185,070 research outputs found

    Logical Specification and Analysis of Fault Tolerant Systems through Partial Model Checking

    Get PDF
    This paper presents a framework for a logical characterisation of fault tolerance and its formal analysis based on partial model checking techniques. The framework requires a fault tolerant system to be modelled using a formal calculus, here the CCS process algebra. To this aim we propose a uniform modelling scheme in which to specify a formal model of the system, its failing behaviour and possibly its fault-recovering procedures. Once a formal model is provided into our scheme, fault tolerance - with respect to a given property - can be formalized as an equational ”-calculus formula. This formula expresses in a logic formalism, all the fault scenarios satisfying that fault tolerance property. Such a characterisation understands the analysis of fault tolerance as a form of analysis of open systems and thank to partial model checking strategies, it can be made independent on any particular fault assumption. Moreover this logical characterisation makes possible the fault-tolerance verification problem be expressed as a general ”-calculus validation problem, for solving which many theorem proof techniques and tools are available. We present several analysis methods showing the flexibility of our approach

    Formalization of Universal Algebra in Agda

    Get PDF
    In this work we present a novel formalization of universal algebra in Agda. We show that heterogeneous signatures can be elegantly modelled in type-theory using sets indexed by arities to represent operations. We prove elementary results of heterogeneous algebras, including the proof that the term algebra is initial and the proofs of the three isomorphism theorems. We further formalize equational theory and prove soundness and completeness. At the end, we define (derived) signature morphisms, from which we get the contravariant functor between algebras; moreover, we also proved that, under some restrictions, the translation of a theory induces a contra-variant functor between models.Fil: Gunther, Emmanuel. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Gadea, Alejandro Emilio. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentina. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; ArgentinaFil: Pagano, Miguel Maria. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas; Argentina. Universidad Nacional de CĂłrdoba. Facultad de MatemĂĄtica, AstronomĂ­a y FĂ­sica; Argentin

    Two Decades of Maude

    Get PDF
    This paper is a tribute to José Meseguer, from the rest of us in the Maude team, reviewing the past, the present, and the future of the language and system with which we have been working for around two decades under his leadership. After reviewing the origins and the language's main features, we present the latest additions to the language and some features currently under development. This paper is not an introduction to Maude, and some familiarity with it and with rewriting logic are indeed assumed.Universidad de Målaga. Campus de Excelencia Internacional Andalucía Tech

    How to Work with Honest but Curious Judges? (Preliminary Report)

    Get PDF
    The three-judges protocol, recently advocated by Mclver and Morgan as an example of stepwise refinement of security protocols, studies how to securely compute the majority function to reach a final verdict without revealing each individual judge's decision. We extend their protocol in two different ways for an arbitrary number of 2n+1 judges. The first generalisation is inherently centralised, in the sense that it requires a judge as a leader who collects information from others, computes the majority function, and announces the final result. A different approach can be obtained by slightly modifying the well-known dining cryptographers protocol, however it reveals the number of votes rather than the final verdict. We define a notion of conditional anonymity in order to analyse these two solutions. Both of them have been checked in the model checker MCMAS

    Immunotronics - novel finite-state-machine architectures with built-in self-test using self-nonself differentiation

    Get PDF
    A novel approach to hardware fault tolerance is demonstrated that takes inspiration from the human immune system as a method of fault detection. The human immune system is a remarkable system of interacting cells and organs that protect the body from invasion and maintains reliable operation even in the presence of invading bacteria or viruses. This paper seeks to address the field of electronic hardware fault tolerance from an immunological perspective with the aim of showing how novel methods based upon the operation of the immune system can both complement and create new approaches to the development of fault detection mechanisms for reliable hardware systems. In particular, it is shown that by use of partial matching, as prevalent in biological systems, high fault coverage can be achieved with the added advantage of reducing memory requirements. The development of a generic finite-state-machine immunization procedure is discussed that allows any system that can be represented in such a manner to be "immunized" against the occurrence of faulty operation. This is demonstrated by the creation of an immunized decade counter that can detect the presence of faults in real tim
    • 

    corecore