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SUMMARY  

Vibration reducing performance of many mechanical systems, decreasing the quality of 

manufactured products, producing noise, generating fatigue in mechanical components, and 

producing an uncomfortable environment for human bodies. Vibration control is categorized 

as: active, passive, or semi-active, based on the power consumption of the control system and 

feedback or feed forward based on whether sensing is used to control vibration. 

Semi-active vibration control is the most attractive method; one method of semi-active 

vibration control could be designed by using smart fluid. Smart fluids are able to modify their 

effective viscosity in response to an external stimulus such as a magnetic field. This unique 

characteristic can be utilised to build semi-active dampers for a wide variety of vibration 

control systems. Previous work has studied the application of smart fluids in semi-active 

dampers, where the kinetic energy of a vibrating structure can be dissipated in a controllable 

fashion. 

A McKibben actuator is a device that consists of a rubber tube surrounded by braided fibre 

material. It has different advantages over a piston/cylinder actuator such as: a high power to 

weight ratio, low weight and less cost. Recently McKibben actuator has appeared in some 

semi-active vibration control devise. This report investigates the possibility of designing a 

Magnetorheological MR damper that seeks to reduce the friction in the device by integrating 

it with a McKibben actuator. In this thesis the concept of both smart fluid and McKibben 

actuator have been reviewed in depth, and methods of modelling and previous applications of 

devices made using these materials are also presented. The experimental part of the research 

includes:  designing and modelling a McKibben actuator (using water) under static loads, and 

validating the model experimentally. The research ends by presenting conclusions and future 

work. 
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NOMENCLATURE 

Nomenclature Meaning Unit 

  Effective hydraulic area.   

  Length of uncoiled fiber.   

  Viscous damping       

   Critical damping.       

      Diameter of tube when θ=90 .   

   Unstrained diameter of McKibben tube.   

  Instantaneous diameter McKibben tube.    

  Force.   

   Column friction force   

    Contractile force of McKibben tube.   

   Viscous friction force   

   Friction force   

     Maximum force of McKibben tube.   

  Applied magnetic field to smart fluid     

   Strain invariants.   

  Linearization actuator stiffness.     

       Stiffness of fiber material.     

  Stiffness constant of spring.     

  Instantaneous length of McKibben tube.   

   Unstrained length of McKibben tube.   

   Axial displacement.   

     Maximum length of McKibben tube.   

     Minimum length of McKibben tube.   

  Mass    

  Number of turns.   

   Gage pressure.     ⁄  

  Coulomb damping constant of McKibben actuator.    

   Thickness of McKibben tube.   

   Thickness of inner tube.   
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  Actuator velocity at the top of McKibben tube.      ⁄  

   Volume change of McKibben tube.    

  Volume of a McKibben tube.    

   Volume is occupied by the inner tube.    

    Input work.     

     Output work.     

  Strain energy density function      

  Strain   

  Fiber’s angle.  Degree 

   Shear modulus of rubber.     ⁄  

  Viscosity of fluid       ⁄  

  Shear stress in smart fluid     ⁄  

   Yield shear stress in smart fluid     ⁄  

  damping ratio   

   Natural frequency       

 ̇ Shear strain rate       

              Principal stretches.     
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CHAPTER 1: INTRODUCTION  

1-1 Vibration Control 

Vibrations have bad effects on the performance of many structures and applications. 

Generally, there are three main approaches used to control vibrations; passive vibration 

control, active vibration control and semi-active vibration control. A passive system 

comprises springs and dampers which are the most traditional elements used to avoid 

unwanted vibrations. These elements are attached to the total mass of the system to form a 

suspension system. This suspension system reacts passively in opposition to the deflection 

caused by vibrations, and this movement causes the vibrations to be minimized. Due to its 

inherent simplicity and reliability, passive approaches are used in many varieties of 

engineering systems [1]. However, their performance is limited and constrained for structures 

that experience a wide variety of excitation conditions. 

The second technique is active vibration control. In this method, an actuator and sensors are 

used instead of damping elements to react against unwanted vibration. This technique can 

usually achieve a high performance for eliminating vibration, and it has been used in different 

fields, such as: industrial applications [2], and in the field of transportation [3]. However, 

complexities in design, high cost and energy consumption are great disadvantages of active 

vibration control. 

The third method is a semi-active vibration control; this has been developed to take 

advantage of the best features of both passive and active control systems. It is used to cope 

with the high cost and to maintain the optimum performance for an active vibration method. 

This can be achieved by operating semi-active dampers to produce force when there is 

necessity for vibration suppression, and switching off this force when energy input is required 

[4]. Semi active control can also be achieved by using elements that have adjustable 

parameters; smart materials and structures are used widely in this field. Smart material has 

the ability to modify its properties in response to vibrations and excitations, therefore it is 

able to provide excellent vibration control [5]. Examples of smart materials include: Shape 

Memory Alloy (SMA), piezoelectric material and smart fluid. McKibben actuators, which are 

utilized in human interaction devices in many applications [6], have been used in semi active 

vibration control as a variable damping structure [7].  
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Smart fluids are one example of smart materials, and are considered as the one of most 

superior means of controlling vibration [8], and lots of semi-active applications have been 

employed successfully. However, the majority of conventional smart fluid dampers have 

been designed by using a hydraulic actuator, which has a dry seal friction. This friction can 

have a negative effect on the vibration performance of the system. 

To reduce the friction in the device, our aim is to use a McKibben actuator instead of a 

hydraulic actuator. This report investigates the possibility of designing a Magnetorheological 

MR damper by using a McKibben actuator instead of piston and cylinder actuator. This 

actuator has advantages over cylinder and piston dampers such as: high power/weight ratio 

and low cost. Although it has been used to into many applications in human interaction 

devices since the 1950s, it was recently noticed that this material has a variable damping 

structure. Therefore, it has appeared in some semi-active vibration control applications [7]. 

This research is to investigate the possibility of designing a novel smart fluid damper that 

seeks to reduce the friction in a device by integrating McKibben actuator. Therefore, the 

concept of smart fluid and McKibben actuator will now be presented in more detail.  

1-2 Smart Fluid  

Smart fluid is a fluid that changes its properties in response to an applied electric or magnetic 

field. It consists of micron sized particles suspended in an inert carrier liquid.  There are two 

types of smart fluid; Electrorheological fluid (ER) and Magnetorheological fluid (MR). In ER 

fluid, the carrier liquid is dielectric and particles are semiconductors for electricity, while 

magnetisable particles dispersed in a non-magnetisable carrier liquid are used for MR fluids. 

The flow behaviour of smart fluid is like a Newtonian fluid, where the relationship between 

the shear stress and shear strain rate of the fluid is linear.  By applying an electric/magnetic 

field to the smart fluid, the behaviour of the fluid will be more similar to Bingham plastic 

fluid behaviour as shown in Figure 1-1. To interpret this modification microscopically, the 

particles are spread within the smart fluid without an electric/magnetic field; by applying an 

appropriate field, the particles are aligned into chains. Once aligned in this manner, the state 

of the fluid will change from a free-flowing liquid state to a solid-like state, and the 

behaviour of the fluid will be more like Bingham plastic fluid.  
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As a result of applying an electric or magnetic field, a yield stress develops in the fluid. Smart 

fluid is capable of developing yield stress in only a few milliseconds. This yield is a function 

of an applied field, and increasing an applied field will lead to increasing the yield stress. 

Figure 1-2 show the change of yield stress and apparent viscosity by changing the applied 

field. The shear stress in smart fluid τ can be calculated by using the next expression.  

            ̇    ̇                                                                                                         1-1 

Where:    is the yielding shear stress controlled by the applied field  ,   is viscosity of fluid 

without applied magnetic field,  ̇ is the shear strain rate, and sgn(·) is the signum function.  

Basically, there are three elements in a smart fluid: carrier fluid, suspended particles and 

stabilizing additives. For further details, a physical composition and operating mechanism 

have been demonstrated by Sims 1999 [9]. MR was a significant commercial success before 

ER fluid, due to advantages such as: MR fluid is capable of generating much higher yield 

stress; it is not sensitive to contaminants and it is less affected by variations of temperature 

[10]. Consequently, this research will focus on Magnetorheological Fluid. 

 

Figure 1-1 Smart fluid. (a) Characterizing of smart fluid without applying an external field, 

(b) characterizing of smart fluid by applying an external field. 
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a                                                                              b 

Figure 1-2 Variation of the shear stress and apparent viscosity with shear strain for an MR fluid under 

different magnetic field strengths:  (a) Shear stress(b) the apparent viscosity [11]. 

 

1-3 Motivation for this study  

The majority of smart fluid dampers are designed with normal hydraulic actuators that use a 

cylinder, piston and valve housed in the cylinder. The kinetic energy of a vibrating structure 

can be dissipated in a controllable manner by applying an electric/magnetic field to the valve. 

There are two kinds of friction used in the damping phenomenon which appear in a hydraulic 

actuator: Coulomb friction and viscous friction [12]. Coulomb friction represents friction 

associated with mechanical surfaces contacting together such as bearing friction, and friction 

in hinges. This friction is a constant and does not depend on the velocity of the body. Viscous 

friction represents the force required to push fluid through restrictive passages that may exist 

in the actuator such as orifices and valves, and it depends on the velocity of the body. The 

total actuator friction is the sum of Coulomb and viscous friction. Figure 1-3 shows these 

types of friction. 
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Figure 1-3 Friction in actuator: (a) Coulomb friction  , (b) Viscous friction  , (c) Total friction  .  
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Although the friction has a positive effect in the damping devices, the dry sealing friction 

makes a vibration transmission to the equipment; this tiny vibration may cause poor accuracy 

for sensitive devices [13]. Friction could have a bad effect on the system when applied force 

is close to overcoming the static friction. The behaviour is called stick-slip motion. Stick-slip 

motion occurs at close to zero velocity and is in the form of a sudden jerking motion. 

Typically, the static friction coefficient between two surfaces is larger than the kinetic friction 

coefficient. If an applied force is large enough to overcome the static friction, the friction 

reduces from static to dynamic friction. The reduction of the friction can cause a sudden jump 

in the velocity of the movement. The system of two degree freedom will be taken as an 

example to illustrate this effect. 

 Two-degree-of-freedom System: 2DOF System 

Two degree of freedom systems are systems that require two independent coordinates to 

describe their motion; an example of this system is shown in Figure 1-4. The solution of these 

equations could be described by either time domain or frequency domain. In time domain, it 

is possible to plot time and amplitude of displacement or velocity or acceleration, while in 

frequency domain the relationship between frequency and amplitude can be plotted.  

 

 

 

 

 

 

 

 

 

Figure 1-4 system of two degree of freedom. 

By assuming the parameters of the system as displayed in Table 1-1, the Coulomb friction 

between masses has a value      ,  and applying force  =30N with varied frequency from 

0.1 to 16 rad/s. The response of a structure is often characterised by its Frequency Response 

Function (FRF). Frequency Response Function (FRF) shows the amplitude of response at 

different frequencies for unit amplitude forcing. Figure 1-5 shows the magnification factor 
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motion. It is calculated by using  
  

 
.  The stiffness of    and force   are inputs of the system 

as shown in Table 1-1, while the value of amplitude of dynamic deflection    was 

determined by using Matlab Simulink. The Frequency Response Function (FRF) in Figure 1-

5 is achieved by using the Matlab Simulink and Matlab code as presented in Appendix A. 

The Figure shows; the amplitude of magnification factor has a low value at 4rad/s, while its 

maximum value is at 11rad/s. It also shows a smooth motion of the mass   , which is 

because applied force has overcome the Coulomb friction. 

Table 1-1: Value of parameters  

Parameters Value 

         

          

            

              

               

              

      

 

 

Figure 1-5 magnification factor FRF of mass   . 
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However, in the case where Coulomb friction has a high value, a tendency will exist for the 

motion to be intermittent rather than smooth. The two masses    and    will stick to each 

other and act as one mass. This will lead to an increase of the vibrations. Figure 1-4 shows 

the frequency response function (FRF) of the system at different values of Coulomb friction. 

The Figure shows that there is a jerk motion when Coulomb friction has a high value. 

 

 

Figure 1-6 Magnification factor FRF of mass   under different value of Coulomb friction. 
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1-4 McKibben Actuators 

The McKibben actuator is a device that converts fluid pressure to force; it consists of an 

internal rubber tube inside a braided mesh shell.  When the inner tube is inflated, the internal 

volume of the actuator will increase causing the actuator to expand axially as shown in Figure 

1-7. These actuators were introduced in the 1950s. The McKibben actuator is usually used to 

mimic the behaviour of skeletal muscle [6]. It is also used in other applications for instance: 

robots [15], medical equipment [16] and industrial applications [17].  

Although the working fluid in a McKibben actuator is usually air, there are some applications 

using water as a working fluid, especially in exoskeleton devices and devices working in a 

water medium, such as an actuator for an underwater robot introduced by Kenneth et al.[18].  

Shan et al. developed a variable stiffness adaptive structure based upon fluidic flexible matrix 

composites (    ) and water as the working fluid [19].  The fibres in an      actuator can 

be placed at any one angle or combination of angles.  This material can be designed to bend 

and it also provides a greater axial force.                   

The advantages of the McKibben structure tubes are that it uses inexpensive and readily 

available materials, and it can easily be integrated into a structure. A McKibben actuator also 

offers others advantages such as being light weight and with low maintenance costs when 

compared to traditional cylinder actuators. A comparison  of  the force output of a pneumatic 

McKibben actuator and a pneumatic cylinder was made, and the result shows that the 

McKibben actuator produces a higher ratio of power to weight than the pneumatic cylinder 

actuator [20]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1-7: Concept of McKibben actuator. 
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In summary, two types of working fluids appeared in previous applications of McKibben 

actuators: air in McKibben muscles (i.e. a pneumatic actuator), and water in      

applications and in some applications of artificial muscles. The present study is investigating 

the possibility of using a magneto-rheological fluid as a new working fluid in a McKibben 

actuator, and the capability of using a new application in controlling structural vibration.  

 

1-5 Objectives and Organization of the Research 

The motivation of this project is to investigate a novel design of smart fluid damper that seeks 

to reduce the friction in a device. This thesis is the first step toward accomplishing this 

mission, therefore the aim of this project is to study the possibility of designing a low friction 

Magnetorheological (MR) damper using the McKibben actuator concept. To achieve this aim 

the following objectives should be achieved. 

 Investigate and understand the principles of smart fluids, especially concerning their 

modelling control. 

 Investigate and understand the principles of flexible composite material and the 

McKibben actuator. 

 Reproduce the basic modelling approaches of a McKibben actuator. 

 Design and commission a rig of fluidic flexible matrix composite materials, and 

model and validate the system under static load. 

1-6 Structure of the Research 

This research consists of five chapters which are organized as follows: 

Chapter 1: This chapter provides the different methods of vibration control and advantages 

of each method, and the aim and objectives of the research are also presented in the chapter. 

Chapter 2: The principles of smart fluids, previous applications and quasi static and dynamic 

modelling of smart fluid are also reviewed; the chapter ends with a literature review on the 

control methods of smart fluid devices. 

Chapter 3: This chapter introduces the concept of a McKibben actuator, previous 

applications and methods of modelling of these materials respectively. 
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Chapter 4: The experimental work is shown in this chapter, which includes: designing the 

test rig, a basic model of a rig made of McKibben actuator and improvements to the basic 

model. It also provides the validation of the model under static load experimentally.  

Chapter 5: This is the last chapter which provides the conclusions of this research and future 

work. 
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CHAPTER 2: LITERATURE REVIEW OF SMART FLUIDS 

2-1 Background  

Smart fluids are non-colloidal suspensions of magnetisable/electrical particles that are of the 

order of tens of microns (20-50 microns) in diameter. The formulation of Electrorheological 

fluid (ER) was described by Willis Winslow who achieved a US patent regarding these fluids 

in 1947, while Magnetorheological fluid (MR) was developed by Jacob Rabinow at the US 

National Bureau of Standards in the late 1940s [21]. There was a flurry of interest in these 

fluids during the 1950s, but this interest quickly waned, probably due to difficulties in 

preventing abrasion and particle sedimentation within the fluid [22]. There was a resurgence 

in smart fluid research that was primarily due to Lord Corporation's research and 

development, which succeeded in launching several commercial devices in the 1990s [23].  

One of the earliest commercial devices that used MR fluid was an MR fluid brake in 1995, 

which was used in the exercise industry [24]. For vibration control, an MR fluid damper for 

truck seat suspension was introduced [10], as well as an MR fluid shock absorber for oval 

track automobile racing [10]. Lord Corporation  has also developed a special MR fluid that 

will never settle out, and this damper is used in the stabilization of buildings during 

earthquakes [10]. 

Apparently, MR fluid has received significant commercial success, while ER fluid is still in 

the prototype stage. The reasons for this can be explained by considering the relative merits 

of ER and MR fluids [10, 24]. These relative merits are illustrated below: 

- Although the power requirements of ER fluid and MR devices are similar (about 50 

w), the value of the operating voltage is extremely varied. An ER device is required to 

be supplied with high voltage (2-5 KV), while MR fluid is excited by a magnetic 

field, which requires a low voltage source (12-24V). This low voltage is the biggest 

advantage for preferring g MR fluid over ER fluid. 

- MR fluid is capable of generating yield stress much higher than yield stress generated 

by ER fluid. MR fluid could generate a dynamic yield stress of 100 kPa, while 

generating yield stress by ER is in the range of 3-5 kPa. 

- For sensitising of temperature, the effect of temperature in MR fluid is less 

remarkable than ER fluid. MR fluids have a wider range of operating temperatures. 

MR is used from        to        with only slight differences in yield stress. 
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- The advantage of ER is design easier than MR devices; the ER device is not requiring 

designing magnetic circuit, while MR device is requiring once. 

Clearly, MR fluid has greater potential for commercial exploitation, so this research will 

focus on MR fluid more than ER fluid. 

 

2-2 Smart Fluid Devices 

A variety of smart fluids have been introduced in both research and commerce. Basically, 

these devices use one of three basic modes of operation: flow mode, shear mode, and squeeze 

mode. Moreover, any combination of these modes could be used depending on the function 

of the system. The first mode is flow mode, which is also called valve mode and it is a most 

important fundamental configuration of smart fluid devices. The fluid is forced to flow 

between two fixed electrode/poles, as illustrated in Figure 2-1. The applied field acts as a 

flow control valve, and the execution of these devices can be adjusted via control of an 

electric/magnetic field, which is vertical to flow direction. This type is widely used in many 

applications such as damping devices, actuators and prosthesis devices [10, 25].  

 

 

 

 

 

                                a                                                                            b 

Figure 2-1: Concept of flow device: (a) without magnetic field. (b) by magnetic field.  

 

 

The second mode is a shear mode; the movement type of this mode is shown in Figure 2-2, 

the fluid is located between two electrodes or poles, whereby only one electrode moves in 

relation to the other. This movement of the electrode can be either translational or rotational, 

and a magnetic field is applied perpendicularly to the direction of motion of these shear 

surfaces. Shear mode MR dampers can be carried out using three different configurations: 

translational linear motion, rotational disk motion, and rotational drum motion as shown in 

Figure 2-3. These three  types of shear mode damper using Magnetorheological (MR) fluids 

are theoretically analyzed in [26].  Simple design and control, fast response, and simple 
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interface between electrical power input and mechanical output are magnificent features of 

the direct shear mode that make MR fluid technology suitable for many applications such as 

dampers, brakes, clutches and polishing devices. This model is widely used in clutches, 

brakes, and it is also used in dampers [27, 28]. 

 

 

 

 

 

                              A                                                                          b 

Figure 2-2: Concept of shear device: (a) without magnetic field (b) By applying magnetic field 
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Figure 2-3: Types of Shear Mode device: (a) Liner Shear Mode, (b) Drum Shear Mode, (c) Disc Shear 

Mode [26]. 
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The third working mode is the squeeze mode; it operates when a force is applied to the 

electrodes in the parallel direction of an applied field to decrease or increase the distance 

between the electrodes as it is displayed in Figure 2-4. The squeeze mode was presented by 

Stanway et al. [29], who found that the yield stress produced by the squeeze mode is several 

times greater than the yield stress produced by the shear mode. The displacements engaged in 

squeeze mode are relatively very small (a few millimetres) but require large forces. This is 

used in small applications such as anti-vibration mounts devices. Examples of this type 

appeared in some papers [30, 31]. 
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Figure 2-4 Concepts of squeeze modes: (a) Basic concept, (b) Compression in squeeze mode, (c) 

tension in squeeze mode. 
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head and cylinder wall can form the orifice of the valve; moving the piston relative to the 

cylinder results in a shear mode, while moving the fluid through this orifice produces a flow 

mode as shown in Figure 2-5 (a) [32, 33]. The combination of squeeze and shear modes of 

MR fluids is another experimental study introduced by Kulkarni et al. as shown in Figure 2-5 
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(b) [34]. The upper plate was forced to undergo simultaneous axial motion (squeeze mode) 

and torsional oscillations (shear mode), and the performance of the combination of squeeze 

and shear modes of MR fluids in dynamic loading was examined. He concluded that the yield 

stress is stronger if shear mode introduced the pure squeeze mode, while the introduction of 

squeeze can intensify or weaken the MR effect produced by the pure torsional mode. 

  

 

 

 

 

 

 

 

 

 

 

                                a                                                                          b 

Figure 2-5: Mixed mode damper: (a) Combination of shear/flow models of MR damper [23] [33], (b) 

Combination of squeeze/shear modes of MR damper [34]. 

 

2-3 Smart Fluid Dampers and Mounts 

The properties of smart fluids are utilized in many applications including rotary brakes, 

clutches, prosthetic devices, and it is even used for applications such as polishing and 

grinding. Among these fields, the vibration control field has been the most widely studied and 

developed for commercial applications. Therefore, this section will focus on smart fluid 

dampers and mounts. 

Numerous dampers have been designed to utilize the benefits of smart fluids. These dampers 

can be categorized into three main types of smart fluid damper: mono tube damper, twin tube 

damper, and double-ended damper.  The mono tube damper has one fluid reservoir, and 

consists of a single piston moving inside a cylinder; at the end of the cylinder there is an 

accumulator to accommodate the change in volume. The volume enclosed between the 

housing is called a reservoir of smart fluid, as shown in Figure 2-6.  Commercially, this type 

of damper is introduced as a heavy duty vehicle seat suspension system [10]. 
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Figure 2-6 Mono tube MR damper section view [35]. 

 

 

There are two fluid reservoirs in a twin tube damper, one inside the other. There are also two 

housings, an inner and outer housing. The inner housing drives the piston rod assembly, and 

the volume enclosed is named as the inner reservoir in the same way as a mono tube damper. 

Also, the volume that is defined by the space between the inner housing and the outer 

housing is referred to as the outer reservoir, as shown in Figure 2-7. An example of this type, 

a semi-active Magnetorheological primary suspension on a heavy truck application has been 

designed as twin tube MR damper [36]. 

 

 

 

 

 

 

 

 

 

Figure 2-7 Twin tube MR damper [37]. 

 
 

The final type of smart damper is called a double-ended damper; the double-ended damper 

does not require a reservoir for changes in volume.  There is a piston which is double ended 

inside the cylinder and this cylinder contains a magnetic circuit in some parts and during 

movement of the piston in this part, an effective fluid orifice is produced. Double-ended MR 

dampers have been used for controlling building sway motion caused by wind gusts and 

earthquakes , and gun recoil applications  [35]. Figure 2-8 illustrates this type. 
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Figure 2-8 Double-ended MR damper [35]. 

 
 

Mounts are used to isolate sensitive equipment from vibratory sources by suppressing 

transmitted vibration. Usually there are no pistons in this device, and displacement levels are 

restricted; the prominent features of smart fluid appeared in the 1980s [38]. In the semi-active 

mount, the damping force can be adjusted to eliminate undesired vibration of the system by 

integrating variable orifice valves or fixed orifice valves, charged by field-responsive 

Electrorheological (ER) fluids [38] or Magnetorheological (MR) fluids [39]. An example of 

an isolator is shown in Figure 2-9a.  This mount consists of two chambers of smart fluids 

connected by an ER valve and there is an inclined rubber surface  on the upper chamber to 

suppress a static load and to pump fluid to another chamber during dynamic load, while the 

lower chamber ends with an accumulator to store fluid during compression [38]. Similar 

designs have been introduced by using MR fluids as illustrated in Figure 2-9 [39] 
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Figure 2-9: Mount of Smart Fluid. (a) ER Mount [38], (b)  MR Mount [39]. 
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2-4 Modelling of Smart Fluid 

Models of smart fluid devices can be used to choose parameters that affect the design and 

shape of the device.  They also help to improve the capability of understanding the dynamics 

and mechanics of the system which leads to improved performance. The dynamic responses 

of an MR damper under various conditions are shown in Figure 2-10 [40]. The features that 

are observed from the response are: 

 Hysteresis phenomenon: This phenomenon is clear in a force-velocity curve Figure 2-

10 (c), and its direction is anti-clockwise. 

 Pre-yield and post yield: there are two rheological regions of smart fluids: pre-yield 

and post yield. Yield point is placed between these regions. 

 Roll-off-effect: the force-velocity curve in Figure 2-10 (c) shows rapid decreasing   in 

the velocity when the velocity is approaching zero, this is due to bleed in the fluid 

between the piston and cylinder which is called the roll-off effect [41]. 

 Passive behaviour: a smart fluid damper is considered a failsafe device, even if no 

current is applied; the damper has the ability to dissipate vibration as a traditional 

device, Figure 2-10 (a) shows that the damping force is not zero when the current is 

zero. 

Simplicity and accuracy in results are essential in order to achieve a proper model; many 

researchers have presented a variety of smart fluid models.  Essentially, these models are 

classified into two main types; the first one is a quasi-steady model which predicts the 

behaviour of a steady flow condition, and the second is a dynamic model which predicts the 

inertia and compressibility of fluid. Wang et al. also introduced other classifications, 

according to the modelling methods and parameters which are used. Models are divided into 

parametric and non-parametric, while models are divided into dynamic models and inverse 

dynamic models according to reversibility [11]. In this research, the first classification only 

quasi steady and dynamic models will be considered. 

Smart fluid quasi-steady behaviour is usually described as a Bingham plastic; development 

and experimental validation of quasi-steady smart fluid damper models have been introduced. 

Various non-dimensional forms of the Bingham plastic equation have been introduced, for 

instance, Phillips [42] developed a set of non-dimensional variables and the corresponding 

equations to determine the pressure gradient through a duct. Stanway et al [38] developed an 

alternative non-dimensionalization scheme for flow mode dampers utilizing a friction 

coefficient, Reynolds number, and the Hedstrom number. Wereley and Pang [32] presented a 
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set of non-dimensional groups with which to characterize the equivalent viscous damping 

constant of smart fluid dampers; the three non-dimensional numbers are the Bingham 

number, the non-dimensional plug thickness, and the area coefficient which is defined as the 

ratio of the piston head area to the annular area between the electrodes. 
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Figure 2-10 :Measured damping forces of smart fluid damper: (a) force Vs time (b) force Vs 

displacement, (c) force Vs velocity [40]. 

 

 

To simplify the quasi-steady analysis, the annular duct, which is the most common 

configuration of a smart fluid damper, is modelled as a parallel flat plate or rectangular duct 

geometry [32]. Experimentally, it was noted that smart fluid may exhibit shear thickening or 

shear thinning behaviour for the post yield region at high speed,  and the Herschel-Bulkily 

model takes these changes into account [43].   

For a dynamic parametric model, Gamota and Filisko [44]  introduced an extended Bingham 

model as shown in Figure 2-11 (a). This model is based on Stanway’s model (Bingham 

model). The Bingham model consists  of a parallel arrangement of Coulomb friction elements 

to model the yield response and a viscous damper to model the post yield response [45]. 

Gamota and Filisko added viscous and elastic elements to account for the viscoelastic pre-

yield behaviours. The extended Bingham model  is able to give a good result for observed 

behaviour, but the cost of solution is significantly increased [41]. 

The viscoelastic–plastic model is another dynamic modelling method [46]. In this model, the 

response of the smart fluid is divided into two distinct rheological regions: pre-yield region 

where the response was viscoelastic; and a post-yield region where the response was plastic. 

Each region is modelled separately as shown in Figure 2-11 (b).  The pre-yield region 

exhibits a strong hysteresis, which is typical of a viscoelastic material. This is modelled as the 
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connected in parallel [47]. The post-yield region is plastic with a nonzero yield force, as in 

the nonlinear Bingham plastic. It can be modelled as a viscous damper [37]. Some 

researchers added other region. Yield region is located between two previous regions; the 

response of yield region is viscoelastic–plastic. The yield force is a function of the applied 

field and is a field-dependent parameter that provides the damper with semi-active 

capabilities. 

Spencer introduced the Bouc-Wen model [41].  This model is based on the analysis of the 

Bouc-Wen model of hysteresis behaviour, and then damper and spring are added to the basic 

configuration being shown in Figure 2-11 (c).  A reasonable predication of force-

displacement was achieved in this model; however the force-velocity curve does not give 

reliable results, especially in the roll-off-effect in the yield region. To get significant 

accuracy, additional parameters are added to an improved model as shown in Figure 2-11 (d), 

the degree freedom of system is also increased, the result is improved. this model has been 

validated in a variety of conditions [41]. Similar  to the former model, several mathematical 

expressions that capture hysteresis behaviours have been modified, for instance: the Dahl 

model which used the Dahl expression [48], and the hyperbolic tangent function-based model 

presented by Kwok et al [49]  which used a hyperbolic tangent function and linear functions. 

These models may predict a reliable result, but their drawbacks are that the identification of a 

large number of parameters is essential.  

Sims et al. introduced a new model based upon fluid properties and device geometry. It is 

composed of: a quasi-steady damping function that can be derived from an analytical model; 

mass that to represent fluid inertia; a spring that to represent fluid compressibility; and 

another mass to represent the piston head. All parameters are linked in series as shown in 

Figure 2-11 (e) [50]. The advantages of this model are that its parameters can initially be 

determined based upon constitutive relationships using fluid properties and device geometry 

rather than using observed experimental behaviour. Therefore, an accurate dynamic model 

can be developed before the manufacturing process. 
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Figure 2-11: Dynamic modeling of smart fluid. (a) extended Bingham model, (b) viscoelastic-plastic 

model, (c) Bouc-Wen model, (d) extended Bouc-Wen model, (e) Sims’ Model [11]. 
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2-5 Control of Smart Fluid  

Similar to modelling of smart fluid, it is difficult to achieve reliable control systems due to 

inherent hysteresis behaviour. To design efficient controllers, it is required that two main 

objectives are obtained: the first objective is to calculate an input voltage; and the second 

objective is to determine the output of the device which is a damping force. The non-linear 

behaviour of smart fluid dampers makes the objective of achieving a desired force very 

difficult.  The MR damper based semi-active control system consists of a system controller 

and a damper controller, as shown schematically in Figure 2-12. The system controller 

generates the desired damping force given system conditions. Another controller (damper 

controller) sets the command voltage to the current driver, to track the appropriated damping 

force. The damping force of the MR damper should be predicted and fed to the damper 

controller to generate the command voltage according to the desired damping force generated 

by the system controller. So the predicting damping force and the generating command 

voltage are the two main objectives to control a smart fluid damper [51]. 

There are a wide range of control strategies (experimental and theoretical) that have been 

adopted in order to calculate the desired damping force, for example: the clipped-optimal 

control strategy has been used to control a story test structure, and excellent results have been 

achieved; neural network control methods applied to a quarter car model with an MR damper 

[52]; and fuzzy logical strategy has been applied in quarter car model of a 70-ton rail car [53].  

Many of the control strategies have tracked the force by linearization between input (current) 

and output (damping force) [54]. Other researchers simplify the force tracking strategy by 

using on/off where the applied voltage is either 0 or maximum [55]. The feedback 

linearization strategy has been pursued by scholars; this approach can obtain an  accurate set-

point force without suffering from a variation of parameters [56]. 
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Figure 2-12: Schematic of the MR-damper-based semi-active system [51]. 

 

2-6 Summary of the chapter: 

This chapter contains the literature survey on the smart fluids. It starts by describing the 

concept of smart fluid and making a comparison between two types of smart fluids: 

Electrorheological fluid (ER); and Magnetorheological fluid (MR).  The various modes of 

smart fluid configurations are then described, and application of semi-active damping 

devices, which include dampers and mounts. The survey also included models of  a smart 

fluid damper; the quasi-static models which are used to predict the behaviour of flow fluid 

and used to design the prototype of a device, and dynamic models which predict the 

compressibility and inertia of fluid, which are used to design the control strategy of smart 

fluid devices. A review of smart fluid is concluded by control strategies used for smart fluid 

dampers. 
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CHAPTER 3: LITERATURE REVIEW OF McKIBBEN ACTUATOR  

3-1 Background 

The McKibben actuator is a device that can convert fluid pressure fluid to force. It consists of 

an internal rubber tube inside a flexible matrix composite tube. The flexible matrix composite 

tube (FMC) consists of two families of oriented stiffening fibres (braided fibres) that can 

achieve flexibility in certain directions and is strong in other loading directions. When the 

inner tube is inflated by pressurized air, the volume of the tube will be increased, causing 

constriction in the length of the actuator. In the same manner, reducing internal pressure of 

the tube will lead to minimizing the volume and to expanding the length of the tube. The 

earliest reference of a braided pneumatic actuator was introduced by Robert Pierce in 1936 

[6]. His device was invented to utilize from expanding the tube in the radius direction in the 

mining industry, but he did not mention changing of the tube in the axial direction. This led R 

Gaylord to patent a fluid actuated motor and stroking device in 1958 by introduced the device 

utilizing longitudinal contraction. This actuator is called a pneumatic muscle. The physicist J. 

L. McKibben popularized its use when he used it to activate orthotic devices for upper 

extremities in the 1950s. Since that time the device become known as McKibben muscles. 

The pneumatic muscle entered into the robotic industry in the 1980s, with the development of 

a commercial version of the pneumatic muscle used in industrial robotic arms. A new 

structure was introduced in 2006, called a fluidic flexible matrix composite     . It has a 

similar structure to McKibben actuator, and it consists of the flexible matrix composite tube 

(FMC) and inner rubber tube. However, fibres in an FMC actuator can be located at any one 

angle or combination of angles, whereas fibres in a McKibben actuator are generally 

restricted to equal and opposite angles, therefore the FMC structure is able to generate  a 

higher output force compared to a McKibben actuator [57].   

This chapter will present previous devices that have been made of McKibben actuator. 

Operation methods of these actuators will also be presented. In the final section, methods of 

modelling these materials under static and dynamic load will be introduced. 

   3-2 McKibben Devices 

There are lots of applications made from McKibben actuator introduced commercially or in 

research. These applications could be divided into two main types, depending on the working 
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fluid inside these materials: air such as a pneumatic actuator or McKibben muscle, and water 

in hydraulic muscles and fluidic flexible matrix composite      applications.  

The devices that use pneumatics in a flexible matrix composite are known as a pneumatic 

muscle actuator (PMA) or McKibben actuator, which is a device that mimics the behaviour 

of skeletal muscle. Many different fields are utilizing this device. Since McKibben introduced 

this actuator as an artificial muscle for his daughter, and due to the inherent safety and high 

power to weight ratio provided by the pneumatic muscle, the majority of McKibben actuators 

introduced are used in human interactions such as a prostheses, rehabilitation and mobility 

assistance. Examples of these applications are: a gait assistance device which is able  assist 

and improve the muscular activities of the elderly, with the research analysing the flexing and 

extending movement of the knees, and the lower limbs muscles [58]. A hand therapy device 

made of a pneumatic muscle has been developed, to assist disabled people, and the cost of  

this device is cheaper than intensive repetitive therapy [16]. A lightweight device operated by 

a pneumatic actuator used in both upper and lower body rehabilitation was developed; this 

device provides systems with reasonable power and control as well as safety for the user [59]. 

Several groups of researchers are using pneumatic muscles as actuators in robotic devices 

such as whole body humanoids, robotic arms or bipedal robots, moreover pneumatic muscle 

is also used to model some animals and insects [6]. Pneumatic actuators also have some 

applications in industrial fields such as tele-operated actuator which used in nuclear reactors 

[17]. Recently, some morphing applications made from McKibben actuator  has been studied, 

Chen et al. used a pneumatic actuator to design a kind of morphing skin; the experiment 

concluded that the contraction ratio of the device is up to 26.8%  [60].  

Commercially, the Bridgestone Rubber Company for Robotic Applications introduced the 

first McKibben muscle called Rubbertuator [61]. Other companies used different names, for 

instance: The Festo Corporation marketed fluidic muscle [6, 62], and the Hitachi Medical 

Corporation called their product McKibben Muscles [6]. 

Using hydraulic working fluid (e.g. water) in a McKibben actuator is quite a new application. 

The working fluid in exoskeleton devices and devices working in a water medium is usually 

water. For instance: an actuator for an underwater robot was introduced by Kenneth et al. 

[18], and haptic gloves that are able to produce up to 5 N have been presented  by Ryu et al 

[63]. Shan et al. developed a variable stiffness adaptive structure that could be used in 
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morphing applications [19].  They used material called fluidic flexible matrix composite 

materials      ) which has a similar structure to a McKibben actuator. However, fibres in 

an      structure can be placed at any one angle or combination of angles. There are several 

applications presented using      Materials. For example, Li and others researched using a 

fluidic flexible matrix composite in a honeycomb sandwich structure.  This has been done by 

replacing the upper sheets in a traditional sandwich structure with an adaptive structure made 

of fluidic flexible matrix composite tubes [64]. For medical equipment, this material is 

investigated in prosthetic and orthotic devices, and is used to minimize the load transfer 

between the limb and transtibial socket for amputees. This has been done by a valve control 

of the variable impedance      ) system [65]. For dissipated vibration devices, a tuned 

vibration absorber is designed by coupling a fluidic flexible matrix composite to fluid motion 

[66], while Philen introduced a mount made of a fluidic flexible matrix composite [67].  

3-3 Driving Methods of McKibben Devices 

Although the majority of McKibben actuators introduced are driven by pressured air, there 

are other techniques. Following is a brief presentation of the operation techniques of a 

McKibben actuator: 

1- Actuator drive by air pressure: Most pressurized artificial muscles are driven by air. A 

pneumatic McKibben actuator driven by air requires pressure ranging 0–6 bar, while a 

hydraulic McKibben actuator requires higher pressure which could reach 100 bar,  

however it is generating a higher force [68]. 

2- Actuator drive by chemical process: A McKibben actuator driven by a chemical 

process has been developed  [69]. They used pH-sensitive materials, an ion-exchange 

resin and Sodium Hydroxide/Hydrogen chloride (NaOH/HCl) solutions; the 

introduced device could produce 100N. 

3- Actuator drives by electro-conjugate: An electro-conjugate fluid (ECF) is a type of 

dielectric functional fluid, which when a high DC voltage is applied, a powerful jet 

flow is generated between two electrodes; this smart fluid has been used to drive the 

McKibben actuator [70]. 

3-4 Modelling of McKibben Actuator  

There have been many efforts to model the behaviour of a McKibben actuator, aiming to gain 

a deeper understanding of its behaviour and to shape the foundation of a control system. 
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Much of the past work on McKibben muscles has been focused on modelling the resulting 

force and its behaviour accurately. High deformation and nonlinear behaviour of the actuator 

cause difficulty in producing a highly accurate model. In this section, the static and dynamic 

models are reviewed and presented. 

3-4-1 Static Model 

According to the literature, three approaches were introduced for modeling the response of a 

McKibben actuator. These models are; virtual work; force analysis; and the continuum 

mechanics. 

The virtual work principle which is based on the input work being equal to the output work 

was applied by Chou and Hannaford [71]. It is the oldest and the most wide spread approach 

used for modelling a McKibben actuator.  The McKibben muscle actuator consists of an 

internal tube made of rubber inside a braided mesh shell; when the inner tube is inflated, the 

internal volume will increase; increasing the internal volume causes the actuator to expand in 

the radial direction and contract in the longitudinal direction. By considering the following 

assumptions; no energy is stored in its elastic wall, and the actuator has a cylindrical shape. 

The resulting equation of this model linked between the internal pressure and the resulting 

force: 

  
     

 
                                                                                                                  3-1 

Where:   is a contractile force,    is a gage pressure,   is a diameter of the tube and   is a 

fibre’s angle. Other researchers also concluded the same equation such as: Caldwell et al [72] 

and Tasagarakis et al  [73]. There are of a lot of publications that refer to Schulte as the first 

person to introduce this equation in 1963 [6, 74]. Due to several assumptions and ignoring 

several parameters, this model may not reach high precision.  According to Davis et al 

[61],the accuracy of this model is about 80-90%, while Doumit claims validation of this 

model is rarely true [75]. Subsequently several scholars have extended this model by taking 

into account more realistic assumptions. Chau and Hannaford took the effect of the thickness 

of an McKibben tube into their analysis [76] giving: 
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   Thickness of McKibben tube,   is an output force,    is a gage pressure,   is a diameter of 

the tube, and    the fibre’s angle.  
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Tondu and Lopez introduced a new element  , which represents the conic shape that occurs 

at both ends of the muscle when it contracts in the pneumatic muscles. The value of the new 

parameter   is estimated on the basis of experimental data [77]. 
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   and    are an unstrained length and instantaneous length of McKibben tube. 

Colbrunn et al. presented the model in terms of length of coiled fibre and length of uncoiled 

fibre instead of the fibres’ angle, because it is not easy to measure the angle experimentally. 

They also added end effects which change the force at the maximum and minimum length. 

When the actuator reaches the maximum length     , stretching in the fibre will occur, 

therefore the force will be dependant on the material of the fibre. The force is zero if the 

length of the actuator is less than minimum length     , their model is shown in the next 

equations [78]. 
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Where: 
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Where:   length of uncoiled fibre,   number of turns,         stiffness of fibre material,   is a 

diameter of the tube and is the   fibre’s angle. Tsagarakis and Caldwell considered the 

conical shape at the end of device in their analysis [73], and considered the shape of the 

actuator as cylindrical in the middle and conical at the tips. They claimed the model raises the 

accuracy by 30-50%. Klute and Hannaford [79] improved  the model by calculating the effect 

of  the strain energy storage in the elastic inner tube which is made of rubber. It was assumed 

that the bladder was thin and made of Mooney–Rivlin material. Sugimoto et al. calculated the 

strain energy density function by the main strain variables [80].  

Many of these virtual work models contain experimentally determined parameters, including 

parameters taken from experiments on specific devices, leading to validation only for a 

specific pneumatic muscle. In order to remedy this limitation, Doumit et al. introduced a 

model to overcome this issue; they used force and stress analyses to present a static model 

that is valid for any pneumatic actuator size and configuration.  This model considers the 
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mechanical properties of the inner tube, and netting analysis of the braid were also considered 

in the model [75]. The properties of the inner tubes were determined via a tensile test. The 

material properties along the longitudinal axis of the bladder are of less consequence, so it is 

not considered; only hoop stress is considered. The braided mesh properties which are 

considered have a cylindrical shape in the middle and a conic shape at both ends. The muscle 

wall stresses that act on the braid fibres produce a tensile force in them. The tension in these 

fibres acts on the end cap to produce the muscle force. 

The third method of modelling a McKibben actuator is a continuum mechanics approach, 

which  has been proposed by Liu and Rahn [81]. The McKibben actuator was modelled as a 

large deformation membrane with two families of continuously distributed inextensible fibre 

reinforcement. Although this approach would obtain more accurate of actuator shape, the 

difficulty of solving the differential equations, which is a boundary value problem, is the 

main disadvantage of this model. 

3-4-2 Dynamic Modelling 

The dynamic model of the McKibben actuator is extremely difficult to develop due to its 

nonlinear behaviour, the large deformations, and the internal damping.  

Sugimoto et al. including the damping force in the static model to get a dynamic force output 

of the McKibben actuator; the  damping force is supposed as  a function of only velocity [80]. 

Chou and Hannaford were interested in predicting the behaviour of the internal fluid pressure 

and mass flow. Their model was an electrical circuit which is analogous to the pneumatic 

circuit. The difference of pressure in actuator   and pressure accumulator    is analogous to 

the voltage difference between two nodes. The gas flow is equivalent to the current. The gas 

viscosity caused by the tubing and the connections was modelled as a linear resistor  , and 

the accumulator was modeled as a linear capacitor [76].  

Colbrunn et al introduced a phenomenological model which aimed to better capture the 

dynamic behaviour of pneumatic muscles.  The pneumatic muscle model consisted of a 

spring, viscous damper and Coulomb friction element arranged in parallel as shown in Figure 

3-1 [78]. The spring represents the nonlinear force-length relationship, a viscous damper 

represents the fluid flow losses, and the Coulomb friction represents the friction between the 

internal bladder and outer braided shell: 
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Figure 3-1: Phenomenological model of McKibben actuator 
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    )                                                                                                   3-6 

 

Where:    is the viscous damping constant,   actuator velocity at the top,   is linearization 

actuator stiffness, and   
  

 
 is a Coulomb damping constant. 

Reynolds et al.[82] developed another phenomenological model consisting of a spring 

element, viscous damping element, and contractile force element arranged in parallel as 

shown in figure 3-2.  The spring coefficient was taken to be a function of position and the 

damping coefficient a function of velocity. All these parameters are found experimentally.  

While the contractile force element varied with internal pressure and the length of tube, the 

contractile force was calculated by using next expression: 

    
    

    (
   

    )                                                                                                           3-7 

Where:     is a contractile force,    is a gage pressure,    length of uncoiled fibre,   number 

of turns, and    is a length of the tube. 

 

 

 

 

 

 

 

Figure 3-2: Reynolds model of McKibben actuator 
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3-5 Summary of the Chapter 

In this chapter the idea of a McKibben actuator is presented. The concept of a McKibben 

actuator with its history is summarized briefly for the background. Then the second section of 

the survey presented the previous devices of the McKibben actuator and its applications. The 

previous applications of a McKibben actuator were driven by various methods, therefore 

these methods were studied. The last part of the review contains the previous methods of 

modelling a McKibben actuator: this includes static models that are used to design the device 

in the manufacturing process, and dynamic models which help to find the control strategies of 

the device. 
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CHAPTER 4: DESIGN OF THE TEST FACILITY 

4-1 Introduction 

As mentioned in the literature review chapters, semi active vibration control is an attractive 

technique for vibration control. It is also mentioned that smart fluid is one of most superior 

means of control of the vibration [8], and there are a lot of semi-active applications that profit 

from the characteristics of smart fluid, when employed successfully [83]. However, the 

conventional MR dampers have a dry seal friction.   This friction makes a tiny vibration 

transmission to equipment; therefore, this tiny vibration may badly affect sensitive 

devices[13].  

To reducing influence of friction, the possibility of design MR damper by using McKibben 

actuator will investigated. Although McKibben actuator has been used in human interaction 

devices since the 1950s, the variable damping behaviour of this actuator was only noticed 

recently. Therefore, several applications in semi-active vibration control have appeared [84]. 

McKibben actuator has other advantages over the hydraulic and cylinder actuators such as: 

light weight and low cost maintenance. To understand the behaviour of McKibben actuator, 

and how it behaves under loads, the McKibben actuator will be designed and tested. In this 

research, the working fluid of the McKibben tube will be water; studying the behaviours of 

this tube by using water is an initial step before using smart fluid, as it will give a good 

ground to establish a McKibben damper when using smart fluid.  

This chapter will deal with the design of a McKibben actuator, and then the behaviour of this 

tube under static load will be predicted. The chapter will end with the validation of this 

prediction experimentally. 

 

4-2 Test Rig (McKibben Actuator) 

A McKibben actuator is used to convert internal pressure to linear force. The test rig used in 

this research consists of: a McKibben tube, valve and pressurized accumulator as shown in 

Figure 4-1. The McKibben tube consists of a rubber tube surrounded by an expansible 

braided cover. The McKibben tube is sealed at one end, and it is able to carry load at this tip, 

while the tube is attached to an accumulator via a ball valve at another end. The test rig is 
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fixed in a frame to be fixed during the process of the experiments. The frame is covered to 

protect electrical devices in case of tube explosion at high pressure. Pressurizing the 

McKibben tube could be achieved by using a pump through a Schrader valve located at the 

top of the accumulator. The pump is connected to a gage pressure to measure the pressure of 

the accumulator and inside the McKibben actuator in case of an open valve. There is an 

additional digital gage pressure installed between the McKibben tube and ball valve to 

measure the pressure in case of a closed valve. The idea of this device is: applying force to 

the end of the test rig will change the volume of the McKibben tube, and consequently the 

pressure will be increased inside the tube. Then, the fluid is able to flow in and out of the 

tube, and energy will be eliminated through the viscous effect of the controlled valve 

(magnetic effect in the case of using an MR valve).  Similar to this, a damper was introduced 

by using  a Fluids Flexible Matrix Composite      material [7]. 

 

 

                                a                                                                                                  b 

Figure 4-1: Test rig. (a) McKibben actuator, (b) Sketch McKibben actuator. 
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4-3 Static Model of the Test Rig 

To predict the behaviour of the test rig under static load, there is no effect of viscous damping 

of the valve, and the test rig could be modelled similar to a McKibben actuator.  There are 

three variable parameters of this device: a force applied to the test rig, internal pressure of the 

McKibben tube, and length of the McKibben tube. There are several techniques used for 

predicting the behaviour of this actuator and to provide a relationship between variable 

parameters. The technique of energy analysis, where input work (   ) is equal to the output 

work (    ), will be used in this research. The following assumptions have been considered:  

 Energy stored in an inner tube (rubber tube) is zero. 

 Wall thickness of the inner tube is zero.  

 The shape of the McKibben tube is cylindrical. 

The input work is done on this actuator by applying compressed air; this air moves the inner 

rubber surface, so the work is: 

                                                                                                                                  4-1 

Where:    volume change, and    gauge pressure.  

The output work from this pressure is tension in the actuator, which leads to a decrease in the 

length of the tube: 

                                                                                                                               4-2 

Where:     axial force, and    axial displacement. From the principle of virtual work, we 

could reach to the next expression:  

                                                                                                                             4-3a 

Or  

       

  
                                                                                                                         4-3b 

This equation is similar to the hydraulic cylinder equation     ; the amount of force a 

hydraulic cylinder can generate is equal to the hydraulic pressure times the effective area of 

the cylinder. Therefore, the value of       is the effective hydraulic area of the actuator. 

 It is difficult to find       for irregular shapes, therefore the shape of a tube is assumed as a 

cylindrical shape. The dimensions of this cylinder are:   is the length,    is the diameter, and 

the fibre angle is θ; these dimensions are changing during the applying load. The geometry 

has constant dimensions:    is the length of uncoiled fibre and   the number of turns for a 

single fibre. The relationship between these parameters is illustrated in Figure 4-2: 
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Figure 4-2 : The geometry of McKibben [71]. 

 

From Figure 4-2, we could express the   and   as next equations: 

                                                                                                                                     4-4 

  
      

  
                                                                                                                               4-5   

The volume of a cylinder is:  

  
    

 
 

  

       
                                                                                                       4-6  

From these equations, the axial force could be expressed: 

       

  
         

     
                                                                                                        4-7a 

   
      

   

 
                                                                                                            4-7b 

Where       is the diameter when     ,    
 

  
.   Due to the difficulty of measuring of 

fibre angle ±θ, it is worth expressing the equation in terms of tube length    , and uncoiled 

length of fib    , substituting (4-4) and (4-5) into (4-7) and rearranging the equation:  

    (
      

    )                                                                                                                      4-8 

The equation illustrates that there are three variable parameters of this device: an applied 

force, internal pressure, and the length of the tube. The effective hydraulic area of the 

actuator will be: 

  (
      

    )                                                                                                                          4-9 
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4-4 Validation of the Model 

This section explains the experimental procedures to determine the effective hydraulic area, 

and the experimental validation of the static model of the test rig. The tools and materials 

used in this experiment are: McKibben actuator, rubber tube, ball valve and frame. The test 

rig has been installed as shown in Figure 4-1; the overall inputs to the test rig are presented in 

table 4-1. 

Table 4-1: the input parameter of the test rig 

Input Value 

Length           

Diameter          

Length of uncoiled fibre            

Number of turns         

Determining the effective hydraulic area experimentally will be achieved by using an 

isometric test (The length of McKibben tube is a constant during the procedures of 

experiment). The procedures of experiment are starting by filling water inside McKibben 

tube then ball valve will be closed. The force will be applied to the system from 0 to 

maximum 140 N. Because the McKibben tube is filled with water, and water is 

incompressibility fluid, the length of the tube will not change. The pressure will recorded at 

each applied force by using the digital gage pressure. Three different initial lengths (21.5cm, 

17.2cm, and 12cm) have been tested in the experiments, the results are shown in table   4-2. 

Table 4-2: The result of isometric test 

Force (N) 

Pressure (   ⁄ )  

Initial length 

21.5 cm 

Initial length 

17.2 cm 

Initial length 

12 cm 

0 0 0 0 

20 25000 24500 23000 

40 49000 48500 46500 

60 76000 76700 74500 

80 104000 103300 99000 

100 131000 130000 127000 

120 159000 157000 155000 

140 186000 184000 182000 
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Figure 4-3 shows force-pressure relationship at different lengths. The effective hydraulic area 

is equal to the inverse of gradient of the line which equals 0.000769   . Numerically, the 

effective hydraulic area is also determined by using equation 4-9 which is equal 

to           . 

 

Figure 4-3: The relationship between force and pressure for McKibben tube at constant length. 

 

Validation of the model equation (equation 4-8) could be achieved by using the isobaric test. 

In this test, the internal pressure is constant in the McKibben tube and the other parameters 

(force and length) will be changed. Because it is not easy to ensure pressure is constant 

during a changing load, the isotonic test (constant applied force and changing pressure and 

length of McKibben tube) will be carried out in this report. The procedures of the test are: 

The actuator was loaded to known load (25 N), and then internal pressure was increased 0.5 

bar increments to a maximum of 4 bar. The internal pressure P, length of McKibben tube L 

and applied load F are all recorded during each step of the test. Three separate tests were run, 

each with a different load (25N, 50N and 75 N). Figure 4-4 is a plot of the pressure-length 

relationship at different loads. The force-length relationship at each pressure could be plotted 

by using an isobaric test. 
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Figure 4-4: The relationship between length and pressure for McKibben tube at constant load. 

The experimental results were compared with modelling results; the length of the McKibben 

tube is calculated by rearranging equations 4-8 as shown in equation 4-10: 

  √[  
    

    ] [
    

   ]                                                                                                   4-10   

The Matlab code that was used to plot this equation and the entire results which were 

achieved by modelling and experiments are shown in Appendix B. Figure 4-5 shows the 

experimental results which are compared with the modelling results at a constant load 25 N. 
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Figure 4-5:  Plot of model and experimental result between length and internal pressure for McKibben 

actuator at load 25N. 

 

 

The figure shows differences between the modelling results and experimental results, and the 

accuracy of the model is about 80%. These errors occurred due to ignoring some parameters, 

such as: neglecting the strain energy of the rubber tube, and ignoring force losses in the 

system due to friction between fibres and friction between the inner tube and outer tube. 

Moreover, the McKibben actuator is considered as an ideal cylindrical shape. To minimize 

these differences, it is important to consider these factors. 

4-5 Improved Static Model of McKibben Actuator 

The accuracy of the previous model of the McKibben tube is about 80 %. An improved 

model which could provide a higher accuracy is attempted in this section. To improve the 

model of McKibben behaviour, the model is extended by introducing an elastic energy of 

inner tube: 

                                                                                                                      4-13 

Where    the volume is occupied by the inner tube, and   is the strain energy density 

function.  From the previous analysis of input work and output work: 
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                                                                                                                    4-14a 

Or 

       

  
   

  

  
                                                                                                            4-14b 

 

To determine the strain energy density of the inner tube, the Mooney-Rivlin model was used 

in some previous works [79, 80] and the Neo-Hookean model in another [85]. For simplicity, 

the rubber tube will be assumed to behave as a Neo–Hookean solid. The strain energy 

function of the actuator   could be expressed as a function of the first invariant of strain 

[86]. 

  
  

 
[    ]                                                                                                                  4-15 

   is the  shear  modulus for infinitesimal deformations [86], and    strain invariants which 

could be expressed:  

     
    

    
                                                                                                                 4-16  

             are the principle stretches.     
 

  
 ,     

 

  
   and       

 

    
  .  

Where   and   are instantaneous length and diameter, while     and    are initial length and 

diameter of the tube, respectively.  So,   can be expressed as next the equation: 
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   ]                                                                                                 4-17a   

or                                                                                                                                            

  
  

 
[(

 

  
)
 

 (
 

  
)
 

 (
    

  
)
 

  ]                                                                              4-17b 

From the geometry model in Figure 4-2, the diameter of the tube could be expressed in terms 

of length of tube: 

   
     

    
                                                                                                                           4-18 

 

Therefore strain energy density of inner tube   is determined by using the next equation: 
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The derivative strain energy density regarding the length: 
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Therefore, the force output of the actuator could be expressed: 

    (
      

    
)  
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]                                              4-21 

 

4-6 The Results and Discussion 

The basic model has been investigated by using isotonic tests; also the improved model will 

be validated by using the same techniques and the tools and materials used in this experiment 

were similar to the previous experiment. The test rig is shown in Figure 4-1; the new 

experimental parameter in this model is shown in Table 4-3:  

Table 4-3: the input parameter of the test rig 

Input Value 

Shear modulus of rubber [87].              . 

Thickness of inner tube              

The Matlab code is used to calculate the equation of the improved model (equation 4-21). 

The script of Matlab is shown in Appendix C. Figure 4-6 shows the experimental results 

which are compared with the modelling results at a constant load 25 N. 

 

Figure 4-6: Plot of basic model, improved model and experimental result between length and internal pressure 

for McKibben actuator at load 25 
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The figure shows the improved model gives better results than the basic model. Although 

there are differences between the modelling results and experimental results, and solving the 

new model is more difficult, the accuracy of the model is above 85%. To minimize these 

differences, it is important to consider the following factors: 

- The equation of the model was based on considering that the McKibben actuator has 

the ideal cylindrical shape. However, in reality the tube is not regular as it was 

assumed. Therefore, the accuracy of the model will be improved if we could find the 

derived       (in equation 4-3b) for a more realistic shape. 

- There are force losses in the system due to friction between fibres and friction 

between the inner tube and outer tube, although the losses here are small, but it has an 

effect on the accuracy of the model.  

This model is adequate and simple enough for dynamic simulation and control. 

The model is shown to have less accuracy at low pressure, and the error is bigger when 

applying higher loads as shown in Figure 4-7. The final addition to the model is to capture the 

end effects, which changes in the output of the force at the length limits. When the actuator is 

reaching the maximum length      (length saturation), the stretching will be occurring in the 

fibres; therefore the force will be dependant on the material of the fibre. While the force is 

zero if the length of actuator is less than minimum length     , this model is shown in next 

equations [78]. 

  {
    

   
(
   

    )                                                    

                                                                                    
                                     4-22a 

Where: 

     {
                                                     

                                                                     
                                            4-22b 

Where:   length of uncoiled fiber,   number of turns,         stiffness of fibre material. 
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Figure 4-7:  Plot of model and experimental result between length and internal pressure for McKibben 

actuator at load 50N. 
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CHAPTER FIVE: CONCLUSIONS AND FUTURE WORK  

5-1 Conclusions  

Smart fluid is considered as one of the most superior means of control of vibration, and there 

are many of semi-active applications which profit from the characteristics of smart fluid, 

which have been employed successfully. However, a conventional MR damper has dry 

sealing frictions which cause a vibration transmission to the equipment. To reduce the friction 

in a device, the possibility of using a McKibben actuator instead of a hydraulic actuator to 

design an MR damper is studied. The main conclusions from this study can be summarized as 

follows: 

- The principles of smart fluids have been investigated; the previous applications and 

modelling are also reviewed.  

- The concepts of a McKibben actuator and modelling approaches of a McKibben 

actuator have been introduced. 

- A test rig of a McKibben actuator has been designed  

- The effective hydraulic area of a McKibben actuator is theoretically determined, and 

the expression of  the theoretically effective area was validating experimentally 

- Simple and improved models of the test rig were modelled under static load. Then the 

model was validated experimentally. 

The model predicts the behaviour of the test rig under static load. The model is simple and its 

accuracy is about 85%. Its accuracy could be improved by taking into account: the effect of 

the end tube and the friction factor between fibres. 

5-2 Future Study 

The main purpose of this research is to study the possibility of design a smart fluid damper by 

using McKibben actuator. This research is the first steps toward designing MR damper by 

using McKibben actuator. The following tasks should be carried out in further study: 

First task: it is important to model and validate the behaviour of a McKibben actuator under 

dynamic load. In this case; the effect of a ball valve will be considered. It also requires 

installing a digital instrumentation system to record all variable parameter's values during 
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loading. The dynamic model of the test rig requires three equations of motion to capture the 

dynamic behaviour; the first equation of motion defines the vibration of suspended mass, and 

it is defined by using Newton’s Second Law. The second equation represents the movement 

of the working fluid, and the flow continuity equation should be used. And the third equation 

captures the characteristics of pressurized air; the polytrophic law for the compression of 

gases is used to determine this equation. 

Second task: magneto-rheological fluid will be used in the McKibben tube instead of water, 

and using a Magnetorheological MR Valve instead of a ball valve. This step requires 

designing an MR valve, then modelling the new system and validating the model. In this case 

the working fluid will be smart fluid, which will move in and out of the McKibben tube 

through a valve. By designing the MR valve and using it instead of the ordinary valve, the 

magnetic field could restrict the fluid inside the tube, while an absence of magnetic field 

would allow the fluid to flow out of the tube. The most important region of modelling an MR 

valve is the active region; this region is modelled by using a Bingham plastic flow between 

parallel flat plates. The model of a smart fluid device depends on the geometry of the valve, 

the geometry of the actuator, and the properties of the fluid. The variable of the actuator 

geometry is the effective hydraulic area. This area has been determined experimentally and 

theoretically, therefore it is important to find this variable to implement the model of smart 

fluid devices. 

Third task: designing the control strategy of this damper. The literature review of the control 

strategy of a smart fluid damper is introduced in Chapter two, section 2-8.  There are two 

objectives that must be addressed in order to design controllers for smart fluid based vibration 

systems: the first objective is to determine the desired damping force that will provide the 

optimal performance; the second objective is to calculate the input current that generates this 

force. Because of the nonlinear behaviour of smart fluid, different strategies have been used 

to track force, such as: on/off method, linear relationship between control of the current and 

the desired damping force, and linearization of the feedback of force/velocity behaviour of a 

smart fluid damper. 
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APPENDIX A: Analysis 2DOF System 

 Matlab Simulink of 2DOF system 

Figure A-1: Simulink model and value parameters of second degree of freedom 

 

 Matlab Code for FRF 

clear all 
Fo=30; 
Fs=1/5000;                    %fixed step size 
ff=Fs; 
cc=10;                        %number of cycle 
wr=.1:0.1:16;                 %frequency of system rad/sn 
for n=1:length(wr);   
    fr(n)=wr(n);              %excitation frequency Hz 
    t=cc/fr(n);               %stop time s 
    nxx=1/(fr(n)*ff);         %number of sample for one cycle 
    sim sunday                %Change model name to the name of your model 
    yy(n)=max(F(end-nxx:end)); 
    mxa(n)=max(x1(end-nxx:end)); 
    mna(n)=min(x1(end-nxx:end)); 
    xxa(n)=(mxa(n)-mna(n))/2; 
    yyy(n)=max(x2(end-nxx:end)); 
end 
yu=230000*xxa./(yy); 
yuu=230000*yyy./(yy); 
plot(fr,yu) 
hold all 
%plot(fr,yuu) 
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APPENDIX B: Damping Ratio  

Damping ratio is a dimensionless measure describing how oscillations in a system decay after 

a disturbance. If the single degree of freedom system (spring-mass-damper) is oscillated from 

its static position, the equation of motion is expressed as: 

   ̈    ̇                                                                                                                    B-1 

The characteristic equation of the system is: 

                                                                                                                          B-2 

The roots of this equation are: 

     
   √      

  
                                                                                                                 B-3   

Roots of the characteristic equation could be real and varied, or real and equal or complex 

number. It is depending on a radical value (       . The Critical damping    is the value 

of damping that gives two real and equal roots. In other words, critical damping is that 

becomes the radical value to zero. Therefore, the critical damping could be found as: 

  
                                                                                                                              B-4 

    √                                                                                                                              B-5 

                                                                                                                                   B-6 

Other values of damping is defined as a fraction of critical damping, it called damping 

ratio  :  

  
 

  
                                                                                                                                      B-7 

Therefore, the root of the characteristic equation can be re-written in term of damping ratio 

(   as: 

     (  √    )                                                                                                         B-8 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Dimensionless
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From these equations, the behaviour of solution is depending on the value of damping, there 

are three different cases: 

- Under damped response: the value        0 or    . 

- Critical damped response: the value           or    . 

 - Over damped response: the value          or    . 

Figure B-1 is shown these responses. 

 

 

 

 

 

 

Figure B-1 Under damped, critical and over damped responses 
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APPENDIX C: Matlab Code for Simple Static Model  

%Appendix C: Simple Static Model of McKibben tube 
%Input 
D0=0.011;                             %diameter of tube 
L0=0.212;                             %Initial length of tube 
b=0.2337;                             %length of uncoiled fibre  
n=sqrt((b^2-L0^2)/(D0^2*pi*pi));      %number of turns 
pbar=0.5;                             %pressure in bar unit 
F=50                                  %force in Newton unit 
while pbar<4                          %loop from 1 bar to 4 bar 
      pbar=pbar+.5                    %increase 0.5 bar each step        
      p=pbar*100000;                  %convert bar to N/m2 
L=sqrt((F+(b^2*p/(4*pi*n^2)))*((4*pi*n^2)/(3*p))) %Equation 10 
End 

 
Table C-1 the experimental and modelling result of basic model. 

Pressu

re bar 

25 N 50 N 75 N 

Exp. 

Result 

Model 

Result 

Error  

% 

Exp. 

Result 

Model 

Result 

Error 

 % 

Exp. 

Result 

Model 

Result 

Error  

% 

0.5 0.216 0.18755 13.170 0.222 0.22835 -2.86 0.225 0.26290 -16.84 

1 0.208 0.16337 21.455 0.217 0.18755 13.57 0.221 0.20895 5.4514 

1.5 0.2 0.15447 22.763 0.213 0.17181 19.337 0.218 0.18755 13.9669 

2 0.192 0.14982 21.965 0.205 0.16337 20.306 0.214 0.17587 17.8139 

2.5 0.186 0.14696 20.985 0.197 0.15809 19.749 0.208 0.16848 18.997 

3 0.18 0.14503 19.427 0.191 0.15447 19.123 0.199 0.16337 17.903 

3.5 0.176 0.14363 18.392 0.186 0.15183 18.368 0.193 0.15961 17.295 

4 0.174 0.14257 18.062 0.182 0.14982 17.677 0.188 0.15674 16.624 
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Figure C-1:  Plot of Model and experimental result between length and internal pressure for 

McKibben actuator at load 50N. 

 

 

 

Figure C-2:  Plot of Model and experimental result between length and internal pressure for 

McKibben actuator at load 75N 
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APPENDIX D: Matlab Code for Improved Static Model  

%Appendix D: Improved Static Model of McKibben Tube 
%Input 
D0=0.011;                            % Initial diameter of tube 
L0=0.212;                            %Initial length of tube 
b=0.2337;                            %length of uncoiled fibre  
n=sqrt((b^2-L0^2)/(D0^2*pi*pi));     %number of turns 
t0=3e-4;                             % thickness of inner tube (Bladder)  
Er=1e7;                              % inner tube (Bladder) stiffness 
M=0.0006e9;                          %Shear modulus of inner tube 
F=75                                 %force in Newton unit 
pbar=0;                              %pressure in bar unit 
 while pbar<4                        %loop from 0.5 bar to 4 bar 
   pbar=pbar+.5;                     %increase 0.5 bar each step 
   p=100000*pbar;                    %convert bar to N/m^2  
   a=-1; 
   L=.26;                            % assuming L 
while a<0 
      L=L-.0001; 
D=sqrt(b^2-L^2)/(n*pi);             % Instance diameter of tube  
Vr=t0*(L)*D*pi;                     %volume inner tube (Bladder)  

                      
%a=F-p*((3*L^2-b^2)/(4*pi*n^2));     % Equation 4-8 
a=F-p*((3*L^2-b^2)/(4*pi*n^2))-(Vr*M/2*((2*L/L0^2)-(2*L/(D0^2*n^2*pi^2))-

(2*L0^2*D0^2*n^2*pi^2*(b^2-2*L^2)/(L^3*(b^2-L^2)^2)))); %Equation 4-21 

  
end 
x=L 
end 
 

 

Table D-1: The experimental and modelling result of improved model (isotonic test). 

Pressure 
bar 

25 N 50 N 75 N 

Exp. 

Result 

Model 

Result 

Error  Exp. 

Result 

Model 

Result 

Error Exp. 

Result 

Model 

Result 

Error  

%  % % 

0.5 0.216 0.2052 5 0.222 0.2153 3.01801 0.225 0.2599 -15.51 

1 0.208 0.1842 11.442 0.217 0.2003 7.69585 0.221 0.2108 4.6153 

1.5 0.2 0.1704 14.8 0.213 0.1852 13.0516 0.218 0.1973 9.4954 

2 0.192 0.1624 15.416 0.205 0.1747 14.7804 0.214 0.1857 13.224 

2.5 0.186 0.1572 15.483 0.197 0.1677 14.8731 0.208 0.1773 14.759 

3 0.18 0.1536 14.666 0.191 0.1627 14.8167 0.199 0.1711 14.020 

3.5 0.176 0.1511 14.147 0.186 0.159 14.5161 0.193 0.1664 13.782 

4 0.174 0.1491 14.310 0.182 0.1561 14.2307 0.188 0.1628 13.404 

 


