458 research outputs found

    Electric potential variations associated with yearly lake level variations

    Get PDF
    Electric potential variations have been recorded from November 1995 to February 1996 and continuously since October 1996 at 14 measurement points on a one km wide ridge separating two lakes in the French Alps. The levels of the lakes vary by several tens of meters on a yearly cycle, inducing stress variations and fluid percolation. At one point, unambiguous variations as large as 120 mV are observed over a year, linearly correlated with the levels of the lakes with a magnitude of 2 mV per meter of water level change. This particular measurement point lies at the edge of a SP anomaly, which supports the presence of a localized zone of ground water flow forced by the lake level, suggesting an electrokinetic mechanism. The observed correlation implies a ζ‐potential of the order of ‐8 mV for a 60 Ωm electrolyte, in agreement with laboratory measurements

    Electrostatic and electrokinetic contributions to the elastic moduli of a driven membrane

    Get PDF
    We discuss the electrostatic contribution to the elastic moduli of a cell or artificial membrane placed in an electrolyte and driven by a DC electric field. The field drives ion currents across the membrane, through specific channels, pumps or natural pores. In steady state, charges accumulate in the Debye layers close to the membrane, modifying the membrane elastic moduli. We first study a model of a membrane of zero thickness, later generalizing this treatment to allow for a finite thickness and finite dielectric constant. Our results clarify and extend the results presented in [D. Lacoste, M. Cosentino Lagomarsino, and J. F. Joanny, Europhys. Lett., {\bf 77}, 18006 (2007)], by providing a physical explanation for a destabilizing term proportional to \kps^3 in the fluctuation spectrum, which we relate to a nonlinear (E2E^2) electro-kinetic effect called induced-charge electro-osmosis (ICEO). Recent studies of ICEO have focused on electrodes and polarizable particles, where an applied bulk field is perturbed by capacitive charging of the double layer and drives flow along the field axis toward surface protrusions; in contrast, we predict "reverse" ICEO flows around driven membranes, due to curvature-induced tangential fields within a non-equilibrium double layer, which hydrodynamically enhance protrusions. We also consider the effect of incorporating the dynamics of a spatially dependent concentration field for the ion channels.Comment: 22 pages, 10 figures. Under review for EPJ

    Frequency-dependent streaming potentials: a review

    Get PDF
    The interpretation of seismoelectric observations involves the dynamic electrokinetic coupling, which is related to the streaming potential coefficient. We describe the different models of the frequency-dependent streaming potential, mainly the Packard's and the Pride's model. We compare the transition frequency separating low-frequency viscous flow and high-frequency inertial flow, for dynamic permeability and dynamic streaming potential. We show that the transition frequency, on a various collection of samples for which both formation factor and permeability are measured, is predicted to depend on the permeability as inversely proportional to the permeability. We review the experimental setups built to be able to perform dynamic measurements. And we present some measurements and calculations of the dynamic streaming potential

    A 1-D modelling of streaming potential dependence on water content during drainage experiment in sand

    Full text link
    The understanding of electrokinetics for unsaturated conditions is crucial for numerous of geophysical data interpretation. Nevertheless, the behaviour of the streaming potential coefficient C as a function of the water saturation Sw is still discussed. We propose here to model both the Richards' equation for hydrodynamics and the Poisson's equation for electrical potential for unsaturated conditions using 1-D finite element method. The equations are first presented and the numerical scheme is then detailed for the Poisson's equation. Then, computed streaming potentials (SPs) are compared to recently published SP measurements carried out during drainage experiment in a sand column. We show that the apparent measurement of DV / DP for the dipoles can provide the SP coefficient in these conditions. Two tests have been performed using existing models for the SP coefficient and a third one using a new relation. The results show that existing models of unsaturated SP coefficients C(Sw) provide poor results in terms of SP magnitude and behaviour. We demonstrate that the unsaturated SP coefficient can be until one order of magnitude larger than Csat, its value at saturation. We finally prove that the SP coefficient follows a non-monotonous behaviour with respect to water saturation. Key words: Electrical properties; Electromagnetic theory; Hydrogeophysics; Hydrology; Permeability and porosity; electrokinetic; streaming potential; self-potential; water content; water saturation; unsaturated condition; finite element modelin

    AC Electrokinetic Effect of V-Electrode Pattern on Microfluids

    Get PDF
    Electrokinetics has been used for guiding, pumping, and manipulating microfluidic particles for many years in the field of Biomedical, Microbiology, Chemistry, Medicine, and other fields of research, which makes it a ubiquitous tool for the multidisciplinary research on microfluidics. Between these two Alternating Current (AC) Electrokinetics have been proven to be more feasible for the researcher than the other one. In this research, we have investigated AC Electrokinetics and s effect on a new electrode configuration called V-electrode pattern. The V-electrode has been inspired and modified from the previous research work on the Orthogonal Electrode Pattern. In this research, this new electrode configuration has been analyzed using different types of setups, fabrication methods, and different fluidic conditions

    Electrokinetic techniques for the determination of hydraulic conductivity

    Get PDF
    International audienceIn a porous medium the fluid flux and the electric current density are coupled, so that the streaming potentials are generated by fluids moving through porous media and fractures. These electrokinetic phenomena are induced by the relative motion between the fluid and the rock because of the presence of ions within water. Both steady-state and transient fluid flow can induce electrokinetics phenomena. It has been proposed to use this electrokinetic coupling to detect preferential flow paths, to detect faults and contrast in permeabilities within the crust, and to deduce hydraulic conductivity. This chapter proposes a comprehensive review of the electrokinetic coupling in rocks and sediments and a comprehensive review of the different approaches to deduce hydraulic properties in various contexts

    Fluid flow near reservoir lakes inferred from the spatial and temporal analysis of the electric potential

    Get PDF
    Electric self-potential (SP) variations have been monitored continuously from 1995 to 1998 at 14 points on a ridge separating the Roselend and La Gittaz reservoir lakes in the French Alps. The lakes have level variations of at least 50 m over yearly cycles. Seasonal variations of SP associated with lake-level variations are observed on five points of the array. For three points located on the banks of the lakes, a positive correlation to the lake-level variations is observed with a maximal amplitude of about 180 mV, corresponding to an average response of 2.4 mV per meter of water. For two points located on the bottom of each lake, the correlation is negative, with a maximal magnitude of about −50 mV, corresponding to an average response of −1.1 mV per meter of water. Two independent temporary electrical arrays located on the banks of each lake confirm these measurements and allow a better spatial characterization of the sources associated with the observed SP variations. In particular, near the Roselend lake, the electrical response to lake-level variations is increasing for decreasing altitude. The measured SP variations are proposed to result from the electrokinetic coupling associated with a vertical groundwater flow connecting a constant pore pressure source to the bottom of the lakes. Numerical modeling indicates that the spatial variation of the response and the nonlinear response observed at one point can be explained by leakage currents in the conductive lake water. The values of the streaming potential coefficient (SPC), measured in the laboratory with crushed rock samples from the site, range from 14 to 50 mV/0.1 MPa for an electrolyte resistivity of 40 Ω m and are compatible, to first order, with the magnitude of the observed seasonal SP variations. A detailed quantitative electrokinetic modeling is currently limited mainly by the poor knowledge on the contribution of electrical leakage currents and the local variability of the SPC. This experiment indicates that spatial and temporal variations of the electric potential are promising tools to characterize and monitor shallow groundwater flow and provide practical data for the investigation of groundwater flow associated with volcanic or tectonic activity

    Hydrodynamics within the Electric Double Layer on slipping surfaces

    Full text link
    We show, using extensive Molecular Dynamics simulations, that the dynamics of the electric double layer (EDL) is very much dependent on the wettability of the charged surface on which the EDL develops. For a wetting surface, the dynamics, characterized by the so-called Zeta potential, is mainly controlled by the electric properties of the surface, and our work provides a clear interpretation for the traditionally introduced immobile Stern layer. In contrast, the immobile layer disappears for non-wetting surfaces and the Zeta potential deduced from electrokinetic effects is considerably amplified by the existence of a slippage at the solid substrate.Comment: accepted for publication in Physical Review Letter
    corecore