive potential (LPP; 450-750 ms), a reliable electrophysiological marker of self-identification processes. Additionally, enfacement cancelled out the differences in LPP amplitudes produced by self- and other-face during the control condition. These findings represent the first direct neurophysiological evidence that enfacement may affect self-face processing and pave the way to novel paradigms for exploring defective self-representation and self-other interactions

    Behavioral and electrophysiological correlates of cognitive control in ex-obese adults

    Get PDF
    Impaired cognitive control functions have been documented in obesity. It remains unclear whether these functions normalize after weight reduction. We compared ex-obese individuals, who successfully underwent substantial weight loss after bariatric surgery, to normal weight participants on measures of resistance to interference, cognitive flexibility and response inhibition, obtained from the completion of two Stroop tasks, a Switching task and a Go/NoGo task, respectively. To elucidate the underlying brain mechanisms, event-related potentials (ERPs) in the latter two tasks were examined. As compared to controls, patients were more susceptible to the predominant but task-irrelevant stimulus dimension (i.e., they showed a larger verbal Stroop effect), and were slower in responding on trials requiring a task-set change rather than a task-set repetition (i.e., they showed a larger switch cost). The ERP correlates revealed altered anticipatory control mechanisms (switch positivity) and an exaggerated conflict monitoring response (N2). The results suggest that cognitive control is critical even in ex-obese individuals and should be monitored to promote weight loss maintenance

    Electrophysiological correlates of the BOLD signal for EEG-informed fMRI

    Get PDF
    EEG and fMRI are important tools in cognitive and clinical neuroscience. Combined EEGfMRI has been shown to help to characterise brain networks involved in epileptic activity, as well as in different sensory, motor and cognitive functions. A good understanding of the electrophysiological correlates of the blood oxygen level dependent (BOLD) signal is necessary to interpret fMRI maps, particularly when obtained in combination with EEG. We review the current understanding of electrophysiological-haemodynamic correlates, during different types of brain activity. We start by describing the basic mechanisms underlying EEG and BOLD signals, and proceed by reviewing EEG-informed fMRI studies using fMRI to map specific EEG phenomena over the entire brain (“EEG-fMRI mapping”), or exploring a range of EEGderived quantities to determine which best explain co-localised BOLD fluctuations (“local EEG-fMRI coupling”). While reviewing studies of different forms of brain activity (epileptic and non-epileptic spontaneous activity; cognitive, sensory and motor functions), a significant attention is given to epilepsy because the investigation of its haemodynamic correlates is the most common application of EEG-informed fMRI. Our review is focused on EEG-informed fMRI, an asymmetric approach of data integration. We give special attention to the invasiveness of electrophysiological measurements and the simultaneity of multimodal acquisitions because these methodological aspects determine the nature of the conclusions that can be drawn from EEG-informed fMRI studies. We emphasise the advantages of, and need for, simultaneous intracranial EEG-fMRI studies in humans, which recently became available and hold great potential to improve our understanding of the electrophysiological correlates of BOLD fluctuations

    Relationship between hippocampal structure and memory function in elderly humans

    Get PDF
    With progressing age, the ability to recollect personal events declines, whereas familiarity-based memory remains relatively intact. It has been hypothesized that age-related hippocampal atrophy may contribute to this pattern because of its critical role for recollection in younger humans and after acute injury. Here, we show that hippocampal volume loss in healthy older persons correlates with gray matter loss (estimated with voxel-based morphometry) of the entire limbic system and shows no correlation with an electrophysiological (event-related potential [ERP]) index of recollection. Instead, it covaries with more substantial and less specific electrophysiological changes of stimulus processing. Age-related changes in another complementary structural measure, hippocampal diffusion, on the other hand, seemed to be more regionally selective and showed the expected correlation with the ERP index of recollection. Thus, hippocampal atrophy in older persons accompanies limbic atrophy, and its functional impact on memory is more fundamental than merely affecting recollection

    Electrophysiological pattern of dream experience

    Get PDF
    Dreaming is a common human experience investigated from multiple perspectives over the centuries. Recently, this phenomenon has stimulated scientific interest, becoming a peculiar context to study memory processes and consciousne
    corecore