2 research outputs found

    RESEARCH TOWARDS THE DESIGN OF A NOVEL SMART FLUID DAMPER USING A MCKIBBEN ACTUATOR

    Get PDF
    Vibration reducing performance of many mechanical systems, decreasing the quality of manufactured products, producing noise, generating fatigue in mechanical components, and producing an uncomfortable environment for human bodies. Vibration control is categorized as: active, passive, or semi-active, based on the power consumption of the control system and feedback or feed forward based on whether sensing is used to control vibration. Semi-active vibration control is the most attractive method; one method of semi-active vibration control could be designed by using smart fluid. Smart fluids are able to modify their effective viscosity in response to an external stimulus such as a magnetic field. This unique characteristic can be utilised to build semi-active dampers for a wide variety of vibration control systems. Previous work has studied the application of smart fluids in semi-active dampers, where the kinetic energy of a vibrating structure can be dissipated in a controllable fashion. A McKibben actuator is a device that consists of a rubber tube surrounded by braided fibre material. It has different advantages over a piston/cylinder actuator such as: a high power to weight ratio, low weight and less cost. Recently McKibben actuator has appeared in some semi-active vibration control devise. This report investigates the possibility of designing a Magnetorheological MR damper that seeks to reduce the friction in the device by integrating it with a McKibben actuator. In this thesis the concept of both smart fluid and McKibben actuator have been reviewed in depth, and methods of modelling and previous applications of devices made using these materials are also presented. The experimental part of the research includes: designing and modelling a McKibben actuator (using water) under static loads, and validating the model experimentally. The research ends by presenting conclusions and future work

    Electroosmotic Soft Actuators

    Get PDF
    This dissertation details the research involved in creating the first paper-based soft actuator driven by electroosmosis. To accomplish this, research breakthroughs were made in the fields of electrokinetic pumping and device manufacturing using soft materials. Electroosmosis is an electrically induced microfluidic flow phenomenon. When an electric field is applied to the fluid, across the microchannels, electroosmotic flow occurs in the direction of the applied electric field. In this work, liquid was electroosmotically displaced within a flexible microfluidic device to actuate an elastomeric membrane. The goal of this work was to create a fully sealed fluidic actuator. It was therefore necessary to encapsulate the pumping fluid within the device, and to maximize pressure it was necessary to eliminate compliance caused by trapped gases. Electrolytic gas formation is well known to disrupt pumping in DC electroosmotic systems that use water as the pumping liquid. In this work, electrolysis was eliminated by replacing water with propylene carbonate (PC): PC was determined to be electrochemically stable up to at least 10 kV, in the absence of moisture or salt contaminants. Bubble-free electroosmotic pumping with PC was achieved within sealed miniature actuators, which could be continuously operated for at least one hour. Benchtop fabrication techniques were developed to build encapsulated fluidic actuators composed entirely of soft, flexible materials. Stretchable electrochemically stable electrodes were made using a conductive paint made by mixing carbon nanoparticles into a silicone base. High-density microchannel networks were incorporated by using paper and other flexible porous materials, instead of conventional planar replica-molded microchannels. The device was filled with pumping fluid without the use of external tubing, and then encapsulated by casting a film of elastomer over the filled reservoir to form the actuating membrane. The resulting actuators were flexible and stretchable, demonstrating significant membrane deformations (hundreds of micrometers) within seconds of applying the electric field and ability to lift large loads (tens of grams). These polymeric electroosmotic actuators are unique among electroactive polymer actuators because they are able to simultaneously generate high force as well as large stroke. It is envisioned that this research will pave the way for the creation of artificial muscles and smart shape-changing materials that can be actuated by electroosmosis
    corecore