2,902 research outputs found

    Electrical Vehicle-Assisted Demand Side Energy Management

    Get PDF

    Autonomous Demand Side Management of Electric Vehicles

    Get PDF
    There is an error in the table of content, where publication A and B have swiched places.Demand-side management approaches that exploit the temporal flexibility of electric vehicles have attracted much attention in recent years due to the increasing market penetration. These demand-side management measures contribute to alleviating the burden on the power system, especially in distribution grids where bottlenecks are more prevalent. Electric vehicles can be defined as an attractive asset for distribution system operators, which have the potential to provide grid services if properly managed. In this thesis, first, a systematic investigation is conducted for two typically employed demand-side management methods reported in the literature: A voltage droop control-based approach and a market-driven approach. Then a control scheme of decentralized autonomous demand side management for electric vehicle charging scheduling which relies on a unidirectionally communicated grid-induced signal is proposed. In all the topics considered, the implications on the distribution grid operation are evaluated using a set of time series load flow simulations performed for representative Austrian distribution grids. Droop control mechanisms are discussed for electric vehicle charging control which requires no communication. The method provides an economically viable solution at all penetrations if electric vehicles charge at low nominal power rates. However, with the current market trends in residential charging equipment especially in the European context where most of the charging equipment is designed for 11 kW charging, the technical feasibility of the method, in the long run, is debatable. As electricity demand strongly correlates with energy prices, a linear optimization algorithm is proposed to minimize charging costs, which uses next-day market prices as the grid-induced incentive function under the assumption of perfect user predictions. The constraints on the state of charge guarantee the energy required for driving is delivered without failure. An average energy cost saving of 30% is realized at all penetrations. Nevertheless, the avalanche effect due to simultaneous charging during low price periods introduces new power peaks exceeding those of uncontrolled charging. This obstructs the grid-friendly integration of electric vehicles.publishedVersio

    Demand Side Management of Electric Vehicles in Smart Grids: A survey on strategies, challenges, modeling, and optimization

    Get PDF
    The shift of transportation technology from internal combustion engine (ICE) based vehicles to electricvehicles (EVs) in recent times due to their lower emissions, fuel costs, and greater efficiency hasbrought EV technology to the forefront of the electric power distribution systems due to theirability to interact with the grid through vehicle-to-grid (V2G) infrastructure. The greater adoptionof EVs presents an ideal use-case scenario of EVs acting as power dispatch, storage, and ancillaryservice-providing units. This EV aspect can be utilized more in the current smart grid (SG) scenarioby incorporating demand-side management (DSM) through EV integration. The integration of EVswith DSM techniques is hurdled with various issues and challenges addressed throughout thisliterature review. The various research conducted on EV-DSM programs has been surveyed. This reviewarticle focuses on the issues, solutions, and challenges, with suggestions on modeling the charginginfrastructure to suit DSM applications, and optimization aspects of EV-DSM are addressed separatelyto enhance the EV-DSM operation. Gaps in current research and possible research directions have beendiscussed extensively to present a comprehensive insight into the current status of DSM programsemployed with EV integration. This extensive review of EV-DSM will facilitate all the researchersto initiate research for superior and efficient energy management and EV scheduling strategies andmitigate the issues faced by system uncertainty modeling, variations, and constraints

    Decentralized Greedy-Based Algorithm for Smart Energy Management in Plug-in Electric Vehicle Energy Distribution Systems

    Get PDF
    Variations in electricity tariffs arising due to stochastic demand loads on the power grids have stimulated research in finding optimal charging/discharging scheduling solutions for electric vehicles (EVs). Most of the current EV scheduling solutions are either centralized, which suffer from low reliability and high complexity, while existing decentralized solutions do not facilitate the efficient scheduling of on-move EVs in large-scale networks considering a smart energy distribution system. Motivated by smart cities applications, we consider in this paper the optimal scheduling of EVs in a geographically large-scale smart energy distribution system where EVs have the flexibility of charging/discharging at spatially-deployed smart charging stations (CSs) operated by individual aggregators. In such a scenario, we define the social welfare maximization problem as the total profit of both supply and demand sides in the form of a mixed integer non-linear programming (MINLP) model. Due to the intractability, we then propose an online decentralized algorithm with low complexity which utilizes effective heuristics to forward each EV to the most profitable CS in a smart manner. Results of simulations on the IEEE 37 bus distribution network verify that the proposed algorithm improves the social welfare by about 30% on average with respect to an alternative scheduling strategy under the equal participation of EVs in charging and discharging operations. Considering the best-case performance where only EV profit maximization is concerned, our solution also achieves upto 20% improvement in flatting the final electricity load. Furthermore, the results reveal the existence of an optimal number of CSs and an optimal vehicle-to-grid penetration threshold for which the overall profit can be maximized. Our findings serve as guidelines for V2G system designers in smart city scenarios to plan a cost-effective strategy for large-scale EVs distributed energy management
    corecore